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Abstract. Bayesian network structure identification is known to be NP-Hard in 
the general case.  We demonstrate a heuristic search for structure identification 
based on aggregation hierarchies.  The basic idea is to perform initial 
exhaustive searches on composite “high-level” random variables (RVs) that are 
created via aggregations of atomic RVs.  The results of the high-level searches 
then constrain a refined search on the atomic RVs.  We demonstrate our 
methods on a challenging real-world neuroimaging domain and show that they 
consistently yield higher scoring networks when compared to traditional 
searches, provided sufficient topological complexity is permitted.  On simulated 
data, where ground truth is known and controllable, our methods yield 
improved classification accuracy and structural precision, but can also result in 
reduced structural recall on particularly noisy datasets. 

Keywords: Bayesian network structure search hierarchy fMRI. 

1   Introduction 

Bayesian networks (BNs) [17] are a widely employed graphical modeling framework 
used to reason under uncertainty.  Their topological structures describe correlational 
(or possibly causal) relationships among random variables (RVs).  This topology may 
not be known a priori and must be searched for—a process known to be NP-hard in 
the general case [4].  Instead of directly learning the structure for a BN with a large 
number of RVs, we propose that searches may first be performed on simpler domains 
whose RVs are constructed as the aggregation of the original domain’s RVs.  The 
results of these searches can then influence searches on the original domain via 
structural priors or as modifications to search heuristics which allow exhaustive 
searches on constrained structure spaces. 

Our approach is analogous to the statistical problem of blood pooling.  Assume that 
a blood test for some disease must be performed on many patients but is expensive 
and cannot be applied exhaustively.  Instead, blood samples are divided into a small 
number of groups and pooled into aggregate group samples.  Results from the pooled 
samples can then be used to constrain the application of the test to the individual 
samples by only testing the individual constituents of a positive group sample.   

Just as results on the pooled group samples indicate which individual samples to 
test, elicited correlations among composite RVs can guide elicitation of correlations 
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among atomic RVs.  To illustrate this, consider an example from a neurological 
domain.  At a fine level, some neuroanatomical databases break up the human brain 
into approximately 70 regions of interest (ROIs).  The search space for a BN with 70 
RVs contains on the order of 1023 structures and cannot be searched exhaustively.  
However, the neuroanatomical databases can aggregate these ROIs into roughly 50 
ROIs, which can then be further aggregated into 12 and then 7 ROIs.  A BN with only 
seven nodes requires roughly 1,000 structures to be searched and could be performed 
exhaustively.  Results from this search could then be used to constrain searches 
among finer RVs under the assumption that correlations among those RVs will be 
observable as correlations among the gross ROIs they compose. 

We demonstrate our methods on such a neuroimaging domain, but there are many 
other domains where RVs may be sensibly aggregated together. E.g., other image 
analyses where pixel neighborhoods of varying size can be grouped together; 
geographic data such as cities, states and countries; genetic regulatory network 
reconstruction where genes can be grouped into families and super-families; 
document topic hierarchies (e.g., newsgroups); word types in grammar trees; medical 
diagnoses where diseases and symptoms are grouped into sub-categories; and Fourier 
and wavelet analyses where coefficients are spatially and temporally related. 

Typically, the RV aggregations can be arranged into a hierarchy. To form this 
hierarchy, two domain-specific questions must be answered. First, which RVs should 
be aggregated together and second, what function should perform the aggregation?  In 
the neuroimaging domain, we group ROIs together based on spatial and functional 
locality and aggregate them as a weighted linear combination.   

Of course, the assumption that correlations will persist across the aggregation 
hierarchy will be violated to some degree in most domains.  Further, while 
constraining subsequent structure searches based on previous structure results is 
intuitive and appealing, straightforward implementations can yield unfavorable 
results.  We empirically demonstrate this and propose a constraint mechanism which 
performs well.  For both generative and class-discriminative scores, our methods 
consistently yield higher scoring structures than traditional searches on four 
neuroimaging datasets collected under widely differing paradigms, provided that the 
search is allowed to produce BNs with sufficient structural complexity—typically two 
to three parents per node.  On a simulated domain, in which ground truth is known 
and controllable, we demonstrate higher classification accuracy and structural 
precision, but also lowered structural recall on particularly noisy datasets. 

