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Abstract. A new approach to fitting pharmacokinetic models to DCE-MRI data 
is described. The method relies on fitting individual concentration curves to a 
small set of basis functions and then making use of a look up table to relate the 
fitting coefficients to pre-calculated pharmacokinetic parameters. This is 
significantly faster than traditional non-linear fitting methods. Using simulated 
data and assuming a Tofts model, the accuracy of this direct approach is 
compared to the Levenberg-Marquardt algorithm. The effect of signal to noise 
ratio and the number of basis functions used on the accuracy is investigated. 
The basis fitting approach is slightly less accurate than the traditional non-linear 
least squares approach but the ten-fold improvement in speed makes the new 
technique useful as it can be used to generate pharmacokinetic maps in a 
clinically acceptable timeframe.   

1   Introduction 

MRI has been shown to be a powerful technique for the diagnosis and assessment of 
breast cancer. The use of dynamic contrast-enhanced MRI (DCE-MRI) as a screening 
modality is currently under investigation in several centres [1, 2], but although the 
negative predictive value of the technique approaches 100%, which is desirable for a 
screening technique, the positive predictive value is much lower than for conventional 
mammography [1, 3]. This indicates that many women with benign lesions are being 
referred for breast biopsies and much effort is currently being made to improve the 
PPV and specificity of MR breast imaging.  

The MR images contain a great deal of information and once morphological 
features and parameters characterizing the contrast kinetics have been extracted from 
the data a computer classification scheme can be used to distinguish between 
malignant and benign lesions. Many investigators use simple methods to characterize 
the signal intensity versus time curves; a subjective scoring system which attempts to 
distinguish between curves with and without a wash-out phase has been described [4] 
and quantitative measures of uptake and wash-out ratios may also be used [5-7]. The 
main difficulty with these approaches is that the kinetic features extracted from the 
image data tend to vary between institutions due to differences in imaging equipment, 
protocol and analysis techniques. 

In principle pharmacokinetic modeling is less sensitive to variations in MRI 
acquisition protocols and it has the additional advantage that parameters obtained in 
this manner have some underlying physiological meaning. The signal intensity versus 
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time curves are first converted to concentration time curves and are then fitted to a 
compartmental model such as the Brix model [8] or the Tofts model [9]. Fitting the 
concentration time curves to a model is usually achieved using a non-linear least 
squares method algorithm such as the Levenberg-Marquardt method [10]. 
Concentration curves generated using a region of interest have a good signal to noise 
ratio due to averaging over many pixels and the time taken to carry out a fit of a 
single curve is not significant.   

Generating parametric images where every pixel concentration curve must be fitted 
to a compartmental model is more problematic, however. Fitting techniques are 
sensitive to the starting values used and may fail to converge [11, 12], and the time 
taken to carry out the fit on every single pixel in a 3D volume image becomes a 
significant obstacle to the translation of pharmacokinetic modeling into clinical 
practice. This means that although pharmacokinetic modeling of DCE–MRI data has 
the potential to improve the diagnostic accuracy of screening studies it has not been 
used as extensively as less reproducible approaches such as mapping the percentage 
contrast enhancement or wash-out. 

For this reason we have developed a new method of generating pharmacokinetic 
maps using basis functions. This technique will allow us to assess the utility of 
pharmacokinetic modeling for breast screening in future studies. 

2   Theory and Methods 

2.1   Pharmacokinetic Modeling in DCE-MRI 

The compartmental model described by Tofts [9] is frequently used to characterize 
contrast dynamics in tumours. The concentration of Gd-DTPA contrast agent in the 
tumour is given by the expression  
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where C(t) is the tissue concentration and D is the injected dose (mmol/kg). Published 
values were used for the rate constants of Gd-DTPA clearance (m1  and m2 ) and for 
the corresponding amplitudes (a1 and a2 ) [9]. Assuming that permeability-limited 
conditions apply, Ktrans (min-1) equals the transfer constant between the blood plasma 
and tissue compartments and kep is equal to Ktrans /ve  where ve  is the extracellular 
extravascular volume fraction. 

Conventionally the parameters Ktrans and ve  are determined using a non-linear least 
squares technique such as the Levenberg-Marquardt algorithm [10].  

2.2   Using Basis Functions to Estimate Pharmacokinetic Parameters 

Any concentration versus time curve can be represented by a linear combination of 
basis functions where 
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ak are the fitting coefficients, φk(t) is the k’th basis function and e(t) is an error term. 
Ideally a small number of basis functions should be sufficient to give a good 
approximation to C(t) and the basis functions themselves should have features matching 
those known to belong to the functions being estimated. Representing C(t) as a linear 
combination of basis functions has two advantages; firstly it smooths the curve and 
secondly if the number of basis functions required is small then the fitting coefficients 
provide a very efficient way of parameterising the curve. Commonly used methods of 
defining basis functions include Fourier series expansions and spline functions however 
these are generic basis functions and may not be as efficient at representing the signal 
intensity curves as a tailored set of basis functions would be. We propose to use 
principal components analysis (PCA) to generate a set of basis functions that are 
optimized to represent DCE-MRI signal intensity curves from breast studies. 

