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Abstract. Multiple-instance learning (MIL) is a popular concept among
the AI community to support supervised learning applications in sit-
uations where only incomplete knowledge is available. We propose an
original reformulation of the MIL concept for the unsupervised context
(UMIL), which can serve as a broader framework for clustering data ob-
jects adequately described by the multiple-instance representation. Three
algorithmic solutions are suggested by derivation from available conven-
tional methods: agglomerative or partition clustering and MIL’s citation-
kNN approach. Based on standard clustering quality measures, we eval-
uated these algorithms within a bioinformatic framework to perform a
functional profiling of two genomic data sets, after relating expression
data to biological annotations into an UMIL representation. Our analysis
spotlighted meaningful interaction patterns relating biological processes
and regulatory pathways into coherent functional modules, uncovering
profound features of the biological model. These results indicate UMIL’s
usefulness in exploring hidden behavioral patterns from complex data.

1 Introduction

The conceptual frame of the multiple-instance learning (MIL) was proposed in
1997 by Dietterich [1], together with a first meaningful application to drug ac-
tivity prediction. Since then, an important amount of research has dealt with
the development of specific learning algorithms, adapted to MIL’s particular con-
text, and to comparative performance assessment in relation with different types
of applications, as well as with various other conventional supervised learning
approaches [2,3,4,5,6,7,8,9,10]. As a result, MIL’s applicability has been tested
in numerous domains, ranging from content-based image retrieval and classi-
fication [11], text categorization [6] and web mining [12], to protein sequence
analysis, robot vision and stock market prediction [13,14]. Conventional MIL is
a variation on supervised learning, fitting those situations in which the knowledge
about the labels of training examples is incomplete. Under such circumstances
MIL allows for modeling weaker assumptions about the labeling information by
assigning labels to sets of instances (bags), instead of assigning them to each
individual instance. Bags labels can be positive or negative in the Boolean case,
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or have a continuous real value in the real data MIL [15]. A bag is labeled as
positive if at least one of its instances is positive (linearity constraint), and neg-
ative if all of its instances are negative. In generalized MIL, a variant of the
conventional model, bags labels are determined by a non-disjunctive function
over their instances, thus eliminating the linearity constraint in order to reduce
noise level [9].

In this paper we propose an abstract reformulation of the conventional MIL
paradigm, which preserves the general multiple-instance representation, while
further weakening the supervised learning constraints into a fully unsupervised
multiple-instance learning (UMIL) framework. The main motivation behind this
reformulation resides in the usefulness of the multiple-instance schema, which
allows to describe some difficult unsupervised learning problems through sim-
ple and yet robust representations. Such representations can provide a basis for
solving intricate clustering problems, aiming at discovering hidden behavioral
patterns from complex data objects described by multiple types of attributes
(e.g. numerical, symbolic, etc.). Among other possible examples, such complex
objects are found in genomic data sets in which RNA transcripts are sharing nu-
merous descriptive features in relation to their various biological roles. Therefore,
we relied on the functional genomics framework to illustrate the UMIL concept
by relating RNA expression data to functional annotations to build multiple-
instance representations. These representations were further used to perform a
functional analysis of two genomic data sets, aiming at identifying context re-
lated biological interaction patterns involving cellular processes and regulatory
pathways. Section two outlines the main characteristics of the UMIL paradigm.
The third section suggests three algorithmic solutions, derived from existent
unsupervised learning or conventional MIL approaches, adapted to the UMIL
context. The fourth section details the experimental framework and results. Fi-
nally we indicate some potential directions for future work.

