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Abstract. We propose a method for atrophy simulation in structural
MR images based on finite-element methods, providing data for objective
evaluation of atrophy measurement techniques. The modelling of diffuse
global and regional atrophy is based on volumetric measurements from
patients with known disease and guided by clinical knowledge of the rel-
ative pathological involvement of regions. The consequent biomechanical
readjustment of structures is modelled using conventional physics-based
techniques based on tissue properties and simulating plausible deforma-
tions with finite-element methods. Tissue characterization is performed
by means of the meshing of a labelled brain atlas, creating a reference
volumetric mesh, and a partial volume tissue model is used to reduce
the impact of the mesh discretization. An example of simulated data is
shown and a visual evaluation protocol used by experts has been devel-
oped to assess the degree of realism of the simulated images. First results
demonstrate the potential of the proposed methodology.

1 Introduction

The pattern of cerebral atrophy on magnetic resonance imaging (MRI) is cur-
rently used to help differentiate the degenerative dementias while the rate of
atrophy may be used to detect early disease and potentially to assess disease-
modifying effects of therapies. Algorithms referred to as computational anatomy
[1] are computerized approaches that offer automated or semi-automated solu-
tions for MRI analysis, including quantification of cerebral atrophy. There is a
lack of a gold standard against which to judge these methods or to help refine
them. There have been limited attempts [2,3,4] to model the complex effects on
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Fig. 1. Mesh generation procedure. Cutting plane of the volumetric finite-element mesh
(left) and slices of the rasterization image generated from the labelled mesh, in which
some of the used labels are shown (X11 colors): GM, light green; WM, cyan; corti-
cal CSF, cornflowerblue; ventricles, greenyellow; MTL grey matter, red; subtentorial
structures, yellow; hippocampi, limegreen; ERA, dark orange.

regional structural volumes and structural configuration that are a consequence
of neurodegeneration. The main drawback of these approaches is that they do
not take into account the interrelation of different tissue types.

We present a method for the simulation of atrophy in MR images of the brain
in which atrophy is simulated in different tissue compartments and/or in different
neuroanatomical structures with a phenomenological model. This model applies
a differential pathological burden in different brain regions. Once volume changes
have been defined in particular structures and tissues, the overall impact on
brain shape is determined by a conventional physics-based biomechanical model.
The consequent readjustment of structures is modelled using techniques based
on tissue properties and simulating plausible deformations with finite-element
methods (FEM). This validation framework was proposed by Schnabel et al. [5],
for the analysis of MR mammography data. In our application, a thermoelastic
model of tissue deformation is employed, controlling the rate of progression of
atrophy by means of a set of thermal coefficients, each one corresponding to a
different type of tissue.

The proposed technique can be divided into three main steps: meshing of
a reference labelled brain atlas; its introduction into a FEM solver that will
generate the simulated deformations; and the application of such deformations
to the grey-level version of the brain atlas. A visual evaluation protocol used
by experts has been developed to assess the degree of realism of the atrophy
simulated images.

2 Mesh Generation

In this work, we have combined information from two well-known brain atlases
to generate the reference labelled image and mesh used by the FEM solver:
the Montreal Neurological Institute (MNI) Brainweb 1; and the International
Consortium of Brain Mapping (ICBM) 2 atlases.
1 http://www.bic.mni.mcgill.ca/brainweb/
2 http://www.loni.ucla.edu/ICBM/

http://www.bic.mni.mcgill.ca/brainweb/
http://www.loni.ucla.edu/ICBM/
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For our purposes, we have taken into account the tissue labels from the MNI
atlas, including the cerebrospinal fluid (CSF), the grey matter (GM) and the
white matter (WM). We have also incorporated labels for the hippocampi and
the lateral ventricle, obtained from a semi-automatic segmentation by clinical
experts [6], due to their importance as biomarkers in dementia. In addition, we
have incorporated the cerebral lobe labels from the ICBM Probabilistic atlas
using an affine registration technique in order to place this atlas into the same
geometrical space as the MNI one. Finally, two additional labels from the ICBM
Template atlas have been included: a label covering the subtentorial structures
to specify boundary conditions of the FEM; and a label for the entorhinal area
(ERA) because of its implication in Alzheimer’s disease. Some of these labels
are illustrated in Figure 1.