First a population of “plausible” curves is generated using equation 1. This was 
done by varying the values of Ktrans (0.001< Ktrans <1.0, Δ Ktrans =0.001 min-1) and ve 
(0.001<ve<1.0, Δve=0.01) to give 20000 signal intensity curves. These curves are 
arranged into an n x t matrix X where n = 20000 and t depends on the temporal 
resolution and the duration of the study. This matrix can be decomposed using 
singular value decomposition to give  

X = U W VT (3) 

where V is an orthonormal (p x p) matrix, W is a diagonal (p x p) matrix where the 
diagonal elements are known as singular values and U is a column-orthonormal  (n x 
p) matrix. If the diagonal elements of W are sorted into descending order and the 
columns of U and V are reordered accordingly then equation (2) is equivalent to a 
PCA where the columns of V contain the principal component curves, the diagonal 
elements of W are equal to the square roots of the eigenvalues and the columns of U 
correspond to the coefficients. The first 6 principal components are shown in figure 1. 
The first m PCs are used as basis functions where the selection of m is discussed later 
in this paper. The coefficients in the matrix U together with the corresponding values 
for k21 and kel are saved to create a lookup table. Any concentration curve C(t) can 
then be expressed as a linear combination of the first M principal components 
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Or in matrix terms 

TTC '' VAWAΦ ==  (5) 

where C is the (n x p) matrix with the rows representing the concentration curves for 
the n pixels, A is the (n x m) matrix of fitting coefficients, W2’ is the (m x m) diagonal 
matrix containing the first m eigenvalues and V’ is the (p x m) matrix containing the 
first m principal components. The fitting coefficients A are estimated by 
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The coefficients corresponding to the j’th pixel SI curve are then compared against 
those generated for the reference curves to find the closest point.  
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Parametric images of Ktrans and ve are then generated by looking up the values 
corresponding to the ith reference curve. 

 

Fig. 1. The first 6 basis functions 

2.3   Simulation Studies  

In order to test the accuracy of this approach and to determine how many basis 
functions were required, a test set of 55 curves was generated with combinations of 
Ktrans and ve values selected over the same range as that used to generate the reference 
curves. A temporal resolution of 10 seconds and scan duration of 15 minutes was 
assumed. The parameter estimates obtained using a Levenburg-Marquardt algorithm 
[11] were compared with results obtained using the basis function approach outlined 
above. The following conditions were varied 

• In addition to the noise free case, Gaussian noise was added to each curve to give 
signal to noise ratios of 10 and 20 (SNR defined as peak concentration/noise SD). 
1000 noisy curves were generated for each of the 55 Ktrans and ve combinations to 
allow median values and 5%-95% confidence intervals to be calculated. 

• The number of basis functions used was varied between 2 and 6 

2.4   Patient Study 

The proposed technique was tested using a DCE-MRI study carried out as part of an 
on-going screening study. During the first 2 minutes postinjection, 11 dynamic 
images were acquired using a 2-dimensional SPGR sequence with fat saturation 
(TR/TE/flip angle, 150 ms/4.2 ms/50°) and a temporal resolution of 20 seconds. This 
was followed by a single high spatial resolution 3-dimensional SPGR scan that took 7 
minutes and was used to provide morphological information. This was then followed 
up by an additional series of 3 dynamic images to monitor contrast media washout. A 
contrast dose of 0.1 mmol/kg Gd-DTPA was injected after the third image was 
acquired. Each image comprised 256 x 256 pixel and there were 12 slices. A uniform 
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T1 value of 710 ms was assumed in order to convert the signal intensity values into 
concentration values. Pharmacokinetic parameters were then calculated from the 
concentration data using the non-linear least squares technique (NLLS) described in 
[11] and using the basis function fitting method described above with m=2. 

3   Results 

In Fig. 2 the estimated values of Ktrans obtained using noise free simulation data are 
plotted against the corresponding value of ve and the true values of Ktrans are given on 
the right. Concentration curves corresponding to small ve and high Ktrans show very 
rapid early increase followed by a rapid washout and it is clear from the results 
shown in figure 2 that the basis functions do not fit the data well in this situation. 
The errors in the estimated Ktrans values increase as the number of basis functions 
used decreases. 

 

Fig. 2. Effect of altering m, the number of basis functions used on noise free data 

 

Fig. 3. Median values and 5%-95% confidence intervals are plotted for a subset of the 
simulation curves (SNR=10). Ktrans measurements for ve = 80% (top row), and ve measurements 
for Ktrans =  0.8 (bottom row). When SNR=10, overfitting occurs for m>3. 
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Fig. 4. (Upper left) Slice taken from a DCE-MRI study of a patient with a fibroadenoma in the 
left breast. (Middle row) Pharmacokinetic maps generated using a conventional NLLS 
technique. (Lower row) Maps generated using 2 basis functions. (Upper right) Close-up view 
of region defined by ROI showing excellent agreement between methods. 

