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Abstract. We target the problem of closed-loop learning of control
policies that map visual percepts to continuous actions. Our algorithm,
called Reinforcement Learning of Joint Classes (RLJC), adaptively dis-
cretizes the joint space of visual percepts and continuous actions. In
a sequence of attempts to remove perceptual aliasing, it incrementally
builds a decision tree that applies tests either in the input perceptual
space or in the output action space. The leaves of such a decision tree
induce a piecewise constant, optimal state-action value function, which is
computed through a reinforcement learning algorithm that uses the tree
as a function approximator. The optimal policy is then derived by select-
ing the action that, given a percept, leads to the leaf that maximizes the
value function. Our approach is quite general and applies also to learning
mappings from continuous percepts to continuous actions. A simulated
visual navigation problem illustrates the applicability of RLJC.

1 Introduction

Reinforcement Learning (RL) [IL2] is an attractive framework for the automatic
design of robotic controllers. RL algorithms are indeed able to learn direct map-
pings from percepts to actions given a set of interactions of the robotic agent
with its environment. These algorithms build on a careful analysis of a so-called
reinforcement signal that implicitly defines the task to be solved. Using RL po-
tentially simplifies the design process, as real-world robotic applications are in
general difficult to model and to solve directly in a programming language.

Unfortunately, although robotic controllers often interact with their environ-
ment through a set of continuously-valued actions (position, velocity, torque,. . . ),
relatively little consideration has been given to the development of RL algo-
rithms that learn direct mappings from percepts to continuous actions. This
is in contrast to continuous perceptual spaces, for which many solutions exist.
The challenge of continuous actions spaces arises from the fact that standard
update rules based upon Bellman’s optimality equations are only applicable on
finite sets of actions, as they rely on a maximization over the action space. Fur-
thermore, an a priori discretization of the action space generally suffers from
an explosion of the representational size of the domains known as the curse of
dimensionality, and may introduce artificial noise.
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Fig. 1. Illustration of the discretization process of (a) RLVC, and (b) RLJC
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Previously-investigated solutions for handling continuous actions without a
priori discretization generally use function approximators such as neural net-
works [3], tile coding [4], or wire fitting [5]. However, to the best of our knowl-
edge, none of these methods can cope simultaneously with high-dimensional,
discrete perceptual spaces. As a consequence, vision-based robotic tasks with
continuous output such as visual servoing cannot currently be solved through
RL. This paper presents the Reinforcement Learning of Joint Classes (RLJC) al-
gorithm, which enables such closed-loop learning of direct mappings from images
to continuous actions. RLJC is a generalization of the Reinforcement Learning
of Visual Classes (RLVC) algorithm [6] to continuous actions.

RLJC discretizes the problem space by applying tests in the input perceptual
space and in the output action space, i.e. by testing the presence of perceptual
features and of action features. For example, when the input of the agent is a
binary number, suitable perceptual features could be tests on a single bit of the
input. Similarly, if uni-dimensional continuous actions are considered, an action
feature could be a real number that would serve as a threshold. RLJC progres-
sively subdivides the combined percept-action (or joint) space, in a sequence of
attempts to remove perceptual aliasing. In each region that is induced by the
discretization process, the state-action value functions are constant. This way,
the uncountable joint space is mapped to a finite number of regions, and specific
RL algorithms are then used to extract the optimal control policies. Very im-
portantly, the discretization process is adaptive: A new split occurs only when it
succeeds at distinguishing between two regions of the problem space that have
dissimilar properties with respect to the optimal value function. Therefore, the
discretization of the action space can be inhomogeneous with respect to the per-
ceptual space, and the action space can possibly be discretized differently at
each percept. This difference is illustrated in Figure [l

