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Abstract. This paper introduces a new similarity measure for multi-
modal image registration task. The measure is based on the generalized
survival exponential entropy (GSEE) and mutual information (GSEE-
MI). Since GSEE is estimated from the cumulative distribution function
instead of the density function, it is observed that the interpolation ar-
tifact is reduced. The method has been tested on four real MR-CT data
sets. The experimental results show that the GSEE-MI-based method is
more robust than the conventional MI-based method. The accuracy is
comparable for both methods.

1 Introduction

Image registration has been an important issue in medical image analysis. Given
multiple registered images, the complementary and useful image information ob-
tained from different modalities can be combined. The goal of image registration
is to estimate a geometric transformation such that two medical images can be
aligned accurately. Mutual information (MI) has been used widely as a similar-
ity measure for multi-modal image registration tasks [II2J3]. In this paper, we
introduce the use of generalized survival exponential entropy (GSEE) for esti-
mation of mutual information (GSEE-MI) in image registration, and compare
the performance between MI and GSEE-MI in terms of robustness and accuracy.

The GSEE-MI-based image registration method utilizes the generalized sur-
vival exponential entropy, which is estimated from the cumulative distribution
function instead of the density function. In some real-world applications, the cu-
mulative distribution function is more natural than the density function because
it is defined in integral form, which can give more reliable estimation (i.e., it
always exists even when the density function does not exist [4]).

The GSEE-MI-based method has been tested on four MR-CT data sets ob-
tained from the Retrospective Image Registration Evaluation project. The perfor-
mance of GSEE-MI has been examined along the translation (X-, Y- and Z-axis)
and rotation axes. It is observed that the values of GSEE-MI decrease smoothly
from the optimal transformation. Moreover, because of the use of cumulative dis-
tribution function, the interpolation artifact is reduced in the GSEE-MI-based
method. These factors can improve the robustness of an image registration

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4191, pp. 964071 2006.
© Springer-Verlag Berlin Heidelberg 2006



Multi-modal Image Registration Using the GSEE 965

method. It is experimentally shown that the GSEE-MI-based method is more ro-
bust than the conventional MI-based method. The accuracy of both methods is
comparable.

2 Methodology

2.1 Joint Intensity Distribution Acquisition

Let Gy and G, be the floating and reference images respectively, which are
obtained from the same or different acquisitions. Assume that Iy and I, represent
their intensity values, X and X, are their image domains. With a hypothesized
transformation T', samples of intensity pairs I ={i,(z),is(T(z)) | i, € I,,if€ I}
can be drawn randomly from I and I, where x are the pixel coordinates, x € {2
and {2 C Xy U X,. That is, the sampling domain is inside Xy U X,.

The joint intensity distribution is denoted as PT(I,,I;). It depends on the
specific hypothesized transformation 7" and changes during the registration pro-
cess. There are two methods to approximate P (I,., I #): the Parzen windowing
or histogramming [5]. This paper employs histogramming as it is more compu-
tationally efficient. The bin size of the histogram is set to 32 in this paper. The
histogram partial volume (PV) interpolation method is employed [6].

2.2 Generalized Survival Exponential Entropy: A New Measure of
Information

In this section, the Survival Exponential Entropy (SEE) and the Generalized
Survival Exponential Entropy (GSEE) [7] are introduced. GSEE is a new infor-
mation measurement of random variables. Their definitions are given as follows:

Definition 1: For a random vector X in R™, the survival exponential entropy
of order « is [7]:

1
l—a

My (X) = / Fiy(z)dz (1)
R
for @ > 0, where m defines the number of dimensions for X.

De finition 2: For a random vector X in R™, the generalized survival exponential
entropy of order («, ) is [7]:

R‘[n F|aX|(a:)dac oo
Sap(X) =] " (2)
’ Rj;L F|BX|(x)dx

for @, > 0 and a # 3, where X = (Xy,...,X,»,) is a random vector in R™.
| X | denotes the random vector with components | X |,...,| X, |. The notation



966 S. Liao and A.C.S. Chung

| X |> = means that | X; |> x; for x; > 0,i = 1,...,m. The multivariate survival
function F|x|(x) of the random vector | X | is defined by:

Fix|(z) =P(| X |>z) = P(| X1 [> x1,.... | Xon |> T) (3)

for x € R} with R = {r € R" : & = (21, ...,%m),2; > 0,0 =1,...,m}.