The first phase of the meshing consists of the generation of a surface mesh
from the intracranial surface using the classical marching cubes [7] algorithm,
followed by some post-processing steps (decimation, smoothing and selection of
biggest connected component) to guarantee the creation of a continuous surface
brain mesh. A volume (3D) finite-element (4-noded tetrahedra) mesh was then
obtained from the intracranial mesh surface using the NETGEN 3 openSource
software. We generated a tetrahedral mesh with very fine resolution (163765
nodes and 868404 elements, with 61132 surface elements). The final step is the
labelling of the 3D mesh using the labelled voxel atlas, in which a set of particular
biomechanical properties is assigned to each tetrahedron through a rasterization
procedure [8]. In order to reduce the impact of the discretization of the mesh,
we apply a partial volume tissue model to each tetrahedron in the FEM solver,
as detailed in Section 3.3.

3 Finite-Element Deformation Model

3.1 Model

The deformation model employs a linear elastic finite-element method based on
the freely available TOAST package 4. In this work we considered structural
displacements induced by atrophy that are small in relation to the total brain
volume, so that the use of a linear model is justified.

The implementation of the FEM model follows a standard approach, whereby
each tetrahedral mesh element is assigned a set of elastic material properties
represented by an elasticity matrix D. In the case of isotropic elastic deforma-
tions, D is symmetric and can be expressed in terms of two parameters, usually
given as Young’s modulus E and Poisson’s ratio ν. The elastic coefficients are
assumed time-invariant. The deformation of the mesh is induced by assigning an
isotropic thermal expansion coefficient α(i) to each element i, and simulating a
global temperature change ΔT . The resulting isotropic thermal expansion enters
the description of elastic deformation in the form of an initial element strain,

3 http://www.hpfem.jku.at/netgen/
4 http://www.medphys.ucl.ac.uk/$\sim$martins/toast/index.html

http://www.hpfem.jku.at/netgen/
http://www.medphys.ucl.ac.uk/$sim $martins/toast/index.html
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ε
(i)
0 = {α(i) ΔT, α(i) ΔT, α(i) ΔT, 0, 0, 0}, (1)

where the relation between stresses σ and strains ε is given by

σ(i) = D(i)(ε(i) − ε
(i)
0 ) + σ

(i)
0 (2)

Assembling all element contributions of the mesh leads to the linear system

Ku + f + f ′ = r, Kij =
∫

V

BT
i DBjdV (3)

with stiffness matrix K. In an n-noded element, B is a 6×3n strain displacement
matrix B = {Bi}, and

f ′ =
∫

V

BT Dε0dV, (4)

contains the volume forces arising from the initial thermal strain, f combines all
other surface and volume force terms, r defines explicit displacements, and u is
the vector of nodal displacements.

3.2 Boundary Conditions and Mechanical Properties of Brain
Tissue

The surface of the mesh was assumed to coincide with the inner surface of the
skull, and homogeneous Dirichlet boundary conditions were introduced using
a Payne-Irons method to suppress the displacements of boundary nodes. The
same strategy was applied to the mesh nodes corresponding to the subtento-
rial structures since atrophy induced by dementia is normally restricted to the
supratentorial area.

There is no consensus on the optimal Young’s modulus E and Poisson’s ratio
ν of the different brain tissues. Nevertheless, the choice of the elastic properties
are not critical in the model presented here, because the boundary conditions
enforce a constant global volume, while the relative changes in tissue region vol-
umes are driven by the ratio of thermal coefficients. Furthermore, the mechanical
properties of brain tissue are directly relevant to how the brain responds to an
external force but are much less relevant to the response of the brain to diffuse
cell damage and death that results in active structural readjustment. Therefore,
we have adopted the shear modulus values proposed by McCracken et al. [9]:
12KPa for WM and 8KPa for GM (correspondingly, Young’s modulus of 3.86KPa
for WM and 2.57KPa for GM). We consider the remaining structures, except
the CSF, as being composed of an equal percentage of GM and WM, then their
material properties are the average of the ones corresponding to the GM and
WM (E = 3.22KPa). For the Poisson’s ratio, we have chosen a value of 0.45 for
each brain tissue, except for the CSF, assumed to be a very soft and compressible
tissue, with low Young’s modulus (E = 0.1KPa) and Poisson’s ratio (ν = 0.05).