2   Background 

Bayesian Networks (BNs) [17] are graphical models that explicitly represent 
dependencies among RVs.  A BN’s topological structure, represented as a directed 
acyclic graph, contains nodes for RVs and directed links between correlated parent 
and child nodes.  A family is composed of a single child and its parents. We assume 
fully observable discrete RVs so that a family’s conditional probability, P(child | 
parents), can be represented with a conditional probability table (CPT).  

Searching for a BN’s topology is accomplished by proposing as many hypothesis 
structures as possible, guided by a search heuristic, while measuring the goodness of 
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fit between the structures and the data via a structure scoring function. Iterative hill 
climbing heuristics are commonly employed. For example, starting with a topology 
with no links, score all legal modifications to the topology where a legal modification 
is the addition, removal or reversal of a link not resulting in a cycle. Choose the 
modification that results in the highest score and iterate until no modifications yield 
improvements.  We refer to this as a flat structure search. 

Structure scoring functions typically come in two varieties: generative and class-
discriminative. Generative scores select structures that increase the posterior 
likelihood of the data given the structure.  Common examples include MDL [13], BIC 
[18], BDe [10], etc. Discriminative scores select structures that increase the class 
discriminative ability of learned BNs.  Examples include the class-conditional 
likelihood (CCL) [8] and the approximate conditional likelihood (ACL) [2].  With the 
notable exception of CCL, most scores are decomposable, i.e., a family’s contribution 
to the score is independent of all other families’ topologies. 

We use the following notation.  Let X represent a set of n RVs, {X1, X2, … , Xn} 
with arities r1, r2, …, rn.  A data point is a fully observable assignment of values to X.  
A BN, B, over X is described by the pair ,SB BΘ . BS is the DAG representing the 
BN’s structural topology. Xi’s parent set is denoted ( )iPa X . qi is the number of 
configurations for the RVs in ( )iPa X .  BΘ = , ,{ :1 ,1 ,1 }B

i j k i ii n j r k qΘ ≤ ≤ ≤ ≤ ≤ ≤  is 
the set of CPT parameters where , ,

B
i j kΘ = ( |iP X j= ( ) )iPa X k= .  ,I X' Y'  is an 

indicator function which equals one iff there exists a link between RVs in the sets X’ 
and Y’. Finally, , , , 1I I I∅ ∅ ∅ ∅= = =X' X'  and ,I X' Y' =1- ,I X' Y' . 

2.1   Aggregation Hierarchies 

Decomposing a complex model into a series of hierarchically related components has 
been shown to be helpful in many domains.  For example, Fine, Singer and Tishby [7] 
introduce a hierarchical abstraction of hidden Markov models; Gyftodimos and Flatch 
[9] introduce a hierarchical abstraction of BNs in general and Sutton, Precup & Singh 
[19] incorporate hierarchies within reinforcement learning.   

As in this previous work, we hierarchically decompose a domain into multiple 
models of varying complexity.  Setting our work apart from much of the prior work, 
we use structural results learned in one model to guide learning in subsequent models.  
To our knowledge, we are the first to do this with BN structure search, though similar 
methods for BN parameter learning have been proposed.  E.g., Anderson, Domingos 
and Weld [1] and McCallum et al. [15] use shrinkage to improve parameter learning 
by combining varying levels of bias and variance in hierarchically related models. 

To form our hierarchies, we create composite RVs as aggregations of a domain’s 

original atomic RVs.  Let X̂  = {X1, …, Xτ} ∈ X.  A scalar function of X̂ , Y = ξ( X̂ ), 
is an aggregation function where Y is a RV whose distribution reflects some aspect of 

the joint distribution of X̂ . Common examples of aggregations include max, count, 
variance, etc.  For our neuroimaging domain, we employ the weighted mean 

aggregate, ( )X̂ξ
1

,i ii
X

τ α
=

=∑  where the αi's are set by a neuroanatomical database. 
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X includes both the atomic RVs as well as the composite RVs.  An aggregation 
hierarchy over X (Figure 1a) can be graphically represented as a trellis.  A trellis is a 
relaxation of a forest such that each node may have multiple parents. Let Λ X  be a 
trellis over X whose leaves are atomic RVs and whose internal nodes are aggregations 
of their children.  Let 

iXΛ  denote the children of Xi, iXΛ  denote the parents of Xi, Λi 
denote the integer-valued level at which Xi is located in and i i

i i

X X
X XΛ =Λ ∪ Λ .  

iXΛ  = 
∅ for leaves and iXΛ  = ∅ for the root(s).  If Xi is not a leaf node then Xi = ( )

iXξ Λ .  
Λ(v) is the set of RVs at the vth level in the hierarchy and is referred to as an h-level.  