Compare to the conventional information measurement of Shannon’s entropy,
H(X), SEE and GSEE replace the density function with the cumulative dis-
tribution in Shannon’s definition [§]. The distribution function actually is more
regular than the density function in that it is defined in the integral form. The
density function is the derivative of the distribution. The extension of the Shan-
non’s Entropy to the continuous distribution is called the differential entropy
[4]. The SEE and GSEE have several advantages over the Shannon entropy and
differential entropy: (1) SEE and GSEE have consistent definitions in both the
continuous and discrete domains; (2) SEE and GSEE are always nonnegative;
(3) SEE and GSEE are easy to compute from sample data; (4) The Shannon’s
Entropy is based on the density of the random variable p(X). As pointed out
by [9], in general, p(X) may not exist [9] [4]. Even if it exists, it also needs to
be estimated. The estimated value of p(X) converges to the true density only
under some conditions [4].

For the applications in image registration, the SEE-based Mutual Informa-
tion (SEE-MI) and the GSEE-based Mutual Information (GSEE-MI) are intro-
duced. The mutual information (MI) similarity measure of images G, and Gjy:
I(G,,T(Gy)) using Shannon entropy is defined as [6]:

(G, T(Gy)) = H(p(Gr)) — E[H (p(Gr)/p(T(Gy))] (4)

where p(G,) and p(T'(Gy)) are the marginal distributions of the probability
distribution histogram of the reference image and the floating image respectively.
The conventional MI measure suffered from the drawbacks of the Shannon’s
Entropy mentioned before. To overcome such shortage, SEE-MI and GSEE-MI
are introduced as follows:

SEE-MI(G,, T(Gf)) = Ma(p(Gr)) — E[Ma(p(T(Gy))/p(Gr))],  (5)

for a > 0.
GSEE-MI(G,,T(Gy)) = Sa,8(p(Gr)) — E[Sa,s(p(T(Gy))/p(Gr))],  (6)

for a, § > 0 and o # 3, where Mo (p(T(Gy))/p(Gy)) and So,5(p(T(Gy))/p(Gr))
are the conditional SEE and GSEE, the conditional SEE and GSEE are defined
as [1]:

1
oo e

Mu(X | Y) = / Foyy (@ | y)da (1)
0
for a > 0, and
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~ ot
{FX|Y(1‘ | y)dz
Sa (X |Y) = (8)

o0

B
OfFX|Y(35 | y)dz

for a, 3> 0 and a # .

2.3 Optimization of SEE-MI and GSEE-MI

Given definitions of SEE-MI and GSEE-MI in Equations[5l and[6, the goal of the
registration is to find the optimal transformation 7' by maximizing the SEE-MI
or GSEE-MI values, which is formulated as:

T = arg max SEE-MI(G,,T(Gy)) (9)

for « > 0, and

T = arg max GSEE-MI(G,,T(Gy)) (10)

for a, 8 > 0 and « # .

The proposed method is an unsupervised registration method which does not
need any pre-aligned training pairs in advanced. In this paper, only GSEE-MI
is used in the experiments as it is more general than SEE-MI and more flexible
because GSEE-MI has two parameters « and 3 for the maximization of mutual
information. The value of GSEE-MI is maximized using the Powell’s method [10].
The Powell’s method searches for the maximum value of GSEE-MI iteratively
along each parameter axis 7' while others are kept constant. The search step 0T
is set to 0.02 mm for the translation parameters along X, Y and Z axis and 0.2
degree for the rotation parameters about X, Y and Z axis. During each iteration
of the Powell’s method, the grid search is performed to search the optimal pair
of & and 3 in the range from 27° to 2° with step size 21 in order to maximize
the value of GSEE-MI. The iterative search process stops when the value of
GSEE-MI is converged (i.e., when the change of GSEE-MI is sufficiently small,
it is set to be 0.001 in this paper).

3 Experimental Results

3.1 Probing Performance of MR-CT(3D-3D) Registration

Four pairs of CT and MR image volumes are obtained from the Retrospective
Image Registration Evaluation projec. One of the pairs of 2D CT and MR
image slices is shown in Figure [11

We chose the CT images as the reference image G, and the MR images as the
floating images G'y. In order to study the performance of the objective function,

! The images were provided as part of the project, ”Retrospective Image Registra-
tion Evaluation”, National Institutes of Health, Project Number 8R01EB002124-03,
Principal Investigator, J. Michael Fitzpatrick, Vanderbilt University, Nashville, TN.
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a C1 image T MR g

Fig. 1. One pair of 2D CT and MR image slices
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Fig. 2. MI: Shifting Probes Along (a) X-axis and (b) Y-axis and (c) Z-axis; GSEE-MI:
Shifting Probes Along (d) X-axis and (e) Y-axis and (f) Z-axis
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Gy was shifted along and rotated about the X, Y and Z axes while G, were
fixed. For a specific transformation T, if a pixel z; of G fell between the voxel
positions of G,, then the PV interpolation [6] was applied to achieve subvoxel
accuracy. Figure[2 plots the translational probes of shifting along three axes for
MI and GSEE-MI respectively. Figure [3 plots the rotational probes for MI and
GSEE-MI respectively.