3.3 Thermal Coefficient Computation

Given a segmentation of domain Ω into T tissue types or anatomical structures
Ωj , Ω = ∪jΩj , j = 1..T , we assume the thermal coefficient α to be constant
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Fig. 2. Relation between thermal coefficients and desired volume change. Left: Percent-
age of GM element change when varying the thermal coefficients of the GM and WM
(TCgm and TCwm respectively). Right: Relation between desired and the obtained
volume change of GM and WM.

within each region Ωj , so that α is expressed in a piecewise constant basis,
α(r) = αj , r ∈ Ωj . Once the material properties have been defined, we need
to estimate the thermal coefficients αj that will provide a mesh deformation
consistent with the desired volume change ΔVj in each tissue segment Ωj . This
volume change will provide the ground-truth information needed for validation.
ΔVj is computed by integrating the differences in element volumes between the
original and displaced meshes over each region Ωj .

The method of recovering the thermal coefficients for a given set of target
region volume changes is based on a linear inversion technique. The relationship
between changes of αj and ΔVi in regions i and j is expressed by the Jacobian
matrix

Jij =
[

∂Vi

∂αj

]
, (5)

which we compute with a finite difference scheme, by explicitly perturbing each
αj . Now we form the linear system J [α] = [ΔV ], which, taking into account the
boundary conditions, is quadratic of dimension (T−1)×(T−1) and can be solved
by a standard LU decomposition. As illustrated in Figure 2, the assumption of
linearity is appropriate. In this figure, we also show the good agreement between
the desired and the obtained volume change for a set of 30 simulations (mean
difference of 0.35±0.41 and 0.14±0.08 for GM and WM, respectively), confirming
the approppriateness of the linear model.

As pointed out in Section 2, our framework enables us to use the information
about the percentages of tissue in each element in order to reduce the effect of
the mesh discretization through partial volume weighting. Hence, for each mesh
element i, the thermal coefficient α(i) will be a partial volume-weighted average
of the region thermal coefficients contributing to the element:

α(i) =
∑

j

p
(i)
j αj (6)

where p
(i)
j is the fractional volume contribution of region j to element i.
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4 Warping

In order to simulate atrophy in the atlas image, we need to use interpolation
techniques to generate a displacement field at each voxel of the image. We do
this by weighting the displacement vectors of the nodes in the element containing
a given voxel by the element linear shape function [10], and then the new image
intensities can be interpolated using a truncated sinc interpolation kernel.

We have adopted a different interpolation strategy outside the mesh, where
no deformation information is available from the FEM model. Here we employ
a scattered data interpolation technique based on multilevel B-splines, as in
Schnabel et al. [5].

Using such an interpolation scheme, we can warp the grey-level version of the
MNI atlas without noise using the dense displacement field generated by the
FEM solver. Finally, we add Rician distributed noise to the atrophy simulated
image.

5 Simulation Example

The illustrative example shown in this section is focused on Alzheimer’s disease,
as it is the most common cause of dementia. Therefore, the longitudinal example
is based on the generation of a set of simulated images approximately mimick-
ing the distribution of regional change in AD according to the severity of the
disease. Three different atrophy simulated images are generated: in the first one
(t1), only changes in the hippocampi and the entorhinal area are applied; the
second image (t2) also includes GM changes in the medial temporal lobe and
an expansion of the lateral ventricles; finally, a global reduction of the whole
brain is applied to generate the third simulated image (t3). In addition, we have
generated a corresponding set of simulated images at the three timepoints rep-
resenting volume change induced by normal aging. We chose a range of values
(see Table 1) which included a range of cerebral volume losses, as a percentage
of baseline, that is consistent with published rates of atrophy (e.g. for hippocam-
pus and brain) and study durations [11,12] of 6-24 months Figure 3 shows the
difference images between the normal aging and the AD simulated images at
each timepoint.

