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Abstract. In this paper we explore an approach to privacy preserving
data mining that relies on the k-anonymity model. The k-anonymity
model guarantees that no private information in a table can be linked
to a group of less than k individuals. We suggest extended definitions of
k-anonymity that allow the k-anonymity of a data mining model to be
determined. Using these definitions, we present decision tree induction
algorithms that are guaranteed to maintain k-anonymity of the learning
examples. Experiments show that embedding anonymization within the
decision tree induction process provides better accuracy than anonymiz-
ing the data first and inducing the tree later.

Keywords: k-anonymity, privacy preserving data mining, decision trees.

1 Introduction

In recent years, the effectiveness of data mining tools in revealing the knowledge
locked within huge databases has raised concerns about its impact on the privacy
of individuals. Two main approaches to privacy preserving data mining were
suggested. The data transformation approach — e.g., [I] — tries to modify the
data so as to hide the sensitive information while retaining interesting patterns.
The cryptographic approach — e.g., [23I4] — uses cryptographic tools to prevent
information leakage during the computation of the data mining model. The latter
approach only applies to distributed data mining and does not prevent leakage
due to the model itself (see, for example, [5]).

k-anonymity — a definition for privacy that was conceived in the context of
databases — has come a long way in the public arena. Roughly speaking, k-
anonymity provides a “blend into the crowd” approach to privacy. It assumes
that the owner of a data table can separate the columns into public ones (quasi-
identifiers) and private ones. Public columns may appear in external tables,
and thus be available to an attacker. Private columns contain data which is not
available in external tables and needs to be protected. The guarantee provided by
k-anonymity is that an attacker would not be able to link private information to
groups of less than % individuals. This is enforced by making certain that every
combination of public attribute values appears in at least k rows of the released
table, or in no row at all. k-anonymity is accepted today by both legislators
and corporations, and is considered to provide the kind of privacy required by
legislation such as the HIPAA [4].
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Table anonymization is NP-Hard [7]. Thus, heuristic efficient anonymization
of tables is the concern of most work in the area [RIOTO/TTIT2IT3]. Specific care is
given to preserving as much of the original data as possible. Interestingly, some
of this work deals with preserving data which would be useful should the table
be data mined following its release [QII0/11]. Data mining is envisioned as the
main target application of released data.

This paper takes a direct approach for the combination of k-anonymity and
data mining. Rather than asking how data can be anonymized so that it is useful
for data mining, we ask how can data be mined so that the resulting model is
guaranteed to provide k-anonymity. We specifically discuss this question in the
context of decision tree induction. In this context, anonymity is at risk when the
decision tree overfits a small set of learning examples and allows the attacker
to predict their private attribute values. We describe a decision tree induction
algorithm whose output is guaranteed not to compromise the k-anonymity of the
data from which it was induced. An independent work [I4] presents a similar
concept in the context of itemset mining. However, that work does not differenti-
ate public attributes from private attributes, and is limited to binary attributes.
In addition, anonymity is achieved by postprocessing of the data mining output,
while we suggest an integration of the two processes.

Our approach is superior to existing methods (e.g., [TOJTT]), which guarantee
k-anonymity of a data mining model by building it from a k-anonymized table.
For the sake of efficiency, these methods generalize attributes homogenously over
all the tuples. This kind of anonymization was termed single-dimension recoding
[15]. Using our method, however, attributes can be generalized differently in
each tuple, depending on other attribute values. This kind of anonymization
was termed multi-dimensional recoding. Furthermore, in the existing methods,
heuristic cost metrics are the driving force. For example, a classification metric,
which is in essence the classification error over the entire data, may be used.
Such metrics are not necessarily optimal for a specific data mining task. We
show that a decision tree induced using our method is usually more accurate
than that induced by existing methods. Needless to say, both decision trees
provide the same level of anonymity.

This paper makes the following contributions:

— It suggests extended definitions of k-anonymity, which allow the k-anonymity
of a data mining model with respect to the learning examples to be deter-
mined.

— It demonstrates how the definitions of k-anonymity can be applied to deter-
mine the anonymity of a decision tree.

— It presents a decision tree induction algorithm which guaranteesk-anonymous
output and which performs better than existing methods in terms of accuracy
on standard benchmarks.