2 The Unsupervised Multiple-Instance Model

2.1 UMIL Definition

In order to allow for a maximum flexibility in building multiple-instance repre-
sentations, we imagined the UMIL paradigm as an abstract generalization of the
conventional multiple-instance schema. Let us consider a data set D composed of
n objects oj ∈ D, sharing similar data structures, each of them being character-
ized by an ensemble of feature values oj = {f1 = v1j , f2 = v2j , ..., fi = vij , ...},
be it numerical, Boolean or set-valued attributes. Among the ensemble F of all
features describing objects oj ∈ D, let fi ∈ F be a feature whose domain con-
tains m distinct values, fi = {v1, v2, ..., vk, ..., vm}, each object oj ∈ D being
characterized by one or more values of fi. Based on the feature fi we derive the
ensemble B of bags bk ∈ B, (k ≤ m), defining an UMIL model, where each bag
bk corresponds to the ensemble of objects oj ∈ D sharing (at least) one common
feature value fi = vk, which defines the bag bk. As each of the objects oj ∈ D can
be characterized by one or more values of fi ∈ F , it follows that UMIL bags are
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non disjoint (e.g. overlapping) sub-ensembles of D, their distinctiveness being
guaranteed by the common feature value fi = vk of their instances. We propose
that this multiple-instance abstraction may constitute a relevant framework for
exploring complex relationships between multiple-instance objects in an unsu-
pervised learning context. Under these circumstances, the UMIL problem can be
stated formally as to find an optimum partition of B into l < m disjoint classes
of interrelated bags C1 ∪ C2 ∪ ... ∪ Cl.

2.2 Multiple-Instance Representations of Genomic Data

In genomic data sets RNA transcripts are represented through complex data
structures, which are regrouping heterogeneous information related to expression
measurements (real value data), molecular structure, functional roles, regulatory
mechanisms, etc. Biological roles of RNA transcripts are formally represented
through functional annotations established in relation with available biological
evidence. These representations are built through an annotation process which
relates RNA transcripts to a taxonomic hierarchy of functional categories (set-
valued attributes), allowing to represent biological knowledge about transcripts
roles with various degrees of precision. In the most general case, the relations
among transcripts and functional categories are of the many-to-many type, in
which a transcript may be related to one or more biological processes, each of
these processes involving one or more transcripts. Considered as a major chal-
lenge, the functional analysis, which aims at translating RNA expression data
into relevant biological mechanisms, is an indispensable step for the comprehen-
sion of the underlying biological phenomena defining an experimental model.
Besides assessing the individual dynamics of various biological processes, based
upon the expression patterns of the transcripts known to be involved in those
processes, the functional profiling aims also at characterizing intricate biological
interactions involving cellular processes and regulatory pathways. These consid-
erations suggest the relevance of the UMIL paradigm as a formal framework
for assessing interactions between functional categories, represented as multiple-
instance objects (e.g. bags) which regroup annotated transcripts (e.g. instances).

2.3 Similarity and Relationship Measures for UMIL Objects

As a consequence of definition (2.1) two types of measures seem relevant for
comparing objects belonging to an UMIL representation. The first one will eval-
uate the similarity between individual instances, thus conditioning the second
one which will assess the relationship between bags. In our context we selected
the pairwise mutual information (MI) as the similarity metric for transcripts
expression, based on its ability to recognize as proximal positively, negatively
and nonlinearly correlated transcript profiles [16, 17]. MI computation is based
on the notion of entropy of a random variable suggested by Shannon’s the-
ory of information. Thus for a discrete random variable X , whose probability
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distribution is P (X = xi), i = 1, ..., Nx, where Nx is the number of possible
values of X , the entropy H(X) is defined as:

H(X) = −
Nx∑

i=1

P (X = xi) log2 P (X = xi) . (1)

For the case of continuous random variables (e.g. expression profiles) a prelim-
inary discretization, through a histogram technique, is necessary in order to
compute their probability distribution. Based on (1) the pairwise mutual infor-
mation of two random variables X, Y is defined as:

MI(X, Y ) = H(X) + H(Y ) − H(X, Y ) (2)

where H(X, Y ) is their joint entropy. The normalized MI(X, Y ) is a relative
measure [17] which reduces the influence of the magnitudes of individual en-
tropies:

MI(X, Y ) =
MI(X, Y )

max{H(X), H(Y )} . (3)

From (3) it follows that 0 ≤ MI(X, Y ) ≤ 2. Moreover, it is possible to estimate
a threshold of significance TMI for the pairwise mutual information through it-
erative random permutations over the matrix of expression measurements [16].
Given two possibly overlapping bags A and B, the strength of their relation-
ship can be quantified separately, from each bag’s perspective, through a non-
disjunctive function over all instances belonging to that bag for which there is at
least one similar (or identical) instance in the other bag, and vice versa. Let nab

be the sub-ensemble of instances ai ∈ A for which there is at least one instance
bj ∈ B satisfying the similarity constraint TMI:

nab = {ai ∈ A | ∃ bj ∈ B, MI(ai, bj) ≥ TMI} . (4)