( )levels Λ X  returns the number of h-levels in Λ X . Relationships among RVs, such as 
parent and child, are prefixed with h- when used in the context of a hierarchy. 

2.2   Hierarchical Bayesian Network Structure Search 

Exhaustive structure searches can be employed at the highest h-levels where few RVs 
reside. Searches at lower h-levels cannot normally be performed exhaustively, but can 
be constrained by the previous h-level’s search results.  One possible constraint 
mechanism is based on the assumption that links among high-level RVs will be 
manifested as links among the low-level RVs they were constructed from.  Exhaustive 
search strategies can then be employed for nodes in the lower h-levels on the space of 
structures that only contain links obeying this assumption. 

 Take the BN and the hierarchy in Figure 1 for example.  There are two nodes at 
the highest h-level and structure search is trivial. Assume that a structure search found 
the X1 → X2  link.  According to the hierarchy, {X3} and {X4, X5} are the h-children of 
X1 and X2.  As a correlation between X1 and X2 was observed, correlations among their 
constituents should be searched for.  That search could yield, for instance, the X3 → 
X4 link and then, at the next h-level, the X6 → X8 link.  Of course, limiting searches 
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Fig. 1.  a)  An example hierarchy detailing the hierarchical trellis for the RVs in X = {X1, …, 
X9}.  Boxes are used to emphasize this is not a BN.  b)  An example BN defined for X.  The 
dotted lines indicate a division between RVs in different hierarchical levels.  The link between 
X7 and X9 does not satisfy either hierarchical assumption.  c) For the family-wise assumption, 
the X7 → X9 link requires the existence of the  X3 → X5 link.  d)  For the parent-wise 
assumption, the X7 → X9 link requires the existence of the X3 → X9 link. 
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based on this assumption results in links that will not be searched. E.g., the X7 → X9
 

link will not be searched since there is no link between X7 and X9’s h-parents, {X3} 
and {X5}.  We call this assumption the family-wise assumption as the relationships 
detailed in a family at one level are manifested as families at lower h-levels. 

Definition. The family-wise assumption.  ∀ Xi and Xj, if ,
0XX jiIΛ Λ =  or i jΛ ≠ Λ , then 

( )i jX Pa X∉ , 

This assumption does not allow a node’s parent set to include its h-parents and h-
children, which, given that a node is constructed from its h-children, are likely to be 
significant.  We relax this assumption to allow this. 

Definition. Relaxed family-wise assumption.  ∀ Xi and Xj, if , 0XX jiIΛ Λ =  and 
j

j

X

i XX ∉ Λ , then ( )i jX Pa X∉   

The relaxed assumption does not limit candidate parent sets as effectively as the 
unrelaxed assumption (particularly in dense trellises) and is less likely to allow for 
exhaustive searches. Ultimately, this will lead to poor search performance.  Hence, we 
introduce the parent-wise assumption which only requires a correlation between two 
RVs to manifest as a correlation between the child and one of the parent’s h-parents.   

Definition. Parent-wise assumption. ∀ Xi, Xj, if , 0Xi
jXIΛ = , then  ( )i jX Pa X∉ . 

This requirement is not as strict as the family-wise assumption and has the distinct 
advantage of easily incorporating a node’s h-relatives as candidate parents while still 
effectively restricting structure spaces.  Figures 1c and 1d illustrate the different link 
requirements for the family-wise and parent-wise assumptions. 

