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Abstract. Tree structures are a natural way of describing occurrence
relationships between attributes in a dataset. We define a new class of
tree patterns for unordered 0-1 data and consider the problem of dis-
covering frequently occurring members of this pattern class. Intuitively,
a tree T occurs in a row u of the data, if the attributes of T" that oc-
cur in u form a subtree of T containing the root. We show that this
definition has advantageous properties: only shallow trees have a signifi-
cant probability of occurring in random data, and the definition allows a
simple levelwise algorithm for mining all frequently occurring trees. We
demonstrate with empirical results that the method is feasible and that
it discovers interesting trees in real data.

1 Introduction

Frequent pattern discovery has been extensively studied, especially in the case
of 0-1 data, where various algorithms exist for mining frequent itemsets and
association rules. Here we propose a new class of co-occurrence patterns: trees.
The idea is to search for hierarchies of general and more specific attributes. For
example, consider document data and a tree with attribute A as the root and B
and C as the children of A, and D as the child of B (see Figure[l). This means
that A is the general concept, B and C are more specific terms related to A,
and D is a further specialization of B.

An observed row u follows the hierarchy described by the tree if the attributes
in the tree that are 1 in u form a subtree of T' containing the root. In the example

Fig. 1. Example tree
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tree of Figure [l a row with u(A) = w(B) = u(C) = 1 and u(D) = 0 satisfies this
condition, but a row with u(A) = u(D) = u(C) =1 and u(B) = 0 does not.

We consider the task of finding trees T' such that there are sufficiently few
rows violating the subtree condition (few conflicts). To prevent trivial trees con-
sisting only of attributes occurring very rarely, we additionally require that each
attribute occurring in 7" has a high enough frequency in the data. The task we
consider is, given two thresholds 7 and o, to find all trees that have at most 7
conflicts and each attribute occurring in the tree has frequency at least o.

While there has been lots of research on finding trees from tree- or graph-
structured data (see, e.g., [TI2I304U56]), the crucial difference is that we start
from unstructured 0-1 data, as in mining frequent sets and association rules. Hi-
erarchical clustering or finding phylogenetic trees (see, e.g., [7]) looks for finding
trees from 0-1 data, but typically the goal is to find one tree containing all the
attributes of the data. The same is true for finding tree-structured Bayes nets
from data. Another difference is that in a hierarchical clustering or phylogenetic
tree all attributes of the data are in the leaves of the tree. We seek trees where
all nodes of the tree are items from the data.

Another somewhat analogous class of patterns are approximate itemsets, such
as error-tolerant or dense itemsets [S[9IT0]. These are relaxed versions of frequent
itemsets: the set is considered to occur in a row provided most of the attributes
of the set are equal to 1 in the row. Similarly to these patterns, in this work
a tree can be supported by rows that do not have all of the items of the tree.
The tree structure reflects more closely the kinds of co-occurrence that are in
fact present in the data. Fragments of order [II] are a type of directed itemsets:
a fragment is violated by rows having two of its items but lacking at least one
item that appear between the two. Fragments of order can be viewed as simple
unrooted trees having only one branch.

The rest of this paper is structured as follows. In Section 2] we present the
definition of tree patterns. We discuss their theoretical properties in Section [3
In Section M we give algorithms for discovering trees, and present two measures
for selecting interesting trees. Empirical results demonstrating that the method
is feasible and that it finds interesting trees are given in Section[Bl Extensions to
the pattern class are discussed in Section [6, and Section [ is a short conclusion.

2 Tree Patterns and 0—1 Data

Let R be a set of 0-1 valued attributes (also called items). A 0-1 dataset D over
R is a table of rows of Os and 1s with R as the set of column headers. The dataset
D can be also considered as an unordered multiset of rows u, where each row is
a subset of R. We denote attributes by the letters A, B, and C, and by u(A) the
value 1 or 0, according to whether the attribute A is present in u or not. We de-
note by n the number of rows in D and by m the number of attributes, i.e., |R].
The frequency f(A) of an attribute A is the fraction of rows u such that u(A) = 1.

A tree is a pair T = (A, C), where A is an attribute and C = {11, T%,..., T} }
is the set of subtrees, each of which is a tree. (For leaves of the tree the set C
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is empty.) We say that A is the root of the tree. Each T; has the form T; =
(4;,C;); the attributes Ay, ..., Ay are called the children of A (this phrasing is
unambiguous as we require that each attribute appears in the tree at most once).
An attribute B is a descendant of A (or, equivalently, A is an ancestor of B)
either if B is a child of A or B is a descendant of a child of A. The set of nodes
of the tree T are simply all attributes occurring in the tree.

