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Abstract. A new approach to group activation analysis in fMRI studies
that test hypotheses focused on specific brain structures is presented and
used to analyze hippocampal activation in a visual scene encoding study.
The approach leverages the cm-rep method [10] to normalize hippocam-
pal anatomy and project intra-subject hippocampal activation maps into
a common reference space, eliminating normalization errors inherent in
whole-brain approaches and guaranteeing that peaks detected in the ran-
dom effects activation map are indeed associated with the hippocampus.
When applied to real fMRI data, the method detects more significant
hippocampal activation than the established whole-brain method.

1 Introduction

Functional MRI has revolutionized many fields of science, with numerous studies
published each year. Although fMRI studies address a variety of hypotheses and
use a variety of experimental designs, most employ a fairly rigid image processing
and statistical analysis pipeline, defined by the Statistical Parametric Mapping
(SPM) paradigm []. In SPM, group activation analysis involves normalizing
each subject’s brain anatomy to a whole-brain template, performing random
effects (RFX) analysis in the space of this template, and assigning anatomical
labels to supra-threshold clusters and peaks in the resulting statistical map.

This paper proposes an alternative analysis pipeline aimed at studies that
test hypotheses focused on specific brain structures. In particular, we focus on
analyzing activation in the hippocampus, a frequently studied structure respon-
sible for episodic memory encoding. Using the c¢m-rep method [10], we fit a
common shape-based coordinate system to the hippocampus in a manner that
is consistent across subjects. This system allows us to project each subject’s
hippocampal activation values into a common reference frame. By performing
RFX analysis in this frame, we eliminate normalization errors stemming from
whole-brain registration and ensure that clusters and peaks in the RFX map can
be labeled as hippocampal activation with high degree of certainty, as opposed
to SPM clusters and peaks, whose localization accuracy depends on the quality
of the normalization to an anatomical atlas.
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Table 1. Protocol implemented on the 3 Tesla Siemens Trio for the fMRI study

SCAN Resolution (mm®) TR (ms) TE (ms) FA (°)
T MP-RAGE  0.977 x 0.977 x 1 1620 3.87 15
EPII 3.0x3.0x3.0 3000 30 90
EPI II 25x25x%x25 3000 30 90

Other alternatives to SPM have also been proposed, including, but not lim-
ited to, methods that study activation on the cortical surface [3,[8], and the
hippocampus unrolling approach by Zeineh et al. [I1], which is related to our
approach, but differs from it significantly, since it uses MR images with highly
anisotropic voxels and produces 2D hippocampal activation maps.

2 Materials and Methods

2.1 Subjects, Experimental Design and Data Acquisition

In a recent block design fMRI study conducted by the Center for Functional Neu-
roimaging, structural and functional brain scans were acquired from 30 healthy
young adults at 3 Tesla. Table[llsummarizes the protocol, which includes a high-
resolution T1 scan and two EPI scans with isotropic voxels 2.5 mm and 3 mm
wide, acquired in randomized order in order to study the tradeoff between signal-
to-noise ratio and partial volume effects. During each EPI scan, subjects were
presented with novel complex visual scenes (photographs of people engaged in
various activities, industrial landscape, etc.) and asked to remember them for a
subsequent test. Scenes were presented in blocks of ten, with 3600 ms per stimu-
lus and 400 ms inter-stimulus interval. To provide a baseline for analysis, subjects
were shown scrambled scenes after each block, and asked to examine them as
they would a normal picture. In the testing phase, subjects were shown another
set of scenes, some previously seen and others novel, and asked to classify them
as such; all subjects responded correctly more than 80% of the time.