These assumptions may be incorporated directly into the BN scoring function.  
Scoring functions include terms (or can generally be modified to include terms) that 
probabilistically weight structures based on prior knowledge. Formulating domain 
knowledge as a structural prior is advantageous as it can be easily incorporated into 
many structure scores.  ( )rf SP B  and ( )p SP B  give the relaxed family-wise and parent-
wise assumptions as structural priors, respectively: 

 

{ },{ } ,,
( ) , ,

1
X XX j iii j i Xi

rf S rf X X X
i jrf

Z
P B v I I I

vα ΛΛ Λ
×

= =
+ ∑   { },{ } ,{ }

( ) , ,
1

Xii j j
p S p X X X

i jp

Z
P B v I I

vα Λ
×

= =
+ ∑  

 
where Z is a normalization constant, α is a penalty scale factor, and vrf and vp are the 
number of links that violate the relaxed family-wise and parent-wise assumptions.  
When α is sufficiently large, the prior probability of a structure with any violating 
links can be treated as zero.  Incorporation of the hierarchical assumptions can then be 
equivalently realized as modifications to structure search heuristics by limiting 
candidate parent sets.  It is this case we investigate in this paper, though, future work 
investigating the case where α is relatively small is also promising. 

For the relaxed family-wise assumption, structure search begins by exhaustively 
searching for the optimal parent sets for each Xi ∈ Λ(1).  Structure searches for the 
remaining h-levels are then iteratively performed with the structural results of prior h-
levels constraining candidate parent sets (CPSs) at subsequent h-levels.  The runtime 
of hierarchical structure searches will typically be longer than that of flat searches but 
ultimately depends on the CPS limits where exhaustive searches are allowed.  We 



 Improving Bayesian Network Structure Search with RV Aggregation Hierarchies 71 

have found that it is reasonable to exhaustively search for a node’s optimal parent set 
when its CPS has less than 20 parents, to use a simulated annealing search when its 
CPS has less than 40 parents and to resort to a hill climbing search otherwise. We 
refer to this search as the RFW-Hier search.     

Unlike searches based on the family-wise assumption, searches based on the 
parent-wise assumption would require RVs to have many simultaneous parents—far 
more than would be allowed due to overfitting and computational limitations. This 
can be addressed by searching for the optimal candidate parents for a node one h-level 
at a time using the following heuristic.  For each RV Xi, exhaustively search for the 
highest scoring set of n legal parents from Λ(1).  Record and remove these parents.  
Then, find the best set of n legal parents for each Xi from each subsequent h-level 
where the recorded results from the prior h-level constrain the parent sets.  This 
results in a final set of (at most) n × ( )levels Λ  recorded parents.   Perform one last 

search through this set for the final parent set.  As in the RFW-Hier search, we use a 
combination of exhaustive, simulated annealing and greedy searches.  We refer to this 
search as the PW-Hier search. 

When searching through CPSs one node at a time, cycles could be introduced into 
the topology.  We address this by placing constraints that ensure no cycles can exist 
(see Section 3).  Other methods for dealing with the introduction of cycles exist, e.g., 
a repair operator that removes cycles that have been introduced [14]. 

3   Experiments 

We test on both simulated and real-world neuroimaging domains.  The neuroimaging 
data is temporal and BNs that explicitly represent time are referred to as dynamic 
Bayesian Networks (DBNs).  The simulated data is generated from DBNs. 

In the most general case, DBNs include one column of RVs for every time step and 
one node in each column for every RV.  For most real world problems, such DBNs 
are intractably large. We make the stationary and Markov order 1 assumptions, 
resulting in a topology of two columns: one for time t and one for time t+1.  The 
nodes do not represent absolute time points but instead represent RV correlations 
averaged across time. Links originate in the left column and terminate in the right.  
DBNs may also include isochronal links, which we omit as temporal links are of 
primary interest. Thus, all link additions are guaranteed to be acyclic. 

Notation for DBNs is slightly modified from BNs in general.  Xi
t and Xi

t+1 represent 
the ith RV in columns t and t+1 and X = {Xi

t
, Xi

t+1: 1 ≤ i ≤ n}. The parameters for a 
node’s CPT, ( | ( ) )t e t e

B i iP X Pa X j+ + = , are denoted , , ,
B
e i j kΘ , e∈{0,1}. 

We gauge the efficacy of our heuristics using both generative and discriminative 
scores.  For a generative score, we use the BDe metric [10], a commonly employed 
metric with a strong mathematical underpinning.  Its parameter priors are themselves 
parameterized by the equivalent sample size (ESS), which has the effect of controlling 
for structural complexity.  For a discriminative score, we use the approximate 
conditional likelihood (ACL) score [2], a decomposable alternative to CCL.  
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3.1   Simulated Domain 

Simulated data is created from a pair of DBNs whose topologies are selected at 
random but comply with the parent-wise hierarchical assumption (structures 
consistent with the relaxed family-wise assumption were omitted due to space 
constraints, but results were qualitatively very similar). We test the ability of both flat 
and hierarchical searches to find the underlying generative structure. Three 
experimental paradigms are used: an IID case in which data is generated from DBNs 
with varying magnitudes of differences, a noisy case in which the IID assumptions are 
violated and a case where hierarchical assumptions are violated. 

