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Abstract. This paper investigates the trade-off between the expressive-
ness of the pattern language and the performance of the pattern miner
in structured data mining. This trade-off is investigated in the context
of correlated pattern mining, which is concerned with finding the k-best
patterns according to a convex criterion, for the pattern languages of
itemsets, multi-itemsets, sequences, trees and graphs. The criteria used
in our investigation are the typical ones in data mining: computational
cost and predictive accuracy and the domain is that of mining molecular
graph databases. More specifically, we provide empirical answers to the
following questions: how does the expressive power of the language affect
the computational cost? and what is the trade-off between expressive-
ness of the pattern language and the predictive accuracy of the learned
model? While answering the first question, we also introduce a novel
stepwise approach to correlated pattern mining in which the results of
mining a simpler pattern language are employed as a starting point for
mining in a more complex one. This stepwise approach typically leads to
significant speed-ups (up to a factor 1000) for mining graphs.

1 Introduction

Whereas initially the data mining community focused on mining simple pattern
languages, such as itemsets, there has been a recent shift towards mining more
and more complex pattern languages, such as sequences, trees and graphs [TI2I)3].
This is often motivated by challenging applications domains such as chemo-
informatics and network analysis, which can naturally be modeled as graphs.
Whereas experience gained while mining simpler representations, such as the
exploitation of the apriori-property [4], has been transferred into structured data
mining, little research has been devoted to the trade-off between expressiveness
of the pattern language and the performance of the pattern miner. Within the
field of computer science, insight into the trade-off between expressiveness and
performance has been of critical importance, and therefore also seems essential
to the field of data mining and its applications.

The setting that we shall employ is that of correlated pattern mining, where
one is given a dataset divided into two classes, and the aim is to find the k-best
patterns expressed within a pattern language £ according to some statistical
criteria, such as significance, or information gain [BJ6]. Correlated pattern miners
typically employ a branch-and-bound technique. Because graph miners are today
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the most prominent representatives of structured data mining systems, and their
application has been to a large extent targeted towards molecular applications
in chemo-informatics such as structure activity relationship prediction [7], our
experimental investigation targets such applications. The pattern languages £
considered are those of itemsets, multi-itemsets, sequences, trees, and connected
graphs. Even though there are many possible performance criteria in data mining,
computational cost and predictive performance are certainly the most prominent
ones, which we will therefore also adopt in our study. W.r.t. computational cost,
the question is how the computational cost is affected by growing expressiveness
of the language. While answering this question, we also introduce the technique
of stepwise correlated pattern mining, which first finds the & best patterns in the
simpler language, and then employs the score of the k-th best pattern as a bound
while mining the more expressive language in a branch-and-bound algorithm. In
some of our experiments, the stepwise approach leads to speed-ups of a factor
1000 for large molecular datasets. To gain insight into the second trade-off,
which is concerned with predictive performance, we employ the typical approach
of using the k best patterns as features in a classifier. This then allows us to
construct a predictive model in the form of a decision tree, rule-set or naive
Bayes model, and hence, to evaluate the predictive performance of the resulting
model and thus, pattern language.

The paper is structured as follows: In the next section we introduce the nota-
tions used throughout the rest of the paper. In section[3, we describe correlation
measures and the branch-and-bound approach used to solve the mining task. The
experiments and their results are described and discussed in detail in section [l
In the last section we conclude and point towards related and future work.

2 Pattern Languages

In this section, we introduce the various pattern languages employed in our
study, and discuss the relationship among them.

Definition 1 (Graphs). An undirected, labeled graph G(V,E, X\, X) consists
of a finite set V of wvertices, a set E C {{u,v}|u,v € V,u # v} of edges, an
alphabet X and a labeling function A : (VUE) — X.

A graph G(V,E, A\, X)) is called connected iff Vu,v € V there exists a sequence of
vertices Juy, ..., v, € V with v; = u and v, = v and {v,, v41} € E.

Definition 2 (Trees). A (free) tree is a connected graph with [V| = |E| + 1.
Connected graphs that are not trees thus have cycles and are called cyclic graphs.