6 Measuring Degree of Realism

The aim of this modelling is to generate simulated atrophy for the validation
of longitudinal or cross-sectional techniques for the quantification of local and
global atrophy. In order to determine whether our simulated atrophy was plau-
sible, we designed an experiment in which a visual protocol is used by experts
to differentiate between real and simulated MRI data of controls and patients
with atrophy. The experiment uses two matched cohorts of 20 healthy elderly
controls and 20 individuals with a diagnosis of probable Alzheimer’s disease, to-
gether with nine atrophy simulated images. T1-weighted volumetric MR images
were acquired on a 1.5 Tesla Signa unit (General Electric, Milwaukee).
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Table 1. Volume changes (% with respect to the baseline) simulated in the longitudinal
example. MTL: Medial Temporal Lobe. Most significant volume changes in the AD
patients in each timepoint are marked in bold.

Structures
Normal aging Alzheimer’s disease

t1 t2 t3 t1 t2 t3

Cortical CSF 1.90 3.76 5.66 1.98 5.27 16.82
Ventricles 2.18 4.31 6.49 2.23 5.82 19.34

Grey Matter -0.65 -1.28 -1.92 -0.65 -1.30 -5.31
White Matter -0.17 -0.32 -0.49 -0.16 -0.32 -1.33
Hippocampi -1.40 -2.79 -4.21 -3.33 -6.39 -9.31
Subtentorial 0.02 0.03 0.05 0.02 0.04 0.13

Entorhinal Area -2.91 -5.80 -8.67 -5.11 -9.60 -13.68
MTL Grey Matter -0.63 -1.28 -1.92 -0.65 -4.68 -8.59

Whole Brain -0.36 -0.71 -1.08 -0.38 -1.01 -3.20

Fig. 3. Results of the longitudinal simulation example. Coronal slices of the difference
images between the normal aging and the AD simulated images at each timepoint
(from left to right, t1, t2, t3).

A mesh warping [13] technique is employed to put the volumetric mesh pre-
sented in Section 2 into the anatomical space of nine of the controls, thus gen-
erating nine patient-specific meshes. Thereafter, they are introduced into the
FEM solver, together with information about the desired volume change, which
in this work we have obtained from volumetric difference estimates between both
cohorts that have been previously computed using manual tracing techniques.
The output of the FEM solver is a set of deformations that are applied to the
control images to generate a group of atrophy simulated images equivalent to
the cohort of mild AD subjects in terms of regional atrophy. The three sets of
real and simulated data are then presented to the neurologists, who were blinded
to scan information and were asked to classify each scan on a five point scale,
with one being definite control, and five being definite AD.

The mean sensitivity and specificity for visual assessment of true AD and
control scans was 90% and 77% respectively. The inter-rater agreement was
moderate, with a kappa score of 0.52. The mean score for each scan category
is (mean±STD): 1.95±1.42 for controls; 4.23±3.19 for real AD; 3.19±1.36 for
simulated AD. The mean rating for the simulated atrophy scans was between
that given for the control and the AD group. The simulated scans were not
consistently classified as AD, but our results show that even true AD cases may
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be misidentified in one in ten cases. This may be due to the large inter-subject
variation which exists when these subject groups are compared cross-sectionally.
These results demonstrate that our simulation is sufficiently realistic to cause
experienced neurologists to mis-classify some of our simulated images, and this
supports the use of our simulated data in the validation algorithms that quantify
atrophy.

7 Conclusions

We have proposed a method to generate valuable gold standard data for the test-
ing and objective quantitative validation of atrophy measurement techniques.
Our technique uses expert clinical knowledge of the rate and spatial distribution
of atrophy in dementia to create a phenomenological model of the appearance of
atrophy in MRI based on finite-element methods. The model includes structural
remodelling concomitant with atrophy. Future work will focus on the generation
and dissemination of several cohorts of data simulating the pattern of changes in-
duced in the human brain by different types of dementia such as fronto-temporal
dementia, vascular disease or multiple sclerosis. The simulated scans will be made
available to the wider research community.
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