In all cases, a single hierarchy, ΛX, over RVs X = {X1, …, X57}, is created with 3 h-
levels containing 3, 9 and 45 nodes.  The hierarchy is a perfectly balanced tree with 
each node in Λ(1) linking to three unique node in Λ(2), each of which, in turn, links to 
five unique nodes in Λ(3).  The two generating DBNs, G1 and G2, are constructed 
with nodes 1 1

1 1 57 57{ , ,..., , }t t t tX X X X+ + .  Fifteen links—one between nodes in Λ(1), four 

between nodes in Λ(2) and ten between nodes in Λ(3)—are created between 15 
parents in the t column and 15 unique children in the t+1 column. 

The correlational strength for a link, measured via a normalized mutual 
information score (NMIS), is determined by the CPT generated for the child node.  At 
an NMIS of zero, a parent is completely uncorrelated with its child and at an NMIS of 
one, it is completely correlated.  A node with no parents is parameterized by a 
normalized information score (NIS).  At an NIS of zero, the CPT is completely non-
uniform and at one its uniform. 

The method for generating a CPT for a node t e
iX +  that conforms to a NIS or a set of 

NMISs is outside the scope of this paper. We will refer to it as the distribution 

,( |B
e iP Θ , )B

e iS , where e ∈ {0,1}  and ,
B
e iS is a set containing a single NIS if Xi has no 

parents, or is a list of NMIS’s, with an NMIS for each of the p parents.  ,
B
e iΘ  can be 

modified to produce a new CPT, ,
B

e i
′Θ , compliant with a different NIS or list of 

NMIS’s, ,
B

e iS ′ . This generator is the distribution ,( |B
e iP ′Θ , ,, )B B

e i e iS ′Θ . The closer ,
B

e iS ′  is 
to ,

B
e iS , the smaller the KL divergence between ,

B
e i
′Θ  and ,

B
e iΘ  will be. If ,

B
e iS ′  = ,

B
e iS , 

then ,
B

e i
′Θ = ,

B
e iΘ . 

The CPTs in G1 for nodes with no parents are generated from the ,( |B
e iP Θ {0.9})  

distribution, yielding fairly uniform CPTs.  Nodes with parents are generated from the 

,( |B
e iP Θ {0.1})  distribution so that a child’s value is only loosely correlated with the 

parent’s value.  G1 and G2 share an identical structure and all the CPTs in G2 are 
copies of those in G1.  Thus, initially G1 and G2 represent the same distribution.   

The overall process for an experiment is as follows.  First, the CPT parameters in 
G1 and/or G2 are modified in accordance to a particular experimental paradigm. 
Twenty training and twenty testing data points are generated for each class.  A DBN 
is then learned for each class with the BDe score.  Classification is performed on a 
testing data point by selecting the DBN with the largest posterior probability.  
Structural precision, the fraction of links in the learned DBNs present in the 
generating DBNs, and structural recall, the fraction of links in the generating DBNs 
also found in the learned DBNs, are measured.  Each point listed in the resulting 
graphs in Figures 2 and 3 are calculated as the average of 120 runs of the experiment.  
Significance tests were computed via the t-test for dependent samples.   
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3.2   Neuroscience Domain 

Functional magnetic resonance imaging (fMRI) is widely used in the study and 
diagnosis of mental illness. It is a non-invasive technique measuring the activity of 
small cubic regions of brain tissue (voxels). Psychologists frequently use fMRI data to 
test hypotheses about the changing neural activity underlying mental illness. 