Definition 3 (Sequences). A sequence is a tree (and hence a graph) where no
vertex has more than two edges (i.e. no branches), Vv € V : |{{v,u}|u € V}| < 2.

Definition 4 (Multi-itemset). A multi-itemset is a graph G(V,E, X\, X) where
the set of edges is empty, E = (.
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Definition 5 (Itemset). A multi-itemset is called itemset iff Yv,,vp € V :
(va = v6) V (A(va) 7# A(wp))-

Perhaps the definitions of multi-itemset and itemset are a bit unusual, but they
are convenient for showing the relationship among the different pattern types.
It is useful to use the following notation for the pattern languages: Lg, the set
of all graphs; L¢, the set of all connected graphs; L, the set of all trees; Lg,
the set of all sequences; Ly, the set of all multi-itemsets; and L, the set of all
itemsets. From the definitions introduced above, it directly follows that

Proposition 1. £; C Ly C Lg and Ls C L C Lo C Lg

At the same time, the subgraph isomorphism relation can be used as the covers
and generality relation to structure the search:

Definition 6 (Graph Isomorphism). Two Graphs GV, E A X),G' (V' E' X X)
are called isomorphic if there exists a bijective function ¢ : V — V' such that:
Vo e Vi A(v) = XN(p) A E = {{p(v1), p(ve) }|{v1,v2} € E} A V{v1,v2} € E:
A({vr,v2}) = N ({p(v1), @(v2)})

Definition 7 (Subgraph). Given two graphs G(V,E,\, X), G'(V,E N, X),
G’ is called a subgraph of G iff VVCVAE CE A VYo € V' : M) = A(v) A
Ve € E'A(e’) = A(e)

A graph G’ is subgraph-isomorphic to another graph G if and only if it has a
subgraph S that is isomorphic to G’. The subgraph isomorphism relation can be
applied to the more specific pattern languages and results in a natural notion of
coverage or generality for these languages as well.

3 Correlated Pattern Mining

A correlation measure compares the expected frequency of the joint occurence
of a pattern and a certain class value to the observed frequency. If the resulting
value is larger than a given threshold the deviation is considered statistically
significant and there is evidence for a causal relationship between the pattern
and the class.

N
<0.n> <p.n>
C1 C2
¢ p n pt+n
~¢P—pN—n|[D|—-(p+n)
P N |D|
<0,0> 90> p
Fig. 1. A contingency table Fig. 2. Convex hull of future (p’,n’)

We organize the observed frequencies in a contingency table, cf. Figure[Il Let
¢ be the pattern and ci,co the two classes. P and N denote the total number
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of instances having class c1, ca, respectively, in dataset D. The frequencies of
those two classes amongst the instances covered by the pattern are referred to
as p and n. Since p and n are sufficient for calculating the value of a correlation
measure on this table, we view these measures as real-valued functions on N? for
the remainder of this paper.

Correlation measures are neither monotone nor anti-monotone, hence the
search becomes more difficult than in frequent pattern mining. However, if the
correlation measure is convex, an upper bound on the score for the refinements
of a given pattern can be calculated, which enables the use of an effective branch-
and-bound algorithm.

Convex functions like x? and Information Gain (see [5] for a proof) take their
extreme values at the points forming the convex hull of their domain.

For a pattern inducing the tuple (p, n), specialization will decrease p, n, both,
or none. This leads to points lying within the rectangle shown in Figure 2l
Evaluating the correlation measure at (p,0) and (0,n) will give an upper bound
on the value the measure can take for specializations of the current pattern. For
an in-depth discussion of upper bound calculation we refer the reader to [5lJ].

Correlated pattern miners now compute either the k best patterns within
a language of patterns £ or else finds all patterns within £ whose correlation
measure exceeds a certain threshold. Furthermore, to avoid redundancy in the
resulting solution set, one typically employs patterns that are free, i.e., it is not
allowed that two patterns ¢; and ¢ occur in the solution set for which ¢s is a
refinement of ¢; and both patterns reach the same score.