The organization of this paper is as follows: Section ] outlines the extended
definitions of k-anonymity of data mining models. Section [3] demonstrates
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how the definitions can be incorporated within decision tree induction algorithms
to guarantee k-anonymous output. Section Fl compares this new algorithm ex-
perimentally to previous work. Conclusions are drawn in Sect. Bl

2 Extending k-Anonymity to Models

We start by extending the definition of k-anonymity beyond the release of tables.
Just as in the original k-anonymity model, we assume that the data owner can
determine which attributes are known to a potential attacker and can be used to
identify individuals, and which attributes are private knowledge. Additionally,
without loss of generality, we assume that each tuple in the database pertains
to a different individual.

Definition 1 (A Private Database). A private database T is a collection of
tuples from a domain D = AXB = A1 X ... X Apy X By X...x By . Ay,..., Ay are
public attributes (a.k.a. quasi-identifiers) and By, ..., By are private attributes.

We denote A = A X ...x A the public subdomain of D. For every tuple z € D,
the projection of z into A, denoted x4, is the tuple in A that has the same
assignment to each public attribute as x. The projection of a table T into A is
denoted Ty = {xa: 2z €T} .

Definition 2 (A Model). A model M is a function from a domain D to an
arbitrary output domain O.

Every model induces an equivalence relation on D, i.e., Vr,y € D, x = y &
M (z) = M(y) . The model partitions D into respective equivalence classes such
that [z] = {y € D : y = z} . The model alone imposes some structure on the
domain. However, when a data owner releases a model based on a database, it
also provides information about how the model relates to the database.

Definition 3 (A Release). Given a database T and a model M, a release My
is the pair (M, pr), where pr (for population) is a function that assigns to each
equivalence class induced by M the number of tuples from T that belong to it,

i-e., pr([z]) = T[] -

In our terminology, a decision tree model is a function that assigns bins to tuples
in D. Accordingly, every bin within every leaf constitutes an equivalence class.
Two tuples which fit into the same bin cannot be distinguished from one another
using the tree, even if they do not agree on all attribute values. A release of a
decision tree includes the partition into bins, as well as the number of learning
examples that populate each bin.

Note that other definitions of a release, in which the kind of information
provided by pr is different, are possible as well. For example, a decision tree
may provide the relative frequency of a bin within a leaf, or just denote the bin
that constitutes the majority class. In this paper we assume the worst case, in
which the exact number of learning examples in each bin is provided. The effect
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of different kinds of release functions on the extent of private data that can be
inferred by an attacker is an open question. Nevertheless, the anonymity analysis
provided herein can be applied in the same manner. In other words, different
definitions of pr would reveal different private information on the same groups
of tuples.

We now turn to see how the database and the model are perceived by an
attacker. One of the fundamental assumptions of the k-anonymity model is about
the data available to the attacker.

Definition 4 (A Public Identifiable Database). A public identifiable data-
base Tip = {(idz,z4) : ® € T} is a projection of a private database T into the
public subdomain A, such that every tuple of Ty is associated with the identity
of the individual to whom the original tuple in T pertained.

Although the attacker knows only the values of public attributes, he can nev-
ertheless try to use the release My to expose private information of individuals
represented in Tip. Consider a tuple (id,,z4) € Tip. As each equivalence class
in M may rely on both private and public attributes, the attacker, could he
associate x4 with the correct equivalence class, could then infer which private
attribute values are possible for x according to this equivalence class. However,
depending on the unknown private attribute values of =, there might be a num-
ber of possible equivalence classes [z] to which an attacker can associate x 4. We
call this set of equivalence classes the span of 4.

Definition 5 (A Span). Given a model M, the span of a tuple a € A is the
set of equivalence classes induced by M and which contain tuples x € D, whose
projection into A is a. Formally, Spr(a) = {[z] :x € DAxza =a} . When M
is evident from the context, we will use the notation S(a).

For example, in a decision tree, the span of a tuple is the set of bins to which
the tuple can be routed when any combination of private attribute values is
possible for it. Given a public identifiable database Tip and a model M, we use
S(a)ry, = {(idg,z4) € Tip : S(xa) = S(a)]} to denote the set of tuples that
appear in Tip and whose span is S(a). These are tuples from Tip which are
indistinguishable with respect to the model M — each of them is associated with
the same set of equivalence classes of M. Just as associating an individual with
an equivalence class would allow private attribute values to be inferred, knowing
the values of pp for each equivalence class in S(a) allows the possible private
attribute value combinations for the tuples in S(a)z,, to be constrained, hence
compromising the privacy of the individuals.