The conflict count ¢(T, D) of T in D is the number of rows u € D such that
there is a node A and its descendant B such that u(A) = 0 and u(B) = 1. Given
thresholds 7 and o, both in [0, 1], the collection of trees TP(D,,0) consists
of all trees T such that ¢(T, D) < tn and f(A) > on for all A occurring in T,
where n is the number of rows in the dataset D.

The computational problem we consider in this paper is the following.

Problem 1. Given D, o, and 7, compute 7P(D, 1, 0).

Note that in the definition of 7P(D,7,0) we use an upper bound 7 on the
number of conflicts, while frequent patterns typically are defined by a lower
bound on the number of occurrences. Our parameter ¢ has this role, preventing
attributes with very low frequency from being considered.

3 Basic Properties of Tree Patterns

In this section we consider the basic properties of tree patterns and the pattern
collection TP (D, T,0).

Monotonicity. The first observation is simple monotonicity property typical
for frequent patterns. A tree S is a rooted subtree of tree T', if S can be obtained
from T by a series of removals of leaves. The following proposition is immediate.

Proposition 1. The pattern classT P(D,r,0) is monotone with respect to rooted
subtrees, i.e., if T € TP(D,7,0) and S is a subtree of T, then S € TP(D,1,0).

Trees and Association Rules. Next we discuss the relationship of trees and
association rules. For a simple tree T containing root A and a child B, the conflict
count ¢(T") is n(f(B) — f(AB)), where f(AB) is the frequency of the attribute
set AB, i.e., the relative number of rows u with u(A) = u(B) = 1. Noting that
~ = f(AB)/f(B) is the accuracy (confidence) of the association rule B — A, we
have that ¢(T) = nf(B)(1 — ). One can ask whether other, more complex trees
could be reduced to association rules? Could we perhaps find all the trees in
TP(D,r,0) just by postprocessing a set of association rules between attributes?
(See, e.g., [T2AT3TATHIT6] for interesting work on postprocessing collections of
association rules.) This turns out not to be the case, however.

A row u satisfies the subtree condition for tree T if the rule C' — D is true on u
for all pairs (C, D) such that C is a descendant of D in T. However, there is no
simple formula for the conflict count of a tree T' given the accuracies of the rules
C — D for attributes occurring in T'. The reason is that a tree conflicts with
a row u if at least one rule is violated: the frequency under which this happens
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depends on the interaction of the different rules. As an example, consider the tree
with root A, and B and C' as the children of A. If f(A4) = f(B) = f(C) = 0.2
and f(AB) = f(AC) = 0.1, the accuracies of the rules B — A and C — A are
both 0.5. The conflict count of the tree T' can, however, vary between 0.2n0.5
and 2(0.2n0.5), depending on whether the conflicts are on the same rows or not.
Hence there is no algorithm for computing 7P(D, 7, 0) that would take as input
only the association rules between attributes!]

Number of Possible Trees. The number of rooted labeled trees on m vertices
is m™~1. This follows from a theorem of Cayley, which states that the number
of labeled trees is m™~2; see e.g. [I7, Section 3.3] or [I8, sequence A000169]. The
number of possible roots is of course m, from which the result follows. This implies
that it would be infeasible to consider all trees even for moderate values of m.

Trees in Random Data. We next address the question how many trees are in
the collection TP (D, 7,0) in random data, similarly to the discussion in [19] on
frequent itemsets. Suppose D contains independent and identically distributed
entries, with probability p of a 1 for each entry. Trees that only have a root and
k children cause a conflict only if the value of the attribute of the root is 0; thus
the conflict probability is fairly low.

For trees with longer branches it is straightforward to demonstrate that the
probability ¢ of a conflict grows fast. Using Chernoff bounds it is then easy to
show that the probability that a tree with longer branches has less than, say, ng/2
conflicts is at most exp(—cnq) for some constant c¢. There are P = (f)kkil trees
with k£ nodes selected from the set of m attributes, implying that the expected
number of trees with less than ng/2 conflicts is thus bounded by P exp(—cngq).
We have log P < k(logm + logk) < 2klogm. Thus, if 2klogm < cng, the
expected number of trees (with sufficiently long branches) in 7P (D, 7,0) is at
most 1. We omit the details.

4 Generating the Collection TP(D,T,0)

4.1 The Levelwise Algorithm

Proposition [l allows using a standard levelwise algorithm for computing trees
in TP(D,,0), as when computing frequent itemsets: start from single at-
tributes, and on every pass combine trees of size k into trees of size k + 1.
However, the combination phase is not as simple as for itemsets.