As shown in Figure[2] for the conventional MI measure, there are obvious local
maxima when the misalignment of two images is relatively large (i.e., floating
image is shifted from -100 to -200 mm and 100 to 200 mm along X, Y and Z
axes). The main reason is that the estimation of density function of the Shannon’
Entropy used in the conventional MI does not converge to the true density in
such case. However, from Figure[2 it is observed that the probing curves based
on GSEE-MI are improved as they do not have local maxima even when two
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Fig. 3. MI: Rotational Probes About (a) X-axis and (b) Y-axis and (c) Z-axis; GSEE-
MI: Rotational Probes About (d) X-axis and (e) Y-axis and (f) Z-axis

images have large misalignment because the density function is replaced by the
distribution function. Therefore, the robustness of the GSEE-MI approach is
greatly implied.

From the rotational probing curves (see Figure B]), we can see that although
the MI curves do not have any local maxima, the GSEE-MI probing curves are
smoother than the MI curves. Therefore, in such case, GSEE-MI performs more
stable than the conventional MI measure.

To further demonstrate the robustness against the PV interpolation artifacts
of the conventional MI and GSEE-MI similarity measures, the probing curves of
the shifting range [-2,2] mm for both methods are plotted in Figure [ it implies
that GSEE-MI is also more robust against the interpolation artifacts.

3.2 Registration Performance of MR-CT(3D-3D) Registration

To study and compare the registration robustness of the proposed GSEE-MI-
based and the conventional MI-based image registration methods, a series of ran-
domized experiments are designed to evaluate both methods. The testing images
are the aforementioned four MR-CT pairs datasets (#1, #2, #3 and #4). For
each pre-obtained ground truth registration MR-CT paiild, it was perturbed by
six uniformly distributed random offsets for all translational and rotational axes.

2 In the experiments, all registered pairs examined by the RIRE project. The median
registration errors were all less than 1mm.
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Fig. 4. (a) MI Translational Probes Along X-axis in the range [-2,2] mm; (b) GSEE-MI
Translational Probes Along X-axis in the range [-2,2] mm
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Then the perturbed registration image pair was used as the starting alignment.
For each MR-CT pair, the experiment was repeated 100 times. The translational
random offsets for X and Y axes were drawn between [-150,150] mm, the ran-
dom offset for Z axis was drawn between [-70,70] mm. The rotational random
offsets for X, Y and Z axes were drawn between [-20,20] degrees. Also, for each
MR-CT pair the same set or randomized starting alignment was used for both
methods for fair comparison.

In the experiment, the translation errors (the root-sum-square of the differ-
ences for three translational axes) and the rotational errors (which was the real
part of a quaternion) were computed. The threshold vector for assessing regis-
tration success was set to (2mm, 2°) as registration errors below 2mm and 2°
are generally acceptable by experienced clinicians [TTT2].

The success rate of the conventional MI approach and the proposed GSEE-MI
approach is listed in Table[Il As we can see, the GSEE-MI approach has higher
success rate than the conventional MI approach in each MR-CT pair dataset.

Table 1. Success rates of the conventional MI-based approach and the proposed GSEE-
MI-based approach

Testing MI GSEE-MI
dataset Success Rates Success Rates
#1 64% 95%
#2 63% 93%
#3 2% 97%
#4 65% 89%

To further precisely demonstrate the registration accuracy of the proposed
method, the mean value and standard deviation of the registration errors in
the successful registrations in all four MR-CT pairs for both MI and GSEE-MI
methods are calculated and listed in Table[2l According to Table[2] the accuracies
of the conventional MI approach and the proposed GSEE-MI approach for the
successful registrations are comparable and acceptably high. However, we should
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Table 2. Registration Accuracy of the conventional MI approach and the proposed
GSEE-MI approach

Method Translation (10™3mm) Rotation (10 3degrees)
Aty Aty At Ab,, Ab,y A,
MI 0.64+1.84  -0.37+0.73 1.16£1.32 0.85+1.84  -1.05£1.47  0.86%1.63
GSEE-MI 0.85+1.63 -0.6240.34 1.05£1.57 1.3240.62 -0.83£1.58 0.524+1.15

bear in mind that the number of successful registrations of the GSEE-MI-based
approach are significantly higher than that of the conventional MI-based method
according to Table [Tl

4 Conclusion

In this paper, we have proposed a new multi-modal image registration method us-
ing the generalized survival exponential entropy and mutual information (GSEE-
MI). The experimental results show that the GSEE-MI-based method reduces
the interpolation artifacts and is more robust than the conventional MI-based
method. The future direction is to extend the current method and apply it to
non-rigid image registration.
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