The results from the noise free simulations suggest that a higher number of basis 
functions is desirable but in noisy data there is a tradeoff between bias in the fitted 
curve and variance in the fitting coefficients. In the noisy simulations, results suggest 
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that over-fitting occurs when m>4 for SNR = 20 and m>3 for SNR = 10 and we found 
that good results could be obtained using m = 2 or 3. Provided that ve > 20% there 
was no significant reduction in accuracy. Increased error in the Ktrans values due to 
bias were seen in curves where ve < 20%. Fig. 3 shows a subset of the simulation 
results for SNR = 20.  

In Fig. 4 it can be seen that there is excellent agreement between the maps obtained 
using a conventional NNLS approach and the basis fitting approach where m=2. The 
time taken to carry out the Levenberg–Marquardt fitting on a 3GHz Xeon processor 
was 1 hour, 26 minutes compared to 9 minutes for the basis function approach. 

4   Discussion and Conclusions 

We have reduced the processing time required to generate pharmacokinetic parameter 
maps from pixel concentration curves by a factor of 10. This means that images 
showing pharmacokinetic parameters can be more readily utilised in a clinical 
screening environment where lengthy pre-processing of image data may not be viable. 
The faster technique has introduced some errors in the calculated parameters for 
curves generated with low values of ve and further work is needed to determine 
whether this affects diagnostic accuracy. An adaptive technique that allows more 
basis curves to be used for pixels with a greater SNR may reduce the error. 

Although this paper has described a method to fit a Tofts model to the 
concentration data it is possible to use any pharmacokinetic model provided that the 
“model space” of possible concentration curves can be defined a priori. We have also 
fitted data to a modified Brix model [12] using this approach with similar results 
(unpublished data). 

Another application of the technique is as a pre-processing step for conventional 
non-linear least-squares routines where accuracy is important. The pharmacokinetic 
parameters obtained using the basis fitting technique could be used as initial starting 
estimates for the Levenberg-Marquardt technique which is very sensitive to the choice 
of initial values.  

Acknowledgements 

This work was supported by the Canadian Breast Cancer Research Alliance. We 
would like to thank Don Plewes for providing the breast MRI data. 

References 

1. Warner, E., et al., Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic 
resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA, 
(2004). 292(11): 1317-25. 

2. Brown, J., et al., Magnetic resonance imaging screening in women at genetic risk of breast 
cancer: imaging and analysis protocol for the UK multicentre study. Magnetic Resonance 
Imaging, 2000. 18(7): 765-776. 



108 A.L. Martel 

3. Warren, R.M., et al., Reading protocol for dynamic contrast-enhanced MR images of the 
breast: sensitivity and specificity analysis. Radiology, 2005. 236(3): 779-88. 

4. Kuhl, C.K., et al., Dynamic breast MR imaging: are signal intensity time course data 
useful for differential diagnosis of enhancing lesions? Radiology, 1999. 211: 101-10. 

5. Heywang, S.H., et al., MR imaging of the breast with Gd-DTPA: use and limitations. 
Radiology, 1989. 171(1): 95-103. 

6. Kaiser, W.A. and E. Zeitler, MR imaging of the breast: fast imaging sequences with and 
without Gd-DTPA. Preliminary observations. Radiology, 1989. 170: 681-6. 

7. Gibbs, P., et al., Differentiation of benign and malignant sub-1 cm breast lesions using 
dynamic contrast enhanced MRI. Breast, 2004. 13(2): 115-21. 

8. Brix, G., et al., Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J 
Comput Assist Tomogr, 1991. 15(4): 621-8. 

9. Tofts, P.S., B. Berkowitz, and M.D. Schnall, Quantitative analysis of dynamic Gd-DTPA 
enhancement in breast tumors using a permeability model. Magn Reson Med, 1995. 33: 
564-8. 

10. Press, W.H., et al., Numerical Recipes in C. 1994, Cambridge: Cambridge University 
Press. 

11. Ahearn, T.S., et al., The use of the Levenberg-Marquardt curve-fitting algorithm in 
pharmacokinetic modelling of DCE-MRI data. Phys Med  Biol, 2005. 50(9): p. N85-92. 

12. Buckley, D.L., et al., Quantitative analysis of multi-slice Gd-DTPA enhanced dynamic 
MR images using an automated simplex minimization procedure. Magn Reson Med, 1994. 
32(5): 646-51. 


	Introduction
	Theory and Methods
	Pharmacokinetic Modeling in DCE-MRI
	Using Basis Functions to Estimate Pharmacokinetic Parameters
	Simulation Studies
	Patient Study

	Results
	Discussion and Conclusions
	References