There are too many voxels in each 3D fMRI image to model directly, so voxels are 
marginalized to regions of interest (ROIs) via the widely employed Talairach 
database [12].  Thus, each image is represented as the activation of 147 ROIs.  Then, 
the time series for each ROI is modeled with a temporal RV.  Data for each class of 
patient, healthy vs. diseased, is grouped together and each class is modeled with a 
DBN containing the nodes X = {Xi

t, Xi
t+1 : 1 ≤ i ≤ 147}.  The 147 ROIs are 

hierarchically related via the mean aggregate function given in Section 2.1.   
We analyze four fMRI datasets collected under widely differing experimental 

paradigms on different patient populations suffering from different illnesses.  The first 
was collected by Buckner et al. [3] for analysis of senile dementia, the second and 
third datasets were collected by the Clark et al. [5] and The Mind Institute [16] for 
schizophrenia and the fourth dataset was collected by Kiehl [11] and also focused on 
schizophrenic patients.  We will refer to these datasets as the demented, schizoM1, 
schizoM2 and schizoK datasets, respectively. 

4   Results 

The first set of simulated experiments measures how each search performs under IID 
conditions (Figure 2, top left).  The CPTs in G2 for the nodes with parents are redrawn 
from the P( 2

1,
G

iΘ | 2
1,
G

iΘ , {0.1±c}) distribution where c determines the magnitude of 

difference between G2’s and G1’s CPTs.  Addition versus subtraction is chosen at 
random.  As c increases, the difference between classes increases.  When c = 0, 
classification is impossible and when c = 0.02, classification is trivial. 

PW-Hier’s accuracy is significantly higher than the flat search’s over a wide range.  
This is due to the increased structural precision of the PW-Hier search.  Since PW-
Hier decreases the candidate parent space for each node, many candidate parents are 
omitted which would have only contributed noise.  Thus, the flat search is much more 
likely to add a superfluous node as a parent.  Approximately one parent was added per 
child on average in the flat search compared to only 0.3 in the PW-Hier search.   

The magnitude of the structural precision increase is due to the BDe equivalent 
sample size (ESS), which was set to 500.  Figure 2 (top right) gives the results of 
experiments with c fixed at 0.005 and the ESS varying from 50 to 1,000. As the ESS 
increases, the search is more likely to add noisy parents.  This decreases precision for 
both classifiers, however, PW-Hier’s additional constraints counteract this tendency 
and its structural precision drops less quickly than the flat search’s does.  

For most domains, assuming data points are drawn from a noiseless process is 
unrealistic.  The second set of experiments measures a score’s tolerance to intra-class 
noise (Figure 2, bottom left).  G1 and G2 are treated as base-line models, but each data 
point is generated from a modified version of them. Both G1 and G2 are generated as  
 

in the first experiment with c = 0.005 and the ESS = 500.  gGα , the generator for the  
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Fig. 2. Classification accuracy, structural recall and structural precision for simulated data 
experiments. Hierarchical results shown are for the PW-Hier search.  RFW-Hier results on 
simulated data are omitted due to space constraints, but are qualitatively very similar.    Shaded 
boxes on the axis indicate ranges where classification accuracy differences are statistically 
significant, as measured by the standard t test for dependent samples.   

gth generated data point for class α, starts as a copy of Gα.  For each Xi, ρ random 
,j k  tuples are chosen, 1 ≤ j ≤ ri, 1 ≤ k ≤ qi, and 0.1 is added to 1, , ,

gG
i j k
αΘ . As ρ 

increases, intra-class differences increase and class discrimination and the base 
models’ true RV correlations becomes more difficult to elicit. 

Initially, when ρ equals 1 or 2,  PW-Hier’s accuracy is significantly higher than the 
flat classifier’s accuracy. As more randomizations occur, the flat classifier’s accuracy 
catches up and eventually surpasses PW-Hier’s.  While the structural precision of the 
PW-Hier search always dominates the flat search, its structural recall begins to 
diminish significantly before that of the flat classifier.  This is because losing the 
ability to identify a single link can cause a cascade of failures to identify other links.  
Not recognizing a link at high levels in the hierarchy automatically results in missing 
all links that depend on it.  In the flat classifier, losing any particular link does not 
increase the risk of losing further links.  So in particularly noisy datasets, PW-Hier’s 
structural precision advantage may be overwhelmed by a decrease in structural recall. 

Further, in real-world data, it is possible that the candidate parents that PW-Hier 
omits would be useful.  The final set of simulated experiments (Figure 2, lower right) 
demonstrate what occurs as the number of links in the generative DBNs that do not 
conform to the parent-wise assumption are added.  As expected, as the number of 
violating links increase, the accuracy of the flat classifier catches up and surpasses 
that of the PW-Hier classifier.  At roughly five violating links, corresponding to 20% 
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of the total generative links, the flat classifier and the hierarchical classifier’s 
accuracy are identical.  Importantly, as the number of violations increase, PW-Hier’s 
performance degrades gradually, indicating robustness to violations. 