One approach would be to try adding every attribute into every possible po-
sition in each tree, but with a large number of attributes this would force the
algorithm to consider prohibitively many candidate trees. Another possibility is
to try combining all pairs of trees, which takes quadratic time in the number

! The exponential collection of frequencies of all frequent sets for frequency threshold
0 specify the distribution of the data rows uniquely, so that exponential input would
suffice to determine also the collection 7P (D, T,0).
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of trees. Instead, we use the approach of Zaki [6]. Briefly, a tree is represented
as a string by traversing it depth-first in preorder, recording the attribute in
each node, and —1 when backtracking. For example, the tree in Figure [l would
be encoded as (A4, B, D,—1,—1,C, —1). In this encoding, it is sufficient to con-
sider combining pairs of trees sharing the same (k — 1)-prefix, which limits the
quadratic behavior to much smaller sets than the complete set of k-trees. For
details, see [6]; note that since we restrict attributes to occur at most once in
each tree, not all combinations listed by Zaki are needed.

A drawback of the combination method is that each (k + 1)-tree is gener-
ated multiple times as isomorphic copies: for example, the isomorphic trees
(A,B,—1,C,—1) and (A,C,—1,B,—1) get both generated. We optimize the
database pass by only accessing the database for trees where the children of
each node are in alphabetical order, and using the same information for iso-
morphic trees. However, it is not possible to completely prune the copies. For
example, the 4-tree (A,C,—1,D, B, —1,—1) can only be generated from the 3-
trees (A,C,—1,D,—1) and (A,C, -1, B, —1), the latter of which does not have
the order property. Another possibility would be to work only with some canon-
ical forms of trees, as in [].

The size of the class 7P(D,,0) is highly sensitive to the values of the two
parameters. A way to ameliorate this problem is to use a top-k algorithm similar
to that developed for dense itemsets [10].

We remarked in the previous section that in random data trees of small depth
can have low conflict count. It is straightforward to modify the above algorithm
to construct only, e.g., binary trees, thus guaranteeing longer branches. We omit
the details.

4.2 Selecting Interesting Trees

The collection 7P(D, 7,0) will in many cases be quite large, and tools are needed
for selecting the most interesting trees.

We present two measures for selecting interesting trees: specificity and conflict
ratio. The specificity ¢(T') of a tree T is the size of the transitive closure of the
tree, when it is viewed as a relation on the set of attributes. In other words,
it is the number of (ancestor, descendant) pairs in the tree. A single-branch
tree has maximal specificity and a shallow tree whose leaves are the children of
the root has minimal specificity. The conflict ratio E[c(T)]/c(T) of a tree T is
obtained by comparing the number ¢(7T') of conflicting rows in the data to its
expectation E[c(T)] under the assumption that the attributes are independent
and have the marginal frequencies observed in the data.

The expectation E[c(T')] can be computed recursively for each tree. For T =
(A, C), the probability of no conflict, under the independence assumption, is

1 — Pr(u conflicts with T') = Pr(u(A) = 0) HPr(u(B) =0)
B

+Pr(u(4) =1) H (1 — Pr(u conflicts with 5)),
sec
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where the first product is taken over all attributes B represented in T, except
for the root A, and the second over all child-trees S of T'.

The conflict ratio will be high for trees that have much fewer conflicts than
would be expected under the independence assumption, i.e., trees that capture
interesting co-occurrence patterns in the data. The two interestingness measures
can be used to rank the trees in various ways.

5 Experiments

In this section we report on the experimental results we have obtained on gener-
ated and real data. Due to space constraints we discuss the results only briefly.

5.1 Generated Data

We generated data using the following procedure. First, a number of disjoint trees
with different values of the specificity measure were created by hand. The number
of trees used for the experiment was varied by taking different subcollections of
the trees. Given such a collection S, data was produced as follows. A row u was
generated by first making all attributes of u equal to 0. Then, each tree T € S
was selected with probability p. If T' was selected, we sampled a subset X of the
nodes of T by taking each node with probability ¢. Letting Y be the set of all
ancestors of nodes in X, we let u(A) =1 for all A € X UY. Finally, each bit
in the dataset was flipped independently with probability » to create noise. The
parameter values used were p = ¢ = 0.5 and » = 0.1, and 1000 data rows were
generated.