Definition 6 (Linking Attack Using a Release). A linking attack using a
release Mt and a public identifiable database Tip is performed by grouping tuples
in Tip according to their spans. Each group of tuples is then linked to the list of
possible private attribute value combinations, according to Mrp.

Definition 7 (k-Anonymous Model). A model M is k-anonymous with re-
spect to a private table T if a linking attack on the tuples in Tip using the release
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M will not succeed in linking private data to fewer than k individuals. In other
words, a model M is k-anonymous with respect to T if, for every (idg,x4) € Tip,
|S($A)TID| > k.

For example, consider the decision tree in Fig.[Il The decision tree was formed
using the data in Table [[I The Marital Status attribute is public, while the
Sports Car and Loan Risk attributes are private. The Loan Risk attribute is
the class attribute. The decision tree includes six bins, each with its popula-
tion denoted in the tree. The tuples of Anna and Ben belong to the same bin,
because of the Sports Car and Loan Risk attributes. The model ignores the
value of the Marital Status attribute for these tuples. On the other hand, an
attacker, who has no access to the Sports Car attribute values, is forced to
consider routing Anna’s tuple to the leaf lynmarried, and routing Ben’s tuple to
the leaf Infarried, in addition to routing each of them to the leaf In,. Therefore,
the decision tree implies two spans: {/yfarried/good; [Married /bads Ino/goods Ino/bad }
for JOh’fL, Ben, and Laura, and {lUnmarried/good7 lUnmarried/bad7 lno/gooda lno/bad}
for Lisa, Robert, and Anna. The attacker can use the populations to induce the
distribution of class attribute values within each span, but he cannot know, for
example, which of the three tuples in the first span belongs to Intarried/good-
As each span contains three tuples, the model is 3-anonymous with respect to
Table [11

Table 1. Mortgage company data

Sports Car |lo

Name Marital Sports Loan

s Yes No
Status Car Risk . Ry
Yes i goo No
Lisa Unmarried Yes good Marital Status‘ ‘ 3 bad
John  Married Yes good Marrieg/ Unmarried
Ben  Married No  bad ‘ 1 good ‘ ‘ 1 good ‘
Laura Married No  bad 7 0 bad ] 1 bad
Married Unmarried

Robert Unmarried Yes bad

Anna Unmarried No  bad Fig.1. A 3-anonymous decision tree

3 Inducing k-Anonymous Decision Trees

This section presents an algorithm which induces k-anonymous decision trees.
The algorithm is based on the well-known ID3 algorithm [I6] and on its ex-
tension, C4.5 [I7]. ID3 applies greedy hill-climbing to construct a decision tree.
Starting from a root that holds the entire learning set, it chooses the attribute
that maximizes the information gain, and splits the current node into several
new nodes. The learning set is then divided among the new nodes according to
the value each tuple takes on the chosen attribute, and the algorithm is applied
recursively on the new nodes.

The k-anonymity preserving equivalent of ID3, kADET (Algorithm [B), uses
the same hill-climbing approach, with two changes: First, when considering
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all possible splits of a node, KADET eliminates splits which would lead to k-
anonymity breach. Second, the algorithm is not recursive. Instead, all the po-
tential splits are considered in a single priority queue and the best one of all those
that retain k-anonymity is picked. This method is required since k-anonymity
is defined in terms of spans, which may include bins from several decision tree
nodes. A decision regarding one node may thus influence other nodes.

3.1 EADET Algorithm

The input of KADET is a private database T, the public attributes P, the pri-
vate attributes @, the class attribute C, and the anonymity parameter k. First,
EADET computes the initial set of equivalence classes (bins) and spans: a single
span containing all of the bins and all of the tuples if the class is private, and as
many spans as bins, with each span containing a single bin and its tuple popu-
lation if the class is public. If one of the spans contains less than &k tuples from
T, kADET returns nil and terminates. Otherwise, kADET creates the initial
queue of possible splits, where each candidate split contains the root node and
an attribute from P or (). The queue is ordered according to the gain from each
split. kKADET then enters its main loop.

The main loop of kADET has the following steps: First, the most gainful
candidate split (node, attribute, gain) is popped out of the queue. If the node
regarded in this candidate is already split, the candidate is purged. Otherwise,
EADET tests whether splitting the node according to the suggested attribute
would breach k-anonymity. If it would, then, again, this candidate is purged.
However, if the attribute can be generalized, then a new candidate is inserted
to the queue, this time with the generalized attribute. Finally, if k-anonymity is
not breached, the node is split.