The solutions to the first task can be conveniently modeled using

Thk(£7 D) = {¢ S £|free(¢7 .D)7 (]5 among the k-best patterns w.r.t. SCOT6(¢, D) n C}

where D denotes the dataset under consideration, and score the correlation
measure considered. Solutions to the second type of query are represented as

Ths(L,D,t) = {¢ € L|free(¢, D) A score(¢p, D) > t}
It will be convenient to combine the notations and introduce:

Thi(L,D,t) = {¢ € L|free(¢p, D) and score(¢, D) >t and
¢ is amongst the k-best patterns w.r.t. score(¢, D) in L}

In the light of the hierarchies of languages introduced above, it is now instruc-
tive to look at some straightforward properties of these solution sets.

Proposition 2. Whenever L1 C Lo, then for all datasets D and thresholds t:
Th>(£1aDat) - Th>(£2aD’t)'

This property actually states that whenever £ C Lo, it will be the case that so-
lutions found within £; will also be solutions within the more expressive pattern
language Lo2. Another useful property is

Proposition 3. Whenever L1 C Lo, then for all datasets D:
Thk(ﬁg, D) NL; C Thk(ﬁl, D)
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It states that the solutions of a top k query in a larger language L2 may contain
some top k solutions from a less expressive language L.

These properties actually motivate the stepwise correlated pattern mining
algorithm, which we will now sketch. Algorithm [l assumes a given hierarchy of
pattern languages £1 C Lo C L3...L,, a dataset D, and a value for k. The goal
is to find Thy(L,, D).

Algorithm 1. Stepwise Correlated Pattern Mining.
to := —00;
fori=1tondo
compute Thi(Li, D, ti—1)

t; = min score(p, D)
pEThy(Li,D,t;—1)

return Thy (L, D,t;)

The idea underlying the stepwise algorithm is that one first searches for the
k best patterns in the simpler language £;, and then records the score of the
k-th best solution found in £;. This score must be lower than or equal to the
score of all solutions in Thy(L;11, D), and can therefore be used as a threshold
when searching for the solutions at the next level. Given that correlated pattern
miners employ a branch-and-bound algorithm, this is likely to result in addi-
tional pruning when searching £; 1. This process is then iterated until the final
language L,, is considered.

It is easy to see that the stepwise correlated pattern mining algorithm will
produce exactly the same results as directly computing the Thy(L,, D). The
question however is whether this stepwise technique is more efficient than the
direct approach. In the experimental section, we shall provide evidence that this
typically is the case for the hierarchies of pattern languages considered, and that
the speed-up can be significant (up to a factor of about 1000).

4 Experimental Evaluation

In this section, we experimentally answer the following questions:

Q1 Does the stepwise correlated pattern miner speed up the correlated pattern
mining process for the mining of graphs?

Q2 How does the expressiveness of the pattern language influence the running
times of the correlated pattern miner?

Q3 How does the expressiveness of the pattern language influence the predictive
performance of the models learned using correlated patterns as features ?

4.1 Experimental Set-Up

In all experiments, we employed a correlated pattern miner to computeT hy (L, D)
for the values &k = 1,10,100 and 1000, and the languages £ = L, Ly, Ls, L1
and L¢. For the mining step we implemented two correlated pattern miners. For
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the itemsets and multi-itemsets a simple APRIORI-SMP [5]-like implementation
was used. For sequences, trees and graphs a modified GSPAN [2] implementation,
able to mine correlated patterns, was employed. The correlation measure used
was x? and the starting minimum threshold for the first step in the stepwise
mining procedure and all direct runs was 3.84.

To guarantee that we find all k-best free patterns, it is essential that for
every large graph, all its subgraphs are enumerated first. Otherwise, it might
happen that the addition of a small subgraph to a set of k-best patterns neces-
sitates the removal of several k-best supergraphs, and, consequently, one could
not guarantee that we find all k-best free patterns. It can be shown however that
the enumeration schemes that we are using (both the stepwise approach, and
GSPAN’s method for enumerating graphs) have this desirable property. Further-
more, the properties of the DFS-Encoding used for graphs in GSPAN allowed in a
straightforward manner to restrict the mining process to only trees (sequences)
by not allowing structures with cycles (branches).