2.2 Intra-subject Activation Analysis

SPM2 and VoxBo software were used to generate intra-subject statistical maps.
fMRI sequences were motion-corrected and co-registered with T1 data (anal-
ysis was also repeated without such co-registration). fMRI data were spatially
smoothed with 9 mm FWHM Gaussian kernels. Time series were smoothed tem-
porally to remove frequencies above the task frequency and convolved with a
canonical model of the hemodynamic response function. Box car task reference
functions were also convolved with the hemodynamic response function and used
as covariates in the general linear model, along with a global signal covariate,
to produce statistical parametric maps. For each subject, maps of z-statistics
corresponding to voxel-wise one-tail ¢t-tests were computed.
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2.3 Random Effects Analysis with Whole-Brain Normalization

RFX analysis is used to make inferences about a population on the basis of
fMRI data from a group of subjects [6]. RFX statistical maps are computed by
(1) normalizing each subject’s brain to a template, (2) using the normalization
parameters to warp intra-subject activation maps into the space of the template,
and (3) performing a second-level ¢-test at each voxel in this space. Normaliza-
tion was implemented, as in many studies, by warping each T1 image to the
Montreal Neurological Institute template [2] using SPM2, which first estimates
a 12-parameter affine transformation, followed by a non-linear registration based
on the discrete cosine basis [I]. Limitations of this approach include suboptimal
normalization of the hippocampus due to its relatively low contribution to the
registration objective function, which is integrated over the whole brain, as well
as the uncertainty associated with assigning anatomical labels to peaks in the
RFX statistical map. The cm-rep approach aims to overcome these limitations.

2.4 Hippocampus-Centric Random Effects Analysis with CM-Reps

The cm-reps approach is the continuous analog of the m-rep method by Pizer et
al. [7]. Anatomical structures are represented by fitting a deformable model to
binary segmentations of the structure (theoretically, fitting directly to anatomi-
cal images is also possible, but not implemented in this paper). The deformable
model has a special property: it describes a geometric object in terms of the re-
lationship between its skeleton and its boundary, and it preserves the branching
topology of the skeleton during deformation. Specifically, a ¢cm-rep model defines
the skeleton as a single manifold with boundary m along which a certain scalar
field p is defined. Both m and p are defined parametrically as

N M
m(u) =Y m; fi(u) ; p(u) =Y pi fi(u),
i=0 1=0

where {f;} is some basis (e.g., b-splines, Fourier harmonics) and m; € R? and
pi € R are basis function coefficients that can be used to deform m and change
p. The parameter vector u = (u!,u?) is defined on some regular domain §2 € R?.
From m and p, a radius function R is derived by solving the following partial

differential equation:
AmR*=p subj.to  R(1—||VmR|?) =0 ondf, (1)

where Ay, and V,, denote the Laplace-Beltrami and gradient operators on the
manifold m. The boundary condition in () corresponds to the equality con-
straint that is satisfied by single-manifold skeletons of generic objects [9]. The
PDE is well-behaved in practice, and solutions, as well as their gradients, can
be found efficiently using the Finite Differences Method.

Given the manifold m and having solved for the field R, we can apply inverse
skeletonization to derive a parametric expression for the boundary of the object
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Fig. 1. Three steps of constructing a cm-rep. a. Medial manifold m(u) with a color
plot of the scalar field p(u). b. The radius scalar field R(u) computed by solving the
Poisson PDE (@) on the medial manifold. c¢. Boundary surface bt (u) resulting from
inverse skeletonization.

O whose skeleton is {m, R} (the skeleton is the set of centers and radii of all
maximal inscribed balls in the object). In work that has not yet been published,
we give a list of sufficient conditions for which we prove that the inverse skele-
tonization problem is well-posed; these include the boundary condition in ()
and some inequality constraints. When these constraints hold, the solution to
inverse skeletonization is given by the following formula:

b =m+ RU*, where U =—-V,R+\/1—||[VaR|? Nm, (2

where Ny, is the unit normal to m. Manifolds b™ and b~ given by the above
expression are two surface patches that lie on the opposite sides of m and to-
gether form the boundary of the object O. For every u € (2, the ball with center
m(u) and radius R(u) is a maximal inscribed ball in O and is tangent to 0O
at the points b~ (u) and b*(u). Vectors UT project from the center of the ball
towards these points of tangency and have unit length; hence they form the unit
normal vector field to 0. It is easy to verify that the boundary condition in
(@) ensures that UT and U~ coincide for u € 912 and that patches b™ and b~
together form a closed surface. An example cm-rep model is shown in Fig. [T
first as the inputs m and p, next as the field R obtained by solving (), and last
sa the boundary surface computed by inverse skeletonization.