The idea of discretizing the joint space is also present in the JoSTLe algo-
rithm [7], an extension of Variable Resolution Grids [§]. However, JoSTLe is
specifically designed for continuous perceptual spaces, as it heavily relies on
Kuhn triangulations of the joint space. Conversely, RLJC is not limited to dis-
crete perceptual spaces, and it can also be applied to continuous perceptual
spaces. Indeed, RLJC only requires that features can be defined on the per-
ceptual and action spaces. Therefore, one key advantage of RLJC lies in its
generality. Experimental results on a simulated navigation task indicate that
RLJC is a promising framework for the interactive learning of visual tasks.
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2 Reinforcement Learning of Visual Classes

2.1 Theoretical Background

The Reinforcement Learning of Visual Classes (RLVC) [6] algorithm is first de-
scribed and will serve as a basis for the Reinforcement Learning of Joint Classes
(RLJC) algorithnll. RLVC is a Reinforcement Learning (RL) algorithm [112].

In RL, the environment is modeled as a set S of states or perceptsdd, and the
agent interacts with it through a set A of actions. The environment obeys a sta-
tionary discrete-time dynamics: If at time ¢, the agent takes the action a; while
the environment lies in a state s;, the state s;41 is reached with probability
T (s¢,aq, St+1)- A stationary reinforcement signal R : S x A — R gives a quanti-
tative evaluation of taking an action in the presence of a percept. This signal is
possibly delayed, meaning that a good (resp. bad) reaction is not required to be
rewarded (resp. penalized) immediately. Therefore, an interaction with the en-
vironment is summarized as a quadruple (s;, a;, r¢+1, St+1). If S and A are finite,
the quadruple (S, A, 7,R) is known as a Markov Decision Process (MDP).

A stationary percept-to-action mapping (or control policy) is a function 7 :
S — A that links the percepts to the actions. Any control policy 7 induces a
value function V™ : S +— R that corresponds to the expected discounted return
over time if that policy is followed from a given percept s € S:

o0

V7T(s) =E" {thrtﬂ | so = s} , for each s € S| (1)

t=0

where v € [0, 1] is the discount factor that gives the current value of the future
reinforcements. The goal of RL is to learn an optimal policy m* that maximizes
the value function for all the percepts s € S. The value function V* of an
optimal policy 7* is unique and is called the optimal value function. RL algo-
rithms are able to extract an optimal policy 7* from a database of interactions
(St, a1, Tt41, St+1) without relying on any knowledge of 7 or R.

Another useful concept is that of the state-action value function Q™ : Sx A —
R of a policy 7. Such a function provides a convenient way to embed, in a single
framework, the dynamics of the environment and the value function V™. For each
state s € S and each action a € A, Q™ (s,a) is the expected discounted return
obtained by starting from state s, taking action a, and thereafter following 7:

o0

Q" (s,a) =E" {thnﬂ | so =s,a0 = a} , foreach se Sandae A. (2)

t=0

The (unique) optimal state-action value function Q* is defined as the state-action
value function of an optimal policy 7*. Once Q* is known, it is possible to extract
the optimal value function V*, as well as an optimal policy 7* by choosing for
each s € S: V*(s) = sup,c 4 @"(s,a) and 7*(s) = argsup,c 4 @*(s,a).

! The formalism is different from that originally used to describe RLVC [6]. This allows
us to unify RLVC and RLJC within a single theoretical framework.
2 More explicitly, we assume that the perceptual space is fully observable.
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2.2 Incremental Discretization of the Perceptual Space

Because standard RL algorithms rely on a tabular representation of the value
functions, they quickly become impractical as the number of possible percepts
increases. This is evidently a problem in visual tasks. In RLVC, we have proposed
to constrain the allowed structure of the state-action value functions Q(s,a) by
resorting to a percept classifier C that discretizes the perceptual space S into a
finite set of perceptual classes {c1,...,cr} by testing the presence of features in
the percepts. RLVC assumes the finiteness of the action space: A = {a1,...,am}.