All running time experiments were performed on a 2.8GHz Machine with 2GB
of main memory running Linux.

The two evaluation criteria employed were, on the one hand, the computa-
tion time needed to compute Thy(L, D) and, on the other hand, the predictive
accuracy. As directly evaluating the predictive accuracy of a correlated pattern
is typically not very interesting, we rather evaluate the predictive accuracy of
a set of patterns Thy(L, D) indirectly. This is realized by employing these pat-
terns as features in binary vectors describing the datasets to the WEKA toolkit.
We then employed WEKA’s [§] implementations of RIPPER [9], C4.5 [10], a
SUPPORT VECTOR MACHINE, and NAIVE BAYES to build classifiers whose ac-
curacies can be measured. All accuracy estimates were obtained using ten-fold
cross-validation, and the results were compared against each other w.r.t. sig-
nificance. The WEKA experimenter environment was used for this task since
accuracy averaging and significance testing is automated in this tool.

4.2 Datasets

For the experimental evaluation, we used four different real-world datasets,
namely the NCI HIV dataset [3], a biodegradability dataset [I1], and two muta-
genicity datasets [T27]. All these datasets contain a number of graphs describing
chemical compounds. Atoms are represented as vertices and labeled with the
atom type, whereas bonds between atoms are represented as edges, also labeled
with the type of edge (which can be single bond, double bond or aromatic bond).

To answer the first two questions, we performed running time experiments
on the HIV and on the Mutagenicity I datasets. Due to the small size of the
other two datasets, running times measured are in the range of a few seconds
at most, making differences unreliable. We used 5 different setups of the HIV
dataset, namely active vs. inactive (CA vs CI), active vs. moderate (CA vs
CM), moderate vs. inactive (CM vs CI), active vs. moderate and inactive (CA
vs CMCI), and active and moderate vs. inactive (CACM vs CI). For each of the
6 setups, we mined the k-best patterns for £ = 1,10, 100, and 1000.



Don’t Be Afraid of Simpler Patterns 61

Table 1. Characteristics of the used datasets

Name Total Size Number of Classes Class sizes

HIV 41768 3 (CA,CM,CI) CA: 417, CM: 1069, CI: 40282
Biodegradability 328 2 (BD, NBD) BD: 185, NBD: 143
Mutagenicity I 4337 2 (M,NM) M: 2401, NM: 1936
Mutagenicity IT 684 2 (M,NM) M: 341, NM: 343

4.3 Stepwise Correlated Pattern Mining Q1

Our first question was whether the stepwise approach would speed up the mining
process compared to the direct approach. The experiments performed show that
the stepwise approach was up to 2800 times faster with an average of 202.81
(o = 600.66) on all settings. Some of the results are shown in Table 21 The
direct approach for £ = 1000 in the CS vs. CM on the HIV dataset took more
than 48 hourd!! Figure[3 shows an explanation for the acceleration of the mining
process. After evaluating only 600 sequences, the threshold reaches a value of 769.
When mining trees (resp. graphs) directly, a similar threshold is reached after
analyzing 2700 (resp. 4200) patterns. The quickly rising threshold enforced by
mining stepwise allows a much more efficient pruning than the direct approach.

However, we observed some contrary cases that require further explanation.
First, when comparing the direct and the stepwise approach on multi-itemset min-
ing (L), the stepwise approach does not help in terms of speed-up. Fortunately,
it does not hurt either. Furthermore, on the Mutagenicity I dataset the step-
wise approach was always slightly slower than the direct approach with the worst
case for k = 10. Finally the direct mining of the 1000-best patterns on the CA
vs. CI HIV dataset was 13.41% faster than the stepwise mining. In this case, the
sequence-mining step could raise the threshold to 18.62 only which does not help
much in the next mining step, especially considering the score of the 1000th-best
pattern in Lo with 796.82. Furthermore, each step has to rebuild the k-best list
since only the threshold is reused. This can be time consuming and might - as in
this case - have the effect that the stepwise approach is slower than the direct ap-
proach. This could be improved by reusing not only the threshold obtained by a
mining step, but the whole k-best list.