4.1   Neuroscience Domain Results 

DBNs learned from fMRI data can be employed for several tasks, including the 
elicitation of correlations among ROIs, classification, creation of simulated surrogate 
datasets, specific hypothesis testing, etc.  For all these tasks, learned DBNs are found 
by maximizing a scoring metric.  In this section, we focus on high scoring networks 
as a proxy for the myriad of tasks that those networks may eventually be used for. 

Figure 3 shows the results for DBNs learned with varying levels of structural 
complexity (where complexity is measured as the average number of parents per 
node).  For networks learned with BDe, complexity is controlled by the ESS.  For 
networks learned with ACL, complexity is controlled by a minimum description 
length (MDL) penalty term.  Each point in the graph represents the number of 
families for which the corresponding search returned the highest score.  For example, 
if the highest scoring set of parents for a child node Xi found with a flat search 
resulted in a ACL score of 15.6, but the PW-Hier search found a set of parents for Xi 
that resulted in a ACL score of 21.7, one point would be added on the y-axis for the 
PW-Hier search results. (Graphs that directly plot structure scores are not shown as 
they are complicated by complexity penalty trends, but such graphs do not 
qualitatively differ from those given in Figure 3.) 
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The results are consistent across each of the datasets.  Initially, when the structural 
complexity is low, the flat search yields family structures with higher scores than the 
hierarchical search.  This is because the hierarchical assumptions are restricting 
candidate parent sets too dramatically.  However, after a certain critical threshold of 
complexity is reached, around 3.4 parents for BDe and anywhere from 2 to 4 parents 
for ACL, PW-Hier searches find higher scoring structures than flat searches.   

The RFW-Hier search is almost always outperformed.  The RFW-Hier search was 
simply incapable of restricting candidate parents to small enough sets where 
exhaustive strategies could be used, a key advantage in limiting parent sets to begin 
with.  On the other hand, the PW-Hier search was capable of restricting candidate 
parents to smaller sets, benefited from exhaustive searches and was capable of 
outperforming typical flat structure searches on both generative and class 
discriminative scoring functions. 

5   Conclusions 

Employing hierarchically related models of varying complexity has proven to be 
useful in many machine learning applications.  We have applied this concept to 
Bayesian network structure search by aggregating atomic random variables (RVs) 
into a hierarchy of composite RVs.  Structural results of searches on high-level 
composite RVs are used to constrain searches on lower-level atomic RVs, allowing 
exhaustive searches for many of the BN’s families. 

We introduced two constraint heuristics for restricting searches at one h-level 
based on the search results at the previous h-level.  On both a generative score, BDe 
[10], and a class-discriminative score, ACL [2], we demonstrated use of these 
heuristics on multiple datasets in a challenging real-world neuroimaging domain.  We 
empirically showed that the intuitively reasonable family-wise search performed 
poorly while the parent-wise search significantly and consistently outperformed 
traditional, flat structure searches in finding high-scoring families. Results from a 
simulated domain, in which ground truth was known and controllable, indicated that 
hierarchical searches increased structural precision and yielded significant 
improvements to classification.  Though, on particularly noisy datasets, a decrease in 
structural recall was observed which led to decreased classification accuracy. 

Our empirical results primarily focused on domains where links between atomic 
and composite RVs were desirable.  This may not be the case in all domains.  
Unfortunately, the parent-wise search is not useful in such domains, and the family-
wise search may not yield desirable results due to its inability to adequately constrain 
candidate parent sets given dense trellises (such as those used in our neuroimaging 
domain).  Additional work to determine if the family-wise search benefits domains 
with sparser trellises is warranted, however, as experiments on simulated data 
indicated similar benefits to the parent-wise search.  Another avenue for future work 
lies in applying our methods to structure searches in relational learning paradigms, 
whose models contain hierarchies of RVs related with is-a and has-a relationships. 