We refer the reader to [9[I0] for the details of the deformable modeling ap-
proach used to fit ¢m-rep models to actual structures. It follows the Bayesian
framework, with an image-driven likelihood term and prior terms that enforce
inequality constraints that permit inverse skeletonization, impose geometric cor-
respondence by minimizing distortion in the area element of m, and incorporate
a shape prior. Since the deformable model is restricted to have a single-manifold
skeleton, it matches real-world objects with some inherent level of error. In [J]
we report high accuracy when fitting c¢m-rep models to hippocampi from an
82-subject schizophrenia study. In more recent unpublished results, the average
overlap is 95.0% and the average boundary displacement error is 0.168 mm.

A key feature of em-reps discussed in [I0] is the ability to impose a shape-
based coordinate system on the interiors of structures. Every point x inside the
cm-rep boundary can be assigned a triple of values u',u2, € that satisfy

x(u,€) = m(u) + [¢|R(u) U (u) 3)
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Fig. 2. Selected sagittal slices through the RFX activation map computed using whole-
brain normalization, superimposed over the average anatomical image. Please see also
the corresponding color Quicktime movie: whole brain rfx.mov.

The assignment is unique, except in the case u € 912, when x(u, ) = x(u, —=§).
This assignment can be used to map the interior of the object into a refer-
ence space {2 x [—1,1]. This mapping has an important feature: the distance
from x(u,§) to the em-rep boundary is given by (1 — [¢])R(u), so line seg-
ments normal to the c¢m-rep boundary are mapped to vertical line segments
in the reference space. Points on the cm-rep skeleton are mapped to the plane
& = 0 in the reference space and points on the boundary are mapped to planes
E=+1.

This coordinate system was used to perform hippocampus-specific RFX anal-
ysis of activation data. The right hippocampus was outlined manually in T1
images of 18 subjects. A c¢cm-rep template was fitted to the resulting binary seg-
mentations. Intra-subject activation z-maps were sampled in the c¢m-rep shape-
based coordinate system, i.e., transformed into the u!,u?, ¢ space. RFX anal-
ysis was performed by computing a one-tail ¢-test on the z-statistics at each
point in the coordinate system. Thus, the analysis was limited just to the
hippocampus region. For visualization purposes, the t-statistic field resulting
from this RFX analysis was projected back into the image space of one of the
subjects.

3 Results

Fig. 2] shows the RFX ¢-map obtained using whole-brain analysis. The map is
superimposed over a ‘mean anatomy’ image, computed by averaging the subjects’
T1 images following SPM2 normalization. The fuzziness of this image stems
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Fig. 3. Selected sagittal slices through the hippocampal RFX activation map computed
in the c¢m-rep coordinate system, projected back into the anatomical space of one
subject and superimposed over this subject’s anatomical image. Please also see the
corresponding color Quicktime movie: cmrep rfx.mov.

from whole-brain normalization error, which is significant: the average pairwise
overlap between subjects’ hippocampus segmentations warped into the space of
the template is 53%. The RFX map in Fig. Bl is threshholded at ¢ = 5, and
peaks near the right hippocampus are highlighted. The locations and labels of
the peaks, looked up in the Talairach atlas, are listed in Table 2l Such labeling
carries a degree of uncertainty because of normalization error and low resolution
of the atlas. For each peak in Table 2] we indicate the probability that it lies in
the hippocampus, based on the number of hippocampus masks (warped into the
template space) overlapping its location. The fact that these probabilities do not
always agree with the anatomical labels underscores the uncertainty associated
with anatomical localization of whole-brain RFX peaks.

To address possible concerns about the use of rigid registration for EPI/T1
alignment, the above experiment was repeated without registration. In 3mm?
fMRI data, the maximal t-value observed in the RFX map increased from 16.08
to 16.62 with registration, and the size of the supra-threshold region ¢ > 6.0
increased from 102cm? to 112cm?®. The results for 2.5mm? data are analogous.