4.4 Running Time Q2

This second question considers the influence of the expressiveness of the pattern
language on the runtime. More precisely: How are the running times distributed
among the steps for mining Lg to L7 to L¢7 In principle, mining Lg could
increase the threshold ¢g to such a high level that mining L1 using tg is faster
than the mining of Lg. The experiments in Table [l show that this is never the
case. The time spent in the tree mining step is on average 22 times as high as
the sequence mining step. The graph mining step, on the other hand, is never

! Before it ran out of memory.
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Fig. 3. Threshold vs. evaluated patterns for the stepwise and the direct approach on
HIV CA vs. CM with k = 100. Mining Ls (dotted) followed by Lz (solid) and then
Lc (dashed) evaluates much less patterns than mining L1 followed by L. Mining Lc
directly has to evaluate the most patterns.

much more expensive than the tree mining step. We also performed experiments
on itemsets and multi-itemsets, which showed that itemsets were much faster
than multi-itemsets. The results are not listed as other experiments showed that
these features are not competitive.

Table 2. Running times of the stepwise and the direct approach for mining connected
graphs (Lc¢)

Approach k& Muta I CA vs CM CACM vs CI CA vs CI CM vs CI CA vs CMCI
direct 1000 0:05.16  >48h 7:48.21 0:19.54  4:07.15 0:23.51

stepwise 1000 0:06.39  0:03.57 5:11.19 0:22.59  3:02.15 0:23.15
direct 10 0:00.12 1:47.25 7:04.48 0:07.42  3:02.26 0:09.31

stepwise 10 0:00.22 0:00.14 0:05.63 0:01.03  0:07.18 0:01.10

Table 3. Running times of the stepwise approach for mining Lg, L7, and L¢, respec-
tively. (k = 1,100 are not listed).

Approach k& Muta I CA vs CM CACM vs CI CA vs CI CM vs CI CA vs CMCI
Ls 1000 00:00.11  00:00.07 00:01.42  00:01.15 00:01.37 00:01.18
Lr 1000 00:04.37 00:03.47 05:08.16 00:21.57 02:57.67 00:22.15
Lc 1000 00:06.39 00:03.57 05:11:19  00:22.59 03:02.15 00:23.15
Ls 10 00:00.03 00:00.04 00:00.56 00:00.36  00:00.57 00:00.38
Lt 10 00:00.12 00:00.09 00:03.06  00:01.11 00:04.15 00:01.16
Lc 10 00:00.22 00:00.14 00:06.13 00:01.03 00:07.18 00:01.10

4.5 Predictive Performance Q3

A typical usage of patterns found via a data mining approach is to employ
them as features for describing instances to a propositional machine learning
algorithm. Since mining more complex structures requires more time, as can be
seen above, naturally the question arises whether this increase in mining effort
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Table 4. Accuracy results on the HIV and Mutagenicity I datasets
(a) HIV CA vs CM (b) Mutagenicity I

Lr Lo Ls Lr Lc k Algorithm k Lr L Ls Lr Lo
72.88 74.16 76.78 77.06 77.06 J48 60.89 61.15 58.20 58.40 58.40
72.88 74.16 76.78 77.06 77.06 1 JRip 1 60.89 61.15 58.20 58.40 58.40
72.88 74.16 76.78 77.06 77.06 SVM 60.89 61.15 58.20 58.40 58.40
72.88 74.16 76.78 77.06 77.06 NB 60.89 61.15 58.20 58.40 58.40
72.88 74.16 76.45 76.28 76.28 J48 61.40 61.07 70.96 68.55 68.55
72.71 74.13 76.35 77.06 77.06 10 JRip 10 61.15 60.92 70.96 68.50 68.53
72.82 74.16 76.45 76.85 76.85 SVM 61.43 60.45 70.19 68.52 68.49
72.08 73.02 76.52 76.65 76.65 NB 61.17 61.06 67.44 59.12 59.12
73.05 74.16 77.46 77.06 77.06 J48 62.00 65.67 76.37 70.94 70.79
71.91 73.49 76.38 77.06 77.06 100 JRip 100 61.33 65.11 74.06 70.74 70.89
72.72 74.56 77.09 76.72 76.72 SVM 62.17 59.59 72.39 70.23 70.17
69.38 72.21 76.31 76.58 76.58 NB 61.21 60.24 70.08 65.67 65.90
73.05 75.54 83.21 75.95 75.95 J48 62.00 61.30 79.73 74.83 74.68
71.91 74.84 81.29 76.52 76.42 1000 JRip 1000 61.33 60.89 76.40 72.23 71.66
72.72 74.50 81.97 75.84 75.81 SVM 62.17 67.24 80.14 71.24 70.61
69.38 72.11 77.83 76.65 76.65 NB 61.21 60.80 71.70 57.61 57.33