From the generated data, trees were mined using a Java implementation of
the levelwise algorithm described in Section [l The parameter o was chosen to
be 0.2, since each tree has a p = 0.5 chance of occurring, and each attribute
in the tree may have as low as a pg = 0.25 chance of occurring. The parame-
ter 7 was chosen as large as possible so that a reasonable number of trees was
still obtained; typically 7 = 0.3 was close to the limit. Selecting the parameters
was also the reason that only disjoint trees were considered. With overlapping
trees large numbers of shallow subtrees are generated, and the conflict thresh-
old has to be quite low. This prevents the discovery of the more interesting
trees. With disjoint trees, the result set 7P was reasonably small, while con-
taining all the trees in S. In order to test how well these trees were positioned
in the results with respect to the two interestingness measures, the mined trees
were partitioned into classes by their specificity ¢, and each class was sorted by
the conflict ratio E[c]/c. From each specificity class, trees were selected into the
final result set R in decreasing order of conflict ratio until all trees in S had
been selected. The size |R| of the final result set is thus a measure of how close
to the top the generating trees in S were. The results are shown in Table [l

We see that in every case the number of trees one needs to examine in order
to find the generating trees is fairly low. In fact, most of the extra trees are
variations of the generating trees: for example, in the smallest data set, one of
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the two generating trees is found immediately, and three of its simple variants
precede the other generating tree in conflict ratio order. The sensitivity to the
parameter is evident in that while we have 0 = 0.2 and 7 = 0.3 in all the cases
shown the size of the output |7 7P| varies non-monotonically in m.

5.2 Real Data

We used three real datasets in our experiments: data about terms used in NFS
abstracts [20], a database about students and courses at the Computer Science
Department of the University of Helsinki, and paleontological data [21122]. We
present the results only for the first two data sets; the results were similar for
the third one.

Abstracts Data. The data set [20] consists of 128820 abstracts describing
NSF awards for basic research. The observations correspond to the abstracts
and the variables correspond to the terms occurring in them. For preprocessing
we applied the Porter Stemming Algorithm [23] to merge variables corresponding
to terms with a common stem. In addition, we reduced the dataset by taking a
random 2% sample of the observations and choosing 66 subjectively interesting
stem termd? for the experiments. The final preprocessed data set consisted of
2510 observations (rows) and 66 variables (columns), with a total of 11262 entries
of 1s and an average of 4.5 1s per row.

Table [2 shows the number of trees obtained for different conflict thresholds 7
and frequency thresholds o. We see that the number of elements in the answer
increases rapidly with decreasing frequency threshold ¢ and increasing conflict
threshold 7. One should observe, however, that it is quite easy to iteratively find
values of o and 7 that produce outputs of desired size.

When inspected visually, the resulting trees look intuitive. As an example, we
found the tree depicted in Figure [J(a), at a conflict count frequency of 13.1%
and a conflict ratio of 1.58. With another set of parameters, we found the very
intuitive tree in Figure ((b) at a conflict count frequency of 21.2% and a con-
flict ratio of 1.19. The tree in Figure P(a) has specificity 5, whereas the tree in
Figure [A(b) has specificity 6.

Course Enrollment Data. The data consists of course enrollment records
for courses held at the Department of Computer Science at the University of
Helsinki. The data set has 3506 observations corresponding to students and 98
variables corresponding to courses. The mean number of 1s per row is 4.6. The

2 The terms chosen were algebra, algorithm, atom, behavior, biolog, carbon, cell, cel-
lular, channel, chemistri, climat, code, comput, distribut, dna, document, earth,
ecolog, ecosystem, educ, electron, energi, environment, enzym, evolut, genet, ge-
olog, hardwar, internet, isotop, life, light, link, magnet, materi, mathemat, matter,
metal, molecular, morpholog, natur, network, nonlinear, nuclear, numer, ocean, oxid,
physic, pi, plasma, protein, quantum, record, scienc, semiconductor, social, softwar,
statist, surfac, temperatur, theoret, topolog, transit, transport, water and web.
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Table 1. Results on generated data. m: number of attributes; |S|: number of trees
used in the generating process; o, 7: thresholds for frequency and conflicts; |7 P|: size
of the output set; |R|: size of the final result set obtained by taking enough trees to
cover S.

m |S| o 7T |TP| |R|
10 2 0.2 0.30 1343 5

14 3 0.2 0.30 1172 8
18 4 0.2 0.30 1965 21
20 5 0.2 0.30 2208 27
23 6 0.20.30 1674 45
28 7 0.2 0.30 5469 43

Table 2. Results for the abstracts data set. The number of trees in the collection
TP(D,T,o) for various values of 7 and o. k = max |T'|, the largest tree; h = max ¢(T")
the maximal specificity.

T o |[TP|kh  cand time/sec.