Formally, let Fs be a (possibly infinite) set of perceptual features that can
be defined on the perceptual space. Perceptual features suitable for visual tasks
are discussed in Section These features are required to be binary: Given a
percept and a perceptual feature, the feature is either present in the percept or
not. Therefore, the existence of a perceptual feature detector is assumed, which
is a Boolean function Dg : S X Fg — B testing whether a given percept exhibits
a given perceptual feature. Furthermore, we assume the presence of a perceptual
feature generator Gg that, given a percept, computes the set of all the perceptual
features that are present in this percept:

gS:S’_’,P<FS'):s'_){f€FS‘DS<svf)}7 (3)

where P denotes the power set.

Now, the percept classifier C is a binary decision tree. Each of its internal nodes
is labeled by the perceptual feature, the presence of which is to be tested in that
node. The n leaves of the tree define the set of perceptual classes {c1,...,c,}.
To classify a percept, the system starts at the root node, then progresses down
the tree according to the result of the perceptual feature detector Dg for each
perceptual feature found during the descent, until it reaches a leaf.

Once a percept classifier C is fixed, all the percepts s,s’ € ¢; that lie in the
same perceptual class ¢; are required to share the same value for any state-
action value function: Q(s, a;) = Q(s’,a;), for any action a; € A. Therefore, for
a percept classifier C that induces n perceptual classes, any state-action value
function Q(s,a) is approximated as a function

ch(&a,r) =r[i,j], if C(s) = ¢; and a = aj, (4)

where r € R™*™ is a matrix of free parameters whose dimension is equal to the
number of perceptual classes in C times the number of possible actions.

RLVC starts with a binary decision tree Cy that consists of a single leaf. Such a
percept classifier maps all the percepts to the same perceptual class. Then, RLVC
computes a matrix of parameters rf that defines the optimal state-action value
function Q§(s,a) = @co(s, a,ry) that is induced by Cy. As the perceptual space
is discretized, this can be done using standard RL algorithms [6]. Of course,
the optimal decisions cannot always be made using @), as percepts requiring
different reactions are associated with the same class: Cy introduces perceptual
aliasing [9], and the agent must refine the aliased class. So, the agent dynamically
selects a new distinctive perceptual feature, i.e. one that best disambiguates
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the aliased percepts with respect to Qf. This selection process is described in
Sections 2.3l and [2.4l Then, the selected perceptual feature is used to refine the
percept classifier Cy, leading to a new classifier C;, and the process iterates.

To summarize, RLVC builds a sequence Cy, C1,Ca, . . . of growing decision trees,
in a sequence of attempts to remove perceptual aliasing. An optimal state-action
value function @)} is computed for each percept classifier Cj, in the sequence. At
each step k, some leaves are replaced by tests on highly informative features,
and the number of perceptual classes in the classifier grows.

2.3 Detecting Perceptual Aliasing

RLVC uses Bellman residuals to detect the perceptual classes that are aliased
in a percept classifier Cx. Bellman’s optimality equation states that, if @Q* is the
optimal state-action value function of the controlled system, then:

Q" (s,a) =R(s,a) + - Z 7 (s,a,s") sup Q*(s',a’), (5)

’
s'es a’'€A

for all s € S and a € A. If A is finite, if the transition relation 7 is assumed
deterministic, and if one interaction (s, at, r+41, St+1) is given, we deduce that:

Q" (st,at) =41 +7- ?gf{f@*(st+17a/)- (6)

Let now consider @, the optimal state-action value function induced by Cy.
As a consequence of Equations @ and @ for any time stamp ¢ in the database of
interactions, if a; corresponds to the jth action in the finite set A, the scalar

Ay = Qp(st,a8) = Tep1 — 7+ {IT,IQPA}QZ(SHhCL’) (7)
=7 [Ci(se)J] = resr — - somax 7% [Ch(st41), d'] (8)

is called the Bellman residual at time ¢, and is a measure of the perceptual alias-
ing occurring in the perceptual class C(s;). If the environment is deterministic
and if the percept classifier Cy, is free of aliasing, then A; should always be zero.