The results of cm-rep-based RFX analysis for 3mm? fMRI are shown in Fig.
The underlying anatomical image is a T'1 scan of one of the subjects. The RFX
t-map, computed in the cm-rep reference space, was projected back into the
subject’s anatomical space for visualization. The peaks of the t-map shown here
have larger t-values than the peaks in and around the hippocampus shown in
Fig.2l The locations of these peaks within the hippocampus are given in Table[2l
Notably, the maximum t-values observed in the hippocampus with c¢m-rep anal-
ysis exceed those detected around the hippocampus with whole-brain analysis.
The latter, however, may or may not indicate hippocampal activation, due to the
errors associated with atlas-based anatomical labeling. The picture is similar for
2.5mm? data: cm-rep normalization yields larger hippocampal activation values
than SPM, with the former generating peaks t = 7.83,7.43,7.18,6.22 in the right
hippocampus and the latter reporting peak ¢t = 6.90 in the right hippocampus
and t = 7.48,7.47,7.37 in the right parahippocampal gyrus.
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Table 2. Peak locations in RFX ¢-map computed for 3mm?® fMRI data using whole-
brain and c¢m-rep based normalization. RC = right cerebrum; GM = gray matter; WM
= white matter; PHG = parahippocampal gyrus. The column p(H) gives the fraction
of hippocampus masks warped to the space of the template which overlap the given
peak location.

Peaks in the Whole-Brain RFX t-Map

Tal. Coord. Talairach Labels t-Stat  p(H)
16, -31, -2 RC, limbic lobe, sub-gyral, *, * 7.69 0
20, -29, 8 RC, sub-lobar, thalamus, GM, pulvinar 6.89 0
31,-22,-9 RC, temporal lobe, sub-gyral, GM, hippocampus  6.67 0.94
33, -6, 27 RC, limbic lobe, uncus, WM, * 6.47 0
31, -20, -13 RC, limbic lobe, PHG, GM, hippocampus 6.43 0.82
27,-21, -13 RC, limbic lobe, PHG, GM, Brodmann area 6 6.12 0.94
24, -17, -17 RC, limbic lobe, PHG , WM, * 6.01 0.94

Peaks in the Hippocampus-Specific CM-Rep RFX Map
Location in R. Hippocampus  t-Stat Location in R. Hippocampus  t-Stat
Head, Lateral 9.99 Tail, Lateral 8.04
Tail, Medial 7.55 Body, Lateral 6.45

4 Discussion and Conclusions

The question of whether better normalization of anatomy can improve the sta-
tistical power of fMRI analysis is not easily answered. Normalization error, it
can be argued, is only one source of error that may fade in comparison to other
sources, such as susceptibility artifacts. The fact that in an experiment where
hippocampal activation is expected we detected more significant hippocampal
activation with explicit normalization of the hippocampus than with whole-brain
normalization, suggests that normalization error indeed had a significant impact
on RFX statistics, and that methods which minimize it may increase the sensi-
tivity and specificity of functional neuroimaging studies.

We do not presume that the ¢m-rep method is the only approach capable of re-
ducing normalization error in fMRI group studies. Indeed, non-parametric regis-
tration techniques, especially when driven by expert-placed landmarks (e.g., [5]),
tend to register subcortical structures more accurately than parametric registra-
tion driven only by image forces. However, the c¢m-rep method offers certain
advantages for fMRI analysis that registration techniques do not. It makes it
straightforward to associate voxel-wise features, such as functional activation,
with shape features, such as the distance to the boundary. Thus, for instance,
gray matter thickness can easily be used as a covariate in functional activa-
tion analysis, since functional voxels located in regions where grey matter is
thicker are less likely to suffer from partial volume effects. The shape-based cm-
rep coordinate system also can be used to define anisotropic smoothing kernels
that are thinner in the direction across the structure of interest, and longer in
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the direction along the structure. Such kernels can lead to structurally cohesive
smoothing, which would reduce the amount of mixing of fMRI signal originating
from different structures, and may strengthen the signal at locations adjacent
to structures that do not activate. Finally, the cm-rep deformable modeling ap-
proach, which allows incorporation of shape and intensity priors, may lead to an
automatic segmentation algorithm, which would eliminate the need for binary
masks. Our future work will focus on leveraging these potential advantages.
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