Consider n̄ab the cardinality of nab and n̄ba its equivalent for bag B. From (4) it
follows that in the most general case n̄ab �= n̄ba. Under these circumstances, the
ratio SA→B = n̄ab

n̄A
, where n̄A is the cardinality of bag A, can be considered as

an asymmetrical measure of the relationship between the two bags from bag A
perspective, satisfying 0 ≤ SA→B ≤ 1. In order to give a better account of the
qualitative value of instances similarity we can further refine SA→B by weighting
it with the average of the maximal similarities of individual instances ai ∈ A
satisfying (4) in relation to bj ∈ B and define an asymmetrical measure of the
relationship of A with B as:

DA→B = 1 − SA→B

[
1

2n̄ab

n̄ab∑

i=1

n̄Bmax
j=1

MI(ai, bj)

]
(5)

From (5) it follows that 0 ≤ DA→B ≤ 1 and also that DA→B �= DB→A in
the most general case. Based on (5) a symmetrical measure of the relationship
between two bags A and B can be defined as:

DAB =
1
2

(DA→B + DB→A) . (6)



190 C. Henegar, K. Clément, and J.-D. Zucker

3 Algorithmic Solutions

Two directions were explored in search for algorithmic solutions adapted to the
UMIL context. The first one was to examine possible adaptations of existing
unsupervised learning approaches. The second was to consider adaptations of
supervised MIL approaches to the unsupervised context. Our analysis shows
that some of the difficulties which need to be addressed are different in each of
these two cases, while others are common.

3.1 Unsupervised Clustering Approaches for the UMIL Context

The proposed definition (2.1) of the UMIL paradigm suggests the idea of adapt-
ing conventional unsupervised clustering approaches for the UMIL context. For
instance, one simple solution could be to initiate a conventional hierarchical ag-
glomerative clustering algorithm with the partition of the instances in their cor-
responding bags (considered as “clusters” of instances). In these circumstances,
the hierarchical clustering algorithm could presumably be used to identify classes
of related bags by relying only on the similarity of their instances. However, some
of the characteristics of the UMIL representation, like the possible overlapping
between bags in the most general case, cannot be handled correctly by a con-
ventional unsupervised clustering approach. A possible solution to this obstacle
could be to reduce the multiple instance model to a simple instance one, by
relying on the symmetrical measure of the relationship between bags (6) defined
previously. This reductive approach allowed us to test two conventional unsuper-
vised clustering techniques for the UMIL context: an hierarchical agglomerative
algorithm [18] and a k-means partitioning algorithm [19], each of them combined
with a standard quality measure for cluster partitions which allows to identify
an optimal partition of bags into classes. The prediction of the correct number of
clusters is a fundamental question in unsupervised classification problems [20].
Although there is no best approach to fit all situations, the computation of the
Silhouette index [19] was shown to be a simple and yet robust strategy for the
prediction of optimal clustering partitions from transcript expression data [21].

3.2 A Citation Approach for the UMIL Context

A conventional MIL solution that may be easily adapted for the unsupervised
context is that proposed originally by Wang and Zucker [3], which combines k-
nearest neighbor (kNN) lazy learning with the citation concept (citation-kNN)
inspired from library and information science. In our context the concept of bib-
liographic citations is suggested by the asymmetrical aspect of the relationship
between bags (5). This results in the fact that two bags can “refer” to each other
with a different degree of confidence strength. Based on this observation we
imagined an unsupervised citation-kNN (UC-kNN) solution whose main steps
are illustrated by Algorithm 1. Let m be the number of individual bags bi ∈ B
contained in the UMIL representation B. Considering (5) as the measure of re-
lationship between bags, a bag bj ∈ B can be presumed to be a good “reference”
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for another bag bi ∈ B\bj if bag bj is ranked among the k < m most closely
related bags to bag bi (considered therefore as its k nearest neighbors or kNN).