is matched by an increase of the quality of the description derivable by using
the found patterns (Q3).

The first evaluated setting involved the HIV active and moderately active
datasets. Accuracy estimates are show in Table d(a). In this table, and all fol-
lowing ones, the best value an algorithm achieves for a given & is shown in bold
numbers. All values that are significantly worse at o = 5% are italicized. Ttem-
sets never manage to capture enough information to be useful as features in this
case and multi-itemsets also perform worse than the structured representations
even though the difference is not significant except in the case k = 1000. As
for the structured patterns - sequences, trees, and connected graphs - there is
no significant difference for £ = 1,10, 100. For k£ = 1000, sequences significantly
outperform trees and graphs except when used with the NAIVE BAYES classifier
which is overwhelmed by the number of features.

The second dataset was first used in a machine learning setting in [12]. Accu-
racy results on this dataset are summarized in Table @[(b) Except when only one
feature is used, sequences are the most successful pattern type w.r.t. accuracy
of the learners using those as features. The improvement in comparison to the
other feature classes is significant except for the SVM when k& = 100.

On the biodegradability dataset, there is no significant difference in accuracy
for Kk = 1 and k = 10 as shown in Table [Bf(a). All representations more com-
plex than pure itemsets perform very similarly to each other for the other two
settings, with the notable differences that the SVM makes far better use of the
sequence-type feature than of tree and graph features for £ = 100 and that
trees perform better than graphs in J48 and SVM for & = 1000. Finally, on
the second mutagenicity dataset, for which results are reported in Table Bib),
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Table 5. Accuracy results on the Biodegradability and Mutagenicity II datasets
(a) Biodegradability (b) Mutagenicity IT

Lr L Ls Lr Lo k Algorithm k Lr Lo Ls Lr Lc

67.05 67.38 65.25 65.25 65.25 J48 64.47 64.91 64.32 64.32 64.32
67.05 67.38 65.25 65.25 65.25 1 JRip 1 64.47 64.91 64.32 64.32 64.32
67.05 67.38 65.25 65.25 65.25 SVM 64.47 64.91 64.32 64.32 64.32
67.05 67.38 65.25 65.25 65.25 NB 64.47 64.91 64.32 64.32 64.32
65.51 68.43 72.42 72.27 72.27 J48 65.86 64.91 70.46 70.46 70.46
64.45 68.44 T74.56 74.42 74.42 10 JRip 10 66.08 62.27 70.39 70.39 70.39
67.05 67.34 71.96 72.43 72.43 SVM 65.93 62.79 70.39 70.39 70.39
67.05 68.13 74.09 73.95 73.95 NB 64.62 64.47 67.82 67.82 67.82
65.51 72.58 76.22 71.96 71.81 J48 65.86 64.39 70.90 70.39 70.53
64.45 76.41 77.89 7273 72.73 100 JRip 100 66.08 64.75 71.48 71.12 71.12
67.05 75.32 80.04 71.96 71.81 SVM 65.93 65.50 72.72 71.71 71.78
67.05 69.04 68.93 66.80 66.80 NB 64.25 66.08 72.07 71.05 71.05
65.51 73.45 74.10 76.07 71.20 J48 65.86 65.12 71.63 T71.55 72.06
64.45 77.45 76.36 78.95 72.42 1000 JRip 1000 66.08 67.87 74.41 72.95 74.48
67.05 74.89 76.08 78.66 73.02 SVM 65.93 69.14 75.95 74.99 75.13
67.05 68.79 64.65 63.13 62.98 NB 64.25 64.77 71.26 72.50 72.87