 
Acknowledgements. We would like to thank the anonymous reviewers for their 
valuable feedback as well as the Dartmouth fMRI data center [6], Buckner et al. [3], 
The Mind Institute [16], Clark et al. [5] and Kiehl [11] for providing us access to their 



 Improving Bayesian Network Structure Search with RV Aggregation Hierarchies 77 

fMRI datasets.  This project was partially funded through grant DA012852 from the 
NIDA, NIH, from NIMH grant number 1R01MH076282-01 as part of the NSF/NIH 
Collaborative Research in Computational Neuroscience Program and The MIND 
Institute, DOE Grant DE-FG02-99ER62764. 

References 

[1] Anderson, C., Domingos, P. and Weld, D.   Relational Markov models and their 
application to adaptive web navigation.  KDD, 143-152, 2002. 

[2] Burge, J., Lane, T. Learning Class-Discriminative Dynamic Bayesian Networks.  ICML, 
22:97-104, 2005. 

[3] Buckner, R. L., Snyder, A., Sanders, A., Marcus, R., Morris, J. Functional Brain Imaging 
of Young, Nondemented, and Demented Older Adults. Journal of Cognitive 
Neuroscience, 12, 2. 24-34, 2000. 

[4] Chickering, D., Geiger, D., Heckerman, D. Learning Bayesian Networks is NP-Hard. 
Technical Report MSR-TR-94-17, Microsoft, 1994. 

[5] Clark, V.P., Friedman, L., Manoach, D., Ho, B.C., Lim, K., Andreasen, N.  A 
collaborative fMRI study of the novelty oddball task in schizophrenia: Effects of illness 
duration. Society for Neuroscience Abstracts, 474.9, 2005. 

[6] Dartmouth fMRI Data Center, The.  http://www.fmridc.org/f/fmridc , 2006. 
[7] Fine, S., Singer, Y., Tishby, N.  The Hierarchical Hidden Markov Model: Analysis and 

Applications.  Machine Learning.  vol. 32, 41-62, 1998. 
[8] Grossman, D., Domingos, P. Learning Bayesian Network Classifiers by Maximizing 

Conditional Likelihood. ICML, 21, 361-368, 2004. 
[9] Gyftodimos, E., Flach, P.  Hierarchical Bayesian Networks: An Approach to 

Classification and Learning for Structured Data.  Proceedings of Methods and 
Applications of Artificial Intelligence, Third Hellenic Conference in AI.  291-300, 2004. 

[10] Heckerman, D., Geiger, D., Chickering, D.M. Learning Bayesian Networks: the 
Combination of Knowledge and Statistical Data. Machine Learning, 20, 197-243, 1995. 

[11] Kiehl, K.  An event-related functional magnetic resonance imaging study of an auditory 
oddball task in schizophrenia. Schizophrenia Research, 48:159-171, 2001. 

[12] Lancaster J.L., Woldorff M.G., Parsons L.M., Liotti M., Freitas C.S., Rainey L., 
Kochunov PV, Nickerson D., Mikiten S.A., Fox P.T. Automated Talairach Atlas labels 
for functional brain mapping. Human Brain Mapping 10,120-131, 2000. 

[13] Lam, W., Bacchus, F.  Learning Bayesian belief networks: An approach based on the 
MDL principle.  Computational Intelligence, 10:269-293, 1994. 

[14] Margaritis, D., and Thrun S.  Bayesian Network Induction via Local Neighborhoods.  
Advances in Neural Information Processing Systems 12, Denver, CO, 1999. 

[15] McCallum, A., Rosenfeld, R., Mitchell, T. and Ng, A. Y. Improving Text Classification 
by Shrinkage in a Hierarchy of Classes. ICML, 1998. 

[16] MIND Institute, The.  http://www.themindinstitute.org/ , 2006. 
[17] Pearl, J. Fusion, Propagation and Structuring in Belief Networks. AI, 29, 3, 241-288, 1986. 
[18] Schwarz, G. Estimating the dimension of a model.  Annals of Stats., 6, 461-464, 1978. 
[19] Sutton, R. S., Precup, D., and Singh, S. Between MDPs and semi-MDPs: A Framework 

for Temporal Abstraction in Reinforcement Learning.  AI, v. 112.  pg. 181-211, 1999. 


	Introduction
	Background
	Aggregation Hierarchies
	Hierarchical Bayesian Network Structure Search

	Experiments
	Simulated Domain
	Neuroscience Domain

	Results
	Neuroscience Domain Results

	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