Algorithm 1. A sketch of the UC-kNN algorithm

Input: an UMIL representation B = {b1, ..., bm}, containing m bags with their in-
stances, and the similarity matrix for instances computed with (3)
Output: the optimal partition of the bags
Compute bags relationship matrix with (5)
For each k, 1 ≤ k ≤ m − 1 (e.g. the number of nearest neighbors) do:

Compute a ranked vector R of the bags reference scores Rb =
�

i

rank(b, bi), for

each b ∈ B, in relation to the rest of the bags bi ∈ B\b which satisfy rank(b, bi) ≤ k
For each p, 2 ≤ p < m, select the first p bags from R as cluster seeds, then do:

For each m − p bags bi, distinct from the p selected cluster seeds, do:
Find the k best references bj for bi then compute for each of the p cluster

seeds s the value Vsbi = rank(s, bi) + 1
k

k�

j=1
rank(s, bj) and cluster bi to

the closest seed
Compute the Silhouette index for the resulting partition of bags and store
results

Select the optimal partition of bags, among those computed for each possible combi-
nation of the values of k and p, which maximizes the Silhouette index

On this base a reference score Rb can be computed for each value of k < m and for
each bag b ∈ B, in relation to the rest of bags bi ∈ B\b, as the sum of b’s ranking
positions for all the situations where rank(b, bi) ≤ k (see Algorithm 1). This
suggests that, for a given value of k, it is possible to initiate an agglomerative
clustering procedure by considering as seeds of the future classes (or clusters)
the first p bags, 2 ≤ p < m, having the best reference scores (e.g. the most
“cited” ones). Under these circumstances, a kNN clustering approach can group
each of the rest of the bags to their most closest seed, by relying not only on the
individual similarity between the bags and the seeds, but by considering also the
similarity of their k nearest neighbors to these seeds, integrated into a weighted
voting procedure. This is to say that for each bag bi, distinct from the considered
p seeds, we search the closest seed s minimizing the value of:

Vsbi = rank(s, bi) +
1
k

k∑

j=1

rank(s, bj) (7)

where bj, 1 ≤ j ≤ k, belongs to the k nearest neighbors of bag bi. Thus, for
each couple of values (k, p), with k, p < m, the UC-kNN approach will build a
partition P(k,p) = {C1∪ ...∪ Cp} of the ensemble of bags B into p distinct classes.
As for the adaptation of the conventional unsupervised clustering approaches,
an optimal partition of bags can be selected from the ensemble of computed
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partitions by using a standard quality evaluation measure. For coherence and
simplicity reasons we combined UC-kNN with the Silhouette technique [19].

4 Experimental Frame

The experimental context, which served to build multiple-instance representa-
tions and to test UMIL algorithmic solutions, belongs to functional genomics.

4.1 Adipose Tissue Data Sets

The potential benefit of the UMIL concept for the genomic functional analy-
sis was assessed on two interrelated RNA expression measurements data sets.
Both of them resulted from pangenomic cDNA microarray expression profiling
of white adipose tissue in morbidly obese human subjects, and were extensively
described in [22]. The first data set resulted from differential expression profiling
of the two cellular fractions of human white adipose tissue: mature adipocytes
and stroma-vascular fraction cells (SVF). The second one resulted from microar-
ray expression profiling of whole white adipose tissue in morbidly obese human
subjects, before/after undergoing a form of bariatric surgery. These two data
sets were combined in order to constitute a coherent experimental model, de-
signed to characterize the functional profiles of each of the two cellular fractions
of the adipose tissue in obese human subjects, as well as their evolution after a
significant weight loss induced by bariatric surgery.

4.2 Experimental Setup

The three proposed algorithmic solutions were implemented in the R environ-
ment for statistical computation (available at http://www.r-project.org/).
As originally indicated [22], transcripts with significant expression changes were
identified by using the significance analysis of microarrays (SAM) procedure
(available at http://www-stat.stanford.edu/tibs/SAM/). Significant differ-
ential expression was assessed by imposing a 5% false discovery rate (FDR)
threshold in the SAM selection procedure. Automated functional annotation of
the differentially expressed transcripts, identified in the two data sets, relied on
Gene Ontology Consortium (GO [available at http://www.geneontology.org])
and Kyoto Encyclopedia of Genes and Genomes (KEGG [available at http://
www.genome.ad.jp/kegg/]) annotations. EntrezGene numbers (available at
http://www.ncbi.nlm.nih.gov/entrez) were used as a standard transcript
accession system to ensure a correct over-representation analysis, as they al-
low to map transcript identifiers to GO or KEGG categories in an unequivocal
way. In order to minimize the false over-representation resulting from redundant
annotation, the automated GO annotation procedure was restricted to directly
annotated transcripts by each GO category. As originally indicated [22], the sig-
nificance of the over-representation of each GO and KEGG category was assessed
by using a Fisher’s exact test. Afterwards, significantly over-represented GO
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and KEGG categories were related to their annotated transcripts into an UMIL
model, in which each category (GO or KEGG) was considered as a bag of individ-
ual instances represented by its annotated transcripts. A threshold TMI for the
normalized pairwise mutual information of transcripts expression was computed
previously to applying unsupervised agglomerative or partitioning clustering and
UC-kNN algorithms to the UMIL representation of genomic data. As previously
suggested [16], TMI estimation was based on the average MI distribution com-
puted from 30 randomly permuted repetitions of RNA expression measurements.
The significance threshold for the pairwise mutual information among transcripts
was chosen to be TMI = mean(MI)+2SD(MI), where mean(MI) is the average
of MI and SD(MI) the standard deviation of the mean.