Let ¢; be a perceptual class that belongs to the percept classifier Cy, and let
a € A be an action. The set T (c;,a) is defined as the time stamps of all the
interactions that are simultaneously related to the class ¢; and to the action a:

Ti(ci,a) = {t | Cx(se) = ¢; and a, = a}. 9)

Following the reasoning above, the perceptual class ¢; is considered aliased with
respect to an action a € A if the set of Bellman residuals {A; | ¢ € Ti(c;,a)}
has a variance that exceeds a given threshold 7 € Ry

2.4 Selecting Distinctive Perceptual Features

We now turn to the problem of selecting a distinctive feature that best disam-
biguates an aliased perceptual class ¢; in the percept classifier C, with respect
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to an action a € A. To this end, we extract all the perceptual features that can
be generated from the interactions that are simultaneously related to ¢; and a:

Fi(ci,a) = {f | (3t € Ti(ci,a)) f € Gs(si)}- (10)

Among this set of candidate perceptual features, we select the feature that best
explains the variations in the set of Bellman residuals. This is a regression prob-
lem, for which we apply the popular splitting rule that is used in the CART
algorithm for building regression trees [10].

Each feature f € Fj(c;, a) splits the Bellman residuals into two parts: {4 |
t € Ti(ci,a) N Dg(se, )} and {A; | t € Ti(ci,a) A —=Ds(se, f)}. We select the
feature f € F(c;,a) leading to the greatest reduction in the variance of these two
sub-distributions. For each candidate feature, a Student’s t-test decides whether
the two sub-distributions of Bellman residuals are significantly different. This
is important, as the transition relation 7 is in general non-deterministic, which
generates variations in Bellman residuals that are not a consequence of aliasing.

2.5 Application to Visual Tasks

We now introduce perceptual features that enable RLVC to solve visual tasks [6].
Evidently, the high dimensionality and the noise of images cause problems in
many fields of Computer Vision. For this purpose, the popular, highly successful
local-appearance methods have been introduced. They postulate that, to take the
right decision in a visual problem, it is often sufficient to focus one’s attention
only on a few interesting patterns occurring in the images.

They introduce a wisual feature transform F : S +— P(RY), where S is the
set of images, which summarizes an image as a set of visual features that are
vectors of reals. For an image s € S, F(s) typically contains between 10 and
1000 visual features. Most visual feature transforms have in common that: (1)
they identify interest points in the images through specialized algorithms (Har-
ris, Harris-affine,...) [I1I]; and (2) they compute a local description (local jets,
SIFT,...) of the neighborhood of these interest points [12].

RLVC uses local descriptors as perceptual features. The set Fig of perceptual
features corresponds to R, and the perceptual feature detector Dg tests whether
an image s € S exhibits some local descriptor at one of its interest points:

Ds(s, f) = true if and only if (3f' € F(s)) ||f — f'l| <e, (11)

where f € Fs is a visual feature, and € € Ry is a fixed threshold. Any suitable
metric || - || can be used to test the similarity of two visual features, e.g. the Ma-
halanobis distance. The corresponding perceptual feature generator Gg returns
the local description of all the interest points in the input image: Gs(s) = F(s).

3 Reinforcement Learning of Joint Classes

The aliasing criterion defined in Section -3 cannot be used anymore when the
action space is continuous, for at least two reasons: The Bellman residuals (as
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defined by Equation [1]) are unavailable, as the sup operator cannot be replaced
by a max; and the set of time stamps of Equation [ is useless, because the action
space can only be sparsely sampled, so that any T'(¢;, a) essentially collapses to a
set containing at most one element. A natural idea is therefore to also discretize
the action space. RLJC follows this principle, and discretizes the joint space Sx A
instead of simply S. Whereas RLVC learns a sequence of perceptual classifiers
Cr that discretize the percept space by testing perceptual features, RLJC learns
a sequence of joint classifiers Jy that discretize the joint state-action space by
testing features on the perceptual and on the action space.