itemsets and multi-itemsets are significantly outperformed by the more complex
representations. These in turn show no clear best or worst language class among
themselves. The results of all experiments are surprising in that the use of more
expressive pattern languages than Lg does not seem to pay off in terms of pre-
dictive accuracy. In all settings, sequences were at least as informative as trees
and graphs when representing molecules. Yet sequences are much easier to han-
dle and to compute than trees and graphs. On the other hand, the information
stored in itemsets and multi-itemsets is typically not precise enough to be useful
for a propositional learner. To gain more insight into the underlying reasons for
these findings, we set up a further experiment in which we selected the £ = 1000
best patterns in LcUL)s and classified them as (cyclic) graphs, trees, sequences,
multi-itemsets and itemsets.

The two charts in Figured show the distribution of the patterns, as well as the
number of such patterns, their average score, and the standard deviation. Most
of the experiments resulted in a chart similar to the one shown in Figure[ (right)
where the vast majority are trees, and the best scoring pattern is also a tree.
In two exceptions like in Figure [ (left), the multisets scored surprisingly well
whereas in most of the other cases no single multiset or itemset ever appeared
among the 1000 best. In two cases, the highest scoring structure was a sequence,
and even though the sequences were much less frequent, they scored comparative
to the trees. Furthermore, graphs (with cycles) usually had very low scores. A
feasible explanation for these results might be in the fact that a graph contains
far more sub-trees than sub-sequences and cyclic sub-graphs, and hence, that
correlated pattern miners have to process much more trees (with similar scores)
than sequences or cyclic graphs.
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Fig. 4. Distribution of the £k = 1000 best patterns for Biodegradability (left) and HIV
CA vs. CM (right)

5 Conclusions

We have presented an empirical evaluation of the influence of the expressiveness
of the pattern language on the performance of correlated graph miners. Perhaps
the most surprising result of this study was that the use of more complex patterns
such as cyclic graphs and trees does not necessarily lead to a better accuracy.
Indeed, the best results obtained were by using sequential patterns, which are far
easier to compute. A further result of our investigation was the introduction of a
novel stepwise approach to correlated pattern mining, in which one first searches
for k correlated patterns in a simpler language and then employs the score of
the k-th best pattern as a lower bound for finding patterns at the next level of
expressiveness. This stepwise approach led in virtually all cases to a significant
speed-up, sometimes with a factor of up to 1000.

This work is related to the QUICKSTART approach by Nijssen and Kok [13]
where a monotone constraint was considered. In this paper we study a branch-
and-bound search using a convex constraint. This leads to further important
differences. In our opinion, a constrained pattern mining algorithm consists of
several elements: an algorithm that determines which candidates should be eval-
uated as it is not known yet if they satisfy the constraint, an algorithm that
removes duplicate candidates and finally an algorithm that performs this eval-
uation. In the QUICKSTART approach, the last two steps were optimized. In
this paper, we intend to optimize the first part. By considering a set of simple
patterns first, we hope to find a threshold that allows for more pruning. Even
though there were also speed-ups in the QUICKSTART approach, the magnitude
was certainly not comparable to the factors obtained in correlated pattern min-
ing. Finally, it would even be possible to combine both approaches. Concerning
the influence of the predictive performance, related questions have arisen for in-
stance in the kernel community, cf. [I4], where different graph kernels take into
account different types of information. Also, in the chemo-informatics commu-
nity, cf. [15], it is often argued that one should take into account 3D information
about the compounds in addition to the 2D graph structure. Doing this within
our framework would be an interesting question for further research. It would
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also be interesting to repeat our investigation in other domains than computa-
tional chemistry.
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