Table 1. Characteristics of the optimal partitions obtained by applying the agglom-
erative hierarchical clustering (HC), k-means partition clustering (K-means) and the
unsupervised citation kNN (UC-kNN) algorithms to the two adipose tissue data sets

HC Min Max Average

Clusters number 2 29 6.81 ± 6.64

Clusters length 1 35 4.18 ± 7.05

Clusters Silhouette 0 0.83 0.14 ± 0.17

Partitions Silhouette 0.05 0.52 0.14 ± 0.11

K-means Min Max Average

Clusters number 2 53 16.31 ± 13.23

Clusters length 1 12 1.75 ± 1.80

Clusters Silhouette 0 1 0.06 ± 0.16

Partitions Silhouette 0.05 0.20 0.11 ± 0.04

UC-kNN Min Max Average

Clusters number 2 6 3.44 ± 1.21

Clusters length 1 64 8.29 ± 13.1

Clusters Silhouette 0 1 0.35 ± 0.34

Partitions Silhouette 0.04 0.68 0.37 ± 0.15

4.3 Results

A few characteristics of the results produced by the three algorithmic approaches
are summarized in Table 1. As it can be seen the Silhouette indexes of the parti-
tions produced by the UC-kNN approach are much higher than those resulting
from the two adaptations of unsupervised clustering approaches. Moreover, unsu-
pervised clustering partitions were on average more sparse than those produced
by the UC-kNN solution. For all these reasons, and also because of space restric-
tions, only a fraction of the UC-kNN clustering results are detailed hereafter and
discussed in terms of biological relevance.
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Table 2. Main UC-kNN clusters of KEGG categories specifically expressed in each of
the two adipose tissue fractions: adipocytes and stroma-vascular fraction (SVF)

KEGG Category Nb. Transcr.
∗

P-value
∗∗

Cluster 1 - Adipocytes 109 2.84 10−12

Tryptophan metabolism 26 9.58 10−3

Fatty acid metabolism 23 1.35 10−5

Pyruvate metabolism 22 2.05 10−6

Valine, leucine & isoleucine degrad. 22 1.57 10−4

Basal transcription factors 10 4.87 10−2

Other metabolic processes (9 terms) 64 —

Cluster 1 - SVF 186 3.93 10−22

Cytokine-cytokine recept. interact. 65 5.61 10−8

Hematopoietic cell lineage 37 5.10 10−9

Ribosome 33 2.93 10−9

Natural killer cell med. cytotox. 32 5.15 10−4

Complement & coagulation cascades 23 7.47 10−4

TGF-beta signaling pathway 22 2.65 10−2

* number of annotated transcripts
** transcript enrichment p-value computed with Fisher’s exact test

Table 2 shows one cluster (from a total of 4, with individual Silhouettes of 0.50
and 0.48 respectively, and a partition Silhouette of 0.31) grouping KEGG cate-
gories annotating adipocytes transcripts, and one cluster (from a total of 3, with
an individual Silhouette of 0.33, and a partition Silhouette of 0.31) characterizing
the stroma-vascular fraction (SVF) transcripts. Cluster 1 - Adipocytes (Table 2)
is grouping 13 metabolic processes known to be highly interrelated and specific
of mature adipocytes. It thus depicts the functional profile of mature adipocytes
involving various metabolic processes (energetic, lipidic or protidic) [22]. An in-
teresting aspect is that these metabolic processes were grouped together with
a set of 10 transcription factors, which suggests a specific regulating role over
these processes. Indeed, at least four of them (TAF6, TAF7, TAF10 and TAF12)
are known to be pro-adipogenic factors, enhancing the action of C/EBPα and
TBP/TFIIB which are key regulators of the adipogenesis [23, 24]. Cluster 1 -
SVF (Table 2) illustrates the preponderant role of the SVF in the pathogenesis
of local and systemic inflammatory processes accompanying the inflation of the
adipose tissue in humans. The presence of the TGF-beta signaling pathway in
this cluster has strong biological significance, since TGF-beta is known to stimu-
late the proliferation of pre-adipocytes while inhibiting adipogenesis [23]. These
findings may corroborate with available evidence, indicating the conversion of
pre-adipocytes into macrophages under particular circumstances [25], thus sup-
porting the paradigm of a major role of local adipose tissue macrophages in the
pathogenesis of inflammatory processes characterizing human obesity [22]. For