Formally, a (possibly infinite) set Fl4 of action features is introduced in addi-
tion to the set Fg of perceptual features. Just as perceptual features, the action
features are required to be binary, and the presence of an action feature detector
Dy : A X Fa — B that tests the presence of an action feature in an action is
assumed, as well as the presence of an action feature generator G : A P(F4)
that computes the action features that a given action exhibits.

3.1 Features for Continuous Action Spaces

We are interested in closed-loop learning of mappings from images to continuous
actions. Thus, A = R® for some positive number a. We now introduce action
features that are suitable for such a continuous space. They simply consist in
testing a threshold on a particular component of the action space. Precisely,
the set of action features is defined as Fy = R x {1,...,a}. The corresponding
action feature detector D4 checks whether the considered component is below
the threshold or not: D4 (a, (¢,7)) is true if and only if a; < t. On the other hand,
the action feature generator G4 converts an action to a action features, one for
each component of the input action a € R*: G4(a) = {(a;,%) | i € {1,...,a}}.

3.2 Joint Features on the Percept-Action Space

Let us call F' = Fg U F4 the set of features, that is the union of the perceptual
and of the action features. Given a state-action pair and a feature, either the
feature is present in the pair or not. As a consequence, the perceptual feature
detector Dg along with the action feature detector D4 trivially induces a joint
feature detector D that works on the joint space, and that is defined as:

Ds(s, f) if f € Fs,

Dal(a, f) otherwise. (12)

D;(SxA)x(FsuFA)HB:((&a),f)H{

Similarly, Gs and G4 can be extended to a joint feature generator G : (S x A) —
P(Fs U Fa), by choosing G(s,a) = Gs(s) UGa(a) for each s € S and a € A.

In terms of this notation, a joint classifier J is a binary decision tree whose
internal nodes are labeled by a feature. A joint classifier maps the (possibly
infinite) joint space S x A to a finite number of joint classes {ci,...,c,} using
the joint feature detector D. Identically to the case of RLVC, such joint classifiers
are thereafter used to constrain the allowed structure of the state-action value
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functions Q(s,a). For a joint classifier J that induces n perceptual classes, any
state-action value function Q(s,a) is now approximated as:

@J(sm,r) :T[j(saa)]a (13)

where 7 € R" is a vector of free parameters. Note that this relation treats
percepts and actions symmetrically, contrarily to Equation @l
Very importantly, since the state-action value function Q7 (s,a,r) is con-
strained by a joint classifier J, the maximization step that is required by the
RL algorithms is now feasible. To compute sup, ¢4 @7(s,a’,r) for a percept
s € S, we first evaluate the set of joint classes that are compatible with this
percept:
C(s) = {ei | (Ba € A) T(s,a) = ci}. (14)

This set C7(s) can easily be computed by a depth-first search in the binary
decision tree J: For each path from the root node to a leaf, the corresponding
leaf is added if and only if the percept s violates none of the tests on perceptual
features that label this path. Finally, as C7(s) is obviously finite, we obtain:

sup Q7 (s,a’,7) = sup r[J(s,a’)] = max i (15)
a’€A a'€A ci€Cy(s)

A similar reasoning allows the derivation of a policy from a function é g(s,a,r).

The general scheme of RLJC is then identical to that of RLVC. A sequence
of joint classifiers Jy, J1, Jo, ... is generated, starting with a joint classifier Jj
that contains one single leaf. For each [J in the sequence, the optimal state-
action value function @} constrained by J;, is computed, thanks to an algorithm
that is described in Section 3.3l Then, some informative features are selected
by relying on an analysis of the Bellman residuals that are induced by Qj.
The corresponding process is described in Section [3.4l The selected features are
used to refine J, leading to the joint classifier Jx41. New joint classifiers are
generated until perceptual aliasing vanishes.

3.3 Optimal State-Action Value Functions in the Joint Space

At each step k, the function @7 is to be computed given the database of in-
teractions (s, ag, 741, Si+1) that is the input of RLJC. As the structure of Q;
is constrained by Equation [I3] this amounts to computing a vector 7} € R™*,
where ny, is the number of joint classes in Jj [1].