Several actions are taken in the splitting of a node: First, every bin of the
parent node is split between the descendant nodes, according to the value of
the splitting attribute. Accordingly, every span that contains this bin is updated
with the new list of bins. The descendant nodes inherit the list of spans from
their parent, and are added to the lists of nodes of those spans. If the splitting
attribute is private, no further action is required, as the attacker cannot distin-
guish between the new bins. However, if the splitting attribute is public, then
the attacker can use the split to distinguish tuples. Specifically, tuples that are
routed to one of the new nodes will not be routed to its sibling nodes. Therefore,
each of the spans in the split node, is split into new spans, one for each new de-
scendant node. Each new span contains the bins from the original span, except
for those of the sibling nodes. Likewise, the population of the original span is
divided according to the value the tuples take on the splitting attribute. Nodes
whose bins are contained in the new spans, and which are not descendant of the
original node, are associated with all of the new spans.

Figure Pl demonstrates an execution of kADET, using the data in Table[T] as
input. Marital Status is a public attribute; Sports Car and Loan Risk are private
attributes. The result of the execution is the decision tree in Fig. [l
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Algorithm 1. k-Anonymous Decision Tree (kADET)

1: Input: T — private dataset, P — public attributes, QQ — private attributes, C — the
class attribute, k — anonymity parameter
2: procedure MAIN
3: Create root node in Tree
4: Create in 7oot one bin b. for each value ¢ € C' and divide T" among the bins
5: if C € P then
6 Create one span S, for every value ¢ € C,
Sc.Bins «— {b.} , Sc.Population < b..Population , Sc.Nodes < {root}

7: set root.Spans to the list of all spans

8: else

9: Create a single span s. Set s.Bins to the list of all bins,

s.Population < T , s.Nodes < {root} , root.Spans < {s}

10: if Ispan € root.Spans such that 0 < |span.Population| < k then return nil
11: for att € P|JQ \ {C} do add (root, att, gain(root, att)) to Queue

12: while Queue has elements with positive gain do
13: Let (n, a, gain) = arg max {Queue}
14: if n.sons # () then cc;qntinue
15: if Breach (n,a, k) then
16: if a has generalization a’ then insert (n,a’, gain(n, a’)) to Queue
17: else Split(n,a)

18: Set the Class variable in each leaf to the value with the largest bin.
19: return Tree

20: procedure BREACH(node, att, k)

21: if att € @ then return false

22: for v € att.walues and span € node.Spans do

23: if 0 < |{t € span.Population : tlatt] = v}| < k then return true
24: return false

25: procedure SpPLIT(node, att)

26: for v € att.values do

27: Let node.sons[v] be a new descendant node

28: Let node.sons[v].Bins[b] be a new bin, which refines node.Bins[b] such that
node.sons[v].Bins[b].tuples < {t € node.Bins[b].tuples : tlatt] = v}

29: Let node.sons[v].Spans <— node.Spans

30: for span € node.Spans do replace each bin of the original node with its refine-

ments, computed above, and add the new nodes to span.Nodes
31: if att € P then

32: for span € node.Spans do

33: Remove span from every node n € span.Nodes

34: for v € att.values do

35: Create a new span s,

36: sv.Nodes «— span.Nodes \ {node.sons[u] : u # v}

37: Sy.Bins <« span.Bins \ {bin € node.sons[u].Bins : u # v}
38: Sv.Population «— {t € span.Population : t[att] = v}

39: Add s to node.sons[v].spans

40: Add s to every node n € span.Nodes \ node.sons
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Node /,: Sports Ca

Bins:

Spans: (5 &
Node ky: Sports Car INode 1, Marital Stati Node Iy,
Bl Bins: Bins
Spans spans: @D @D)] | |[spars:
Node /y Nodf/ \;‘:zode / Married = “Uynarried
Bins: - yes - No Node e Node /yumaried
- ) 2 Bins: Bins: Bins: Bins:
pans: (D
777777777 Spans: @ Spans: spans: (8D Spans:
b,={Lisa, John} —_—— 0 =V
b,={Ben,Laura, by;={Lisa, John} ~b;;={} by14={John} byq={Lisa} b=}
__ Robert,Anna}  by={Robert} _by,={Ben,Laura,Anna} ba14=(} byyo={Robert}  by,={Ben,Laura,Anna}
Span S; Span S; Span S, Span S;
Bins: Bins: Bins: Bins:
Nodes: Nodes: Nodes: Nodes:
Population: T ‘ Population: {John, Ben, Laura} ‘ ‘ Population: {Lisa, Robert, Anna} ‘