0.14 0.12 26 3 2 194 0.573
0.16 0.12 3333 250 0.603
0.18 0.12 5133 397 0.835

0.14 0.08 649 33 12514 5.284
0.16 0.08 1894 3 3 39091 19.22
0.18 0.08 3890 4 4 108825 96.05

0.14 0.06 6637 5 6 204741 339.1
0.16 0.06 14927 5 7 538334 1970
0.18 0.06 48176 6 7 1683841 30300

total number of 1s in the data is 16086. Table shows the number of trees
obtained for different conflict and frequency thresholds 7 and o.

For the course enrollment data there is an ordering in which the department
recommends the students to take some of the courses. For instance, some courses
require only basic understanding of programming concepts, whereas some of the
courses have more specific prerequisites. As an example of this, we found the tree
depicted in Figure Bl at a conflict threshold of 16.3% and a high conflict ratio
of 2.20. The tree reflects the fact that the more advanced courses Data struc-
tures and Programming in C have Java programming as a prerequisite, whereas
for Computer Organization the course Introduction to Programming suffices.
This is also the order in which the department recommends these courses to be
taken.

Outlier Detection. To evaluate the usefulness of discovered trees we exper-
imented with their use in outlier detection. An observation that conflicts with
several of the strongest tree patterns is likely to be an outlier. As a test of this,
we performed the following experiment. We took the course enrollment data set,
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Fig. 2. Two example trees in abstracts data

Table 3. Results for the course enrollment data. The number of trees in the collection
TP(D,,0) for various values of 7 and o. k = max |T|, the largest tree; h = max ¢(T")
the maximal specificity.

T o |[TP|k

0.14 0.12 68 3 581 0.524
0.16 0.12 124 4 991 0.795

h  cand time/sec.

3

3
0.180.12 2204 5 1830 1.163

5

6

7

0.14 0.1 2624 1929 1.318
0.16 0.1 4845 4128 2.733
0.18 0.1 998 5 9367 6.373

0.14 0.08 39556 8 71982 145.6
0.16 0.08 11475 7 10 281398 3310
0.18 0.08 35398 8 12 1221143 93740

Introduction to

Programming
Programming Computer
in Java Organization
Data Programming
Structures in C

Fig. 3. Example tree found in course enrollment data

here denoted by D, and generated an additional data set N with independent
attributes with the same marginal frequencies as in D. The size of N was 5%
of the original data D. Then, frequent trees 7P = 7P(E,7,0) were mined
from the augmented data £ = DU N with 7 = 0.14 and ¢ = 0.08. From each
specificity class, the 30 trees with maximal conflict ratio were selected to form
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Fig. 4. Histogram for the conflict count between the rows in the data and the 164
generated trees. The figure on the left depicts the histogram for the real rows in the
data (total 3506). The figure on the right depicts the histogram for the 5% added noise
rows (total 175). The original data rows have fewer conflicts with the chosen 164 trees
than the added rows. See the text for details.

a subset S C 7P. The specificities ranged from 1 to 6, but since the generated
number of trees with specificity 5 and 6 was 23 and 21 a total of 164 trees were
selected to S. For each row v € F, we determined how many trees T' € S conflict
with wu.

The result was that for rows u € D, the average conflict count was 16.8,
with a standard deviation of 24.5, and for u € N, the average was 37.8 with
a standard deviation of 31.2. Figure [l shows the histograms of the number of
conflicts per row for the real data D and for the added rows IN. Thus, the noise
rows behave clearly differently from the real data rows from the viewpoint of
tree patterns.

6 Extensions

A problem clearly seen in the experiments is that a large number of small,
shallow trees crop up and slow the algorithm down before it has investigated more
interesting trees. A possible solution is to restrict the class of trees considered.
For example, if the number of children of each node is restricted to be at most
two, a levelwise algorithm would still be possible, and there would be much fewer
shallow trees to consider.

Another way to approach the problem is to change the search strategy from the
levelwise, breadth-first search. In the case of frequent itemsets, there are depth-
first algorithms for mining the maximal frequent itemsets without considering
all their subsets (see, e.g, [24] and [25]). Adapting such algorithms for trees is
an interesting direction for future research.

If more efficient search strategies are developed, it would also be interesting
to broaden the class of patterns: directed acyclic graphs would be a natural
generalization of trees.
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Conclusion

We have introduced the idea of mining trees from unordered 0-1 data and shown
that this pattern class is distinct from traditional frequent itemsets or association
rules. We have shown empirically that the levelwise algorithm can find interesting
trees in both generated and real data. In real data, our experiments show that
there are interesting co-occurrence patterns that are naturally captured as trees.
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