For this purpose, we use the Fitted Q Iteration algorithm [13], that generalizes
the Value Iteration algorithm [2]. Tt uses an arbitrary family of nonparametric
function approximators. Therefore, the existence of an oracle called learn is as-
sumed. Given a database of samples (s;, as, v¢), where s; is a state, a; is an action
and v; is a real number, learn builds a function approximator that represents a
state-action value function @ : S x A — R that is the closest possible to the given
sample distribution. The algorithm computes a sequence Qq, @1, . .., Q; of state-
action value functions, starting with Qo = learn({(s:, a+, r++1)}). Equation
is then turned into an update rule that makes calls to the oracle:
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Qi11 = learn ({(st, at, Ti41 sulj)4 Qi(st+1,a’)>}> . (16)
a’'e

The algorithm stops when @Q; ~ @;+1. By virtue of Bellman’s equations, it is
possible to show that Q; = Q* after convergence [I3].

In our framework, RLJC directly uses the nonparametric function approx-
imators @, (s,a,r) that are defined by Equation [[3l Given a set of samples
(8¢, a¢, 1), the corresponding learn oracle computes a vector r that simply av-
erages the values of the samples over the joint classes that are defined by Jg:
rlj] = p (v | Te(se,ar) = ¢;}), for each j € {1,...,nx}, where u(-) denotes the
mean of a set of reals. The maximization over the action space that is present in
the update rule is achieved through Equation When Fitted @ Iteration has
completed the generation of the sequence r(®) (1) . () the parameter r7 is
set to (¥, which defines the optimal state-action value function Q5.

3.4 Detecting and Removing Aliasing in the Joint Space

The algorithms that were presented for selecting new features are now adapted
to continuous action spaces (cf. Sections and 24]). Thanks to Equation [IH5]
the definition of Bellman residuals of Equation [{] can be further expanded:

Ay =r[T(st,a¢)] —rep1 —y-  max  rli]. (17)
ci€C7(st+1)
Once again, if the environment is deterministic and if the percept classifier J
is free of aliasing, these residuals should be zero. Let ¢; be a joint class of J.
Just as in RLVC, we define the set Tx(c;) of time stamps of interactions that are
related to the class ¢;, and the set Fj(c;) of candidate features for this class:

Ti(ci) = {t | T(st, ar) = i}, (18)
Fi(ei) ={f | Bt € Ti(ci)) f € G(s1,a0)}- (19)

In terms of these definitions, the aliasing criterion and the feature selection
process can be adapted to the joint space. A joint class ¢; of the joint classifier
Ji is considered aliased if the set of residuals {A; | ¢ € Tk(c;)} has a variance
that exceeds a threshold 7 € Ra' . If ¢; is considered aliased, RLJC then selects
the candidate feature inside Fy(c;) that most reduces the variance in the two sub-
distributions of Bellman residuals that are induced by the feature. A Student’s
t-test is also applied, to make RLJC robust to non-deterministic environments.

4 Experimental Results

RLJC has been evaluated on an abstract task that parallels a real-world scenario
while avoiding any unnecessary complexity. This task is depicted in Figure[2] (a).
An agent moves inside a maze in which walls are present. The agent is reduced
to a single point, so it is always free to move between any two walls. Its goal is
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Fig. 2. (a) A continuous, noisy navigation task. The exits of the maze are indicated
by boxes with a cross. Walls of glass are identified by solid lines. The agent is depicted
at the center of the figure. The continuum of possible actions is represented by a
solid circle. The two dashed circles indicate the standard deviation due to the noise.

The sensors return a picture that corresponds to the dashed rectangular portion of the
image. (b) The resulting image-to-action mapping 7* = argsup, 4, Q% (s, a), sampled at
regularly-spaced points. RLJC manages to choose the correct action at most locationﬂ.

to reach as fast as possible one of the two exits of the maze. At each location,
the agent can make one step forward in any direction: The set A of actions is
the continuous interval [0°,360°[. Every move is altered by a Gaussian noise, the
standard deviation of which is 1% the size of the maze. Whenever a move would
take the agent into a wall or outside the maze, its location is not changed.