Fig. 2. Execution of kKADET

3.2 Correctness and Overhead Analysis

The key to proving correctness of the algorithm is in showing that the population
of each span, as computed by the algorithm, is the same as the one defined in
Sect. 2k the set of tuples which, without knowledge of private attribute values,
can be routed to the same set of bins. The proof is omitted due to lack of space.

The computational overhead incurred by the algorithm, respective to that of
ID3, stems from the need to compute and track all of the different spans. In the
worst case, the number of spans may reach the size of the public domain A. To
see how, consider a tree in which all of the top nodes split on private attributes,
until the number of leaves is equal to the number of public attributes and then,
every leaf is split according to a different public attribute. The number of spans
in the tree is equal to the size of A.

While this overhead is indeed high, it is inherent to the problem, because
of the need to validate that every span is populated by k tuples or more. In
practice, the number of spans will be much smaller. For example, when only the
class attribute is private, the number of spans is the number of leaves.

3.3 From ID3 to C4.5

C4.5 was introduced by Quinlan [I7] in order to extend and improve ID3. It im-
plements better attribute scoring metrics (gain ratio instead of gain), error-based
pruning, continuous attribute quantization, and treatment of missing values. All
these extensions, other than the change of the scoring function — which has no
effect on privacy — require careful analysis when used to extend kADET.

Pruning. C4.5 uses error-based pruning in two ways: discarding subtrees and
replacing them with leaves, and replacing subtrees with one of their branches.
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Using the first method is safe — undoing a split unifies equivalence classes, and
may unify spans, meaning that the population of a span can only increase.
The second method, however, may cause a k-anonymous tree to become
non-k-anonymous, as it induces different spans with different populations.
Therefore we avoid this technique in our implementation.

Continuous attributes. In the C4.5 algorithm, continuous attributes are han-
dled by creating binary splits. The algorithm considers all the possible split
points, and chooses the one with the best information gain. We implemented
the same approach, adding the constraint that a split point should not cause
a breach of k-anonymity.

Missing values. Missing values extend the k-anonymity model in ways which
have not been modelled yet. It is not clear, for instance, whether a value that
is missing in the learning examples would be missing in the data available
to the attacker. We leave the extension of the k-anonymity model to missing
values for further research.

4 Evaluation

To conduct our experiments we implemented the algorithms using the Weka
package [I8]. We use as a benchmark the Adults database from the UC Irvine
Machine Learning Repository [19], which contains census data, and has become
a commonly used benchmark for k-anonymity. The data set has 6 continuous
attributes and 8 categorial attributes. The class attribute is income level, with
two possible values, <50K or >50K. After records with missing values have been
removed, there are 30,162 records for training and 15,060 records for testing
(of which 24.5% are classified >50K). For the categorial attributes we use the
same generalization hierarchies described in [10]. For the ID3 experiments we
dropped the continuous attributes, because of ID3 limitations. The experiment
was performed on a 3.0GHz Pentium IV processor with 512MB memory.

The anonymized decision trees algorithms use the training data to induce
an anonymous decision tree. Then the test data (in a non-anonymized form) is
classified using the anonymized tree. For all values of & the decision tree induction
took less than 4 seconds for ID3, and less than 10 seconds for C4.5.

4.1 Accuracy vs. Anonymity Tradeoffs

Our first goal is to assess the tradeoff between classification accuracy and the
privacy constraint.

Figure Bl shows the classification error of the anonymous ID3 for various k
parameters, compared to the classification error for ID3 and C4.5. In spite of the
anonymity constraint, the classifier maintains good accuracy. At k = 750 there
is a local optimum when the root node is split using the Relationship attribute.
At k = 1000 this attribute is discarded because of an anonymity breach, and the
Marital Status attribute is chosen instead, yielding better classification.