Unsupervised Multiple-Instance Learning 195

Table 3. Main UC-kNN cluster of Gene Ontology (Biological Process) categories sig-
nificantly down-regulated in human adipose tissue after bariatric surgery.

Gene Ontology Category Nb. Transcr.
∗

P-value
∗∗

Cluster 1 86 2.18 10−3

Apoptosis 61 3.14 10−2

Anti-apoptosis 25 8.31 10−3

Acute phase response 8 3.18 10−2

Induction of apoptosis / intracel. sign. 5 2.03 10−2

* number of annotated transcripts
** transcript enrichment p-value computed with Fisher’s exact test

all these reasons the two analyzed clusters can be considered as a convincing il-
lustration of the complex dynamics of the adipogenic regulatory mechanisms, in
which pro-adipogenic factors act concomitantly with anti-adipogenic ones, thus
resulting into an ever changing network of complex interactions [23].

Table 3 present one Gene Ontology Biological Process cluster (from a total
of 4, with an individual Silhouette of 0.36, and a partition Silhouette of 0.40),
characterizing adipose tissue transcripts down-regulated after bariatric surgery.
This cluster indicate a coherent deflation of inflammatory phenomena accom-
panying weight loss. Indeed, the reduction in local synthesis of the acute phase
response molecules, together with a consecutive reduction of apoptotic processes
corroborate with previously reported results [22].

4.4 Discussion

Except for some particular situations in which supplementary knowledge is avail-
able, the validation of the unsupervised clustering results remains a difficult is-
sue. In spite of their relative value, cluster quality measures were shown to be
useful indicators of the relevance of transcript data partitions [21]. In our exper-
imental context, the UC-kNN solution yielded much higher Silhouette indexes
than the hierarchical clustering approach. These findings seem coherent with pre-
vious observations suggesting a good adequacy of the local approaches for the
multiple-instance context [3]. Subsequently, the results of the functional profiling
of the adipose tissue expression data were discussed in terms of biological signifi-
cance, in accord with available biological knowledge. Our assessment pointed out
the biological relevance of the UMIL functional analysis which spotlighted signif-
icant biological regulatory mechanisms, thus illustrating the underlying modular
structure of the transcriptional regulatory networks.

5 Conclusion and Future Work

This paper proposes a new framework for the unsupervised clustering of complex
data objects adequately describedby an abstractmultiple-instance representation.
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Three algorithmic solutions, adapted to the new framework, are suggested. The
application of the UMIL concept to the functional analysis of genomic data illus-
trates its usefulness in exploring hidden behavioral patterns from complex data.
The UMIL model shares common features with other unsupervised learning mod-
els. Among them, the concept of a variable size transaction, used in market basket
data analysis, may be the closest one from that of an UMIL bag. Defined as a finite
set of items from a common item universe, the transaction concept can be consid-
ered as a particularization of the bag concept for the case in which instances are
all categorical data structures. Therefore investigating the possibility of adapting
existent categorical data algorithms to the UMIL context might prove interesting,
as this could result in useful solutions for sparse and high dimensional data, known
to be less adapted to local approaches. Another research direction will be to exam-
ine the possibility of a Bayesian solution for the UMIL frame. Besides this, other
potential applications of the UMIL framework need to be considered, especially
in those domains in which conventional multiple-instance framework proved use-
ful. One such domain could be the content-based image retrieval and classification
problem. An obvious advantage of considering this problem, besides the evident
interest of this application, lies in a presumably simpler and more objective assess-
ment of clustering results.
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