The agent earns a reward of 100 when an exit is reached. Any other move,
including the forbidden ones, generates zero reinforcement. In this task, v was
set to 0.9. When the agent succeeds at escaping the maze, it reaches a terminal
state. Note that the agent is faced with the delayed-reward problem, and that
it must take the distance to the two exits into consideration for choosing the
most attractive one. The maze has a ground carpeted with a color image of
1280 x 1280 pixels, that is a montage of pictures from the COIL-100 databasd].
The agent does not have direct access to its (z,y) position in the maze. Rather,
its sensors take a picture of a surrounding portion of the ground. This portion
is larger than the blank areas, which makes the input space fully observable, as
long as too small displacements are not considered. Importantly, the walls are
transparent, so that the sensors also return the portions of the tapestry that are
behind them. Therefore, the agent cannot directly locate the walls.

4 A full-sized version of this image is available for download at: http://www.
montefiore.ulg.ac.be/” jodogne/papers/rljc-policy.pdf
® http://www.cs.columbia.edu/CAVE/coil-100.html
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(a) (b)

Fig. 3. (a) The optimal value function, if the agent has direct access to its (z,y)
position, if the set of possible locations is discretized into a 50 x 50 grid, and if the set
of actions is discrete and contains 4 actions (go up, down, left or right). The brighter
the location, the greater its value. (b) The final value function obtained by RLJC.

In this experiment, SIFT visual features were used [I4]. The entire tapestry
includes 5520 interest points, leading to a subset of 2467 distinct visual features.
The computation stopped when k reached 183, which took about 6 hours on a
3.0GHz Pentium IV using a database of 10,000 interactions that were collected
by a fully randomized exploration policy. The final joint classifier J; induces
896 joint classes, and tests the presence of 586 visual features and 309 action
features. The optimal policy that results from this classifier is shown in Figure[2]
(b). Figure Bl compares the optimal value function of a discretized version of the
problem with the one obtained through RLJC. The similarity between the two
pictures indicates the soundness of our approach.

Interestingly enough, when applied to a similar task with only four discrete
actions, RLVC generates a perceptual classifier C, that contains 205 perceptual
classes [6]. In that case, C induces an optimal state-action value function that
is characterized by a vector r} of dimension 205 x 4 = 820 (cf. Equation [).
This latter number is very close to the number of joint classes that is produced
by RLJC (i.e. 896). Therefore, discretizing the joint space produces a number of
joint classes that corresponds to the underlying physical structure of the task.

5 Conclusions

This paper introduces Reinforcement Learning of Joint Classes (RLJC). RLJC is
designed for closed-loop learning of mappings that directly connect visual stimuli
to continuous actions that are optimal for the surrounding environment. RLJC
adaptively discretizes the joint space of states and actions into a finite set of joint
classes, by testing the presence of highly distinctive features. The homogeneous
treatment of states and actions is at the same time elegant and powerful, and is
conceptually similar to that of JoSTLe [7]. However, RLJC is more general, in
the sense that it can be applied to any perceptual space and to any action space
upon which it is possible to define binary features. This notably includes visual
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input spaces, and continuous input/output spaces. Therefore, RLJC could learn
mappings from continuous perceptual spaces to continuous action spaces as well.
Future research includes the demonstration of the applicability of our algo-
rithms in a reactive robotic application, such as grasping objects by combining
visual and haptic feedback [I5]. Our current work considers tasks with comp-
lete perception and stationary environments. Of course, applying our algorithms
directly on a real-world environment would raise practical problems, including
partial observability, which would require the combination of our techniques with
POMDP-based approaches. Another interesting open question is to test how well
RLJC scales with respect to the dimensionality of the output action vector.
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