We compared our results with those obtained using the top-down special-
ization (TDS) algorithm presented in [I0], the goal of which is to produce
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Fig. 3. Classification error vs. k pa- Fig.4. Classification error vs. k£ pa-
rameter for ID3 rameter for C4.5

anonymized data useful for classification problems. The algorithm starts with
the topmost generalization level, and iteratively chooses attributes to specialize,
using a metric that measures the information gain for each unit of anonymity
loss. The same generalization scheme is applied on all the tuples. We note that
TDS uses both training and test data to choose a generalization. This may
provide different generalization results, though not necessarily better or worse
than those obtained when generalizing the training data alone. TDS results also
appear in Fig. Bl In contrast to the TDS algorithm, our algorithm can apply
different generalizations on different groups of tuples, and it achieves an average
reduction of 0.6% in classification error with respect to TDS.

Figure @ shows a similar comparison using all 14 attributes of the Adult
dataset with the anonymous C4.5 algorithm. The large size of the quasi-identifier
affects the accuracy of the TDS generalization, and our algorithm reduces the
classification error by an average of 3% with respect to TDS.

4.2 Privacy Risks and ¢-Diversity

k-anonymity makes no restriction regarding private attribute values. Therefore,
it is possible that a k-anonymous model would allow a complete inference of these
values. In this section, our goal is to assess how many individuals are prone to
immediate inference attacks and show how such attacks can be thwarted.

We look at the number of individuals for whom an attacker may infer the
class attribute value with full certainty. This is the number of tuples associated
with spans for which all the tuples share the same class. Because of space limits,
we provide only the main figures. For the anonymous ID3, this number drops
to zero only for values of k beyond 750, and even then the attacker may still
be able to infer attribute values with high probability. The inference problem is
less acute in the case of the anonymous C4.5, because of pruning. The number
of exposed tuples drops to zero at k = 75, and is very low (below 0.5%) even for
smaller values of k.

The ¢-diversity model [20] suggests solving the inference problem by requiring
a certain level of diversity in class values for every group of identifiable tuples.
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For example, entropy {-diversity is maintained when the entropy of the class
values for every such group exceeds a threshold value log(¥).

We altered our algorithms by replacing the Breach() function with one that
checks the entropy /-diversity constraint, ruling out splits that violate this con-
straint. Note that the parameters for k-anonymity and ¢-diversity are not com-
parable. In particular, as there are only two class values, the best we can hope
for is entropy 2-diversity. This is achieved when there is equal chance for each
class value. However, for ¢ < 2, entropy {-diversity limits the attacker’s confi-
dence in inference attacks. The confidence limit is the maximal probability of
any private value for any individual. The data owner can control the confidence
limit by manipulating the ¢ parameter. For example, to deny the attacker the
ability to infer a class value with confidence greater than 85%, entropy higher
than 0.85 x log(1/0.85) + 0.15 x log(1/0.15) = 0.61 should be maintained. This
amounts to applying entropy ¢-diversity with £ = 1.526 (log 1.526 = 0.61).

Following this discussion, Figures [l and [0 display the tradeoff between the
confidence limit and the accuracy of the induced decision trees. So long as the
confidence threshold is high enough, it is possible to induce decision trees without
a significant accuracy penalty. The lowest achievable confidence level is 75.1%,
as it pertains to the class distribution in the root node. In the case of ID3,
every split of the root node results in a node with confidence greater than 85%.
Therefore, a confidence limit of 85% or lower prohibits the induction of a useful
decision tree. The additional attributes available to the C4.5 algorithm allow the
boundary to be stretched to a lower confidence threshold.

25} —==diverse ID3 25/ —m=diverse C4.5
“““ ID3 baseline 24r| = = =C4.5 baseline

- ==C4.5 baseline

% error
N

175 - -
99 97 95 925 90 875 85 80 99 97 95 92.5 90 87.5 85 825 80 77.5
confidence limit confidence limit

Fig. 5. Confidence level vs. error rate  Fig. 6. Confidence level vs. error rate
for ID3, 9 attributes for C4.5, 15 attributes

5 Conclusions

In this paper we presented decision tree induction algorithms which guarantee
k-anonymous output. Using our definitions, it is possible to introduce similar
constraints in other data mining algorithms as well. Another interesting use of
this method is promoted by the ability to construct a table that is equivalent to a
data mining model. Such a table would maintain k-anonymity, while preserving
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the data patterns evident in the data mining model. Hence data mining algo-
rithms can be used as templates for pattern-preserving anonymization schemes.
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