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Abstract. This paper considers the problem of automatic classification
of textured tissues in 3D MRI. More specifically, it aims at validating
the use of features extracted from the phase of the MR signal to improve
texture discrimination in bone segmentation. This extra information pro-
vides better segmentation, compared to using magnitude only features.
We also present a novel multiscale scheme to improve the speed of pixel
based classification algorithm, such as support vector machines. This al-
gorithm dramatically increases the speed of the segmentation process by
an order of magnitude through a reduction of the number of pixels that
needs to be classified in the image.

1 Introduction

Segmentation of textured organs is a difficult problem, with the most successful
approaches relying on the combination of shape and texture information [1,2,3].
However, texture features do not always provide a sufficiently good discrimina-
tion to allow an accurate final segmentation [4]. This work aims at validating the
use of features extracted from the phase of the MR image to improve texture
discrimination in bone segmentation, which has broad clinical applications in
diagnosis, detection of changes in longitudinal studies and surgical planning.

For any type of MR image acquisition, magnitude is only one part of the MR
signal, the latter being a complex signal acquired in k-space, with phase and
magnitude components as shown Fig. 1. For conventional anatomical imaging
methods, the phase information is non-coherent, with dephasing caused by chem-
ical shift variation and local magnetic susceptibility. The latter effect is due to
differing magnetic susceptibilities within the body and/or instrumental imper-
fections. Some imaging sequences are more sensitive to this effect than others,
and with a properly chosen sequence, phase can be used to provide information
about tissue interfaces, not available in the magnitude of the signal. Using phase
to improve tissue contrast on magnitude images has prompted a growing interest
in the MRI community, as highlighted by recent work from Haacke and Sehgal
on susceptibility-weighted imaging [5,6,7].
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Fig. 1. Magnitude and phase image with TE = 8.6ms

For the remainder of the paper, we first describe the MR acquisition protocol,
followed by the feature extraction method that enables features to be extracted
from the phase without phase unwrapping, and we present a novel multiscale
segmentation scheme designed to speed-up the pixel-wise classification step. In
the final section, we present results on segmentation accuracy using phase infor-
mation, and the performances of the multiscale scheme in terms of speed and
accuracy.

2 MR Acquisition

The images used in this paper were acquired on a whole-body 3T clinical scan-
ner (Magnetom Trio, Siemens AG, Germany) using the manufacturer’s transmit-
receive quadrature extremity coil. Raw image data were acquired as a 3D-volume
with the use of a simple gradient-echo sequence (FLASH). Raw data was then
processed to produce separate phase and magnitude images. Acquisition param-
eters were chosen to maximise signal-to-noise ratio while enhancing the inherent
phase contrast of the knee joint. The following acquisition parameters were used
: echo times (TE) - 4.9 & 8.6 ms, repetition time - 28 ms, flip angle - 15◦, FOV
150 mm, matrix = 256 x 256, 1.5 mm slice thickness, and 64 partitions. The
knees of 18 healthy volunteers were scanned, producing a set of 2 complex im-
ages per knee, corresponding to the 2 echo times. As presented in Fig. 1, the
wrapped phase image shows strong textural information in the bone and the
background, compared to the relatively smooth areas in the cartilage and the
muscles. In areas of low intensity, such as the background, the signal does not
contain enough information to produce an accurate measure of the phase.

3 Features Extraction

In Reyes-Aldasoro approach [8], a subband filtering is applied in the original
k-space to extract texture features from the complex image, corresponding to a
region of the spatial and frequency domain. The amplitude of the filter response
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measures the signal energy within the selected region, and is strongly dependent
on the local amplitude of the signal. Therefore, in the areas of low amplitude,
the phase information will not have any effect on the filtering. However, if the
complex image is normalized to produce a complex phase image of constant unity
magnitude, as we proposed in [9], the filter response will be directly related to
the phase content of the image. Therefore, the same filters can be applied on the
magnitude and the normalized phase data. The normalization is performed by
dividing the complex image I(x, y, z) by the amplitude A(x, y, z), to generate a
complex phase image Iϕ(x, y, z) of constant unity amplitude, and therefore only
composed of phase information :

Iϕ(x, y, z) =
I(x, y, z)
A(x, y, z)

= ejϕ(x,y,z). (1)

Iϕ(x, y, z) is a complex image that can be Fourier transformed and then filtered
in order to extract phase information. As phase wraps appears when the phase
is mapped from the complex space to the real space, keeping the phase informa-
tion in the complex domain removes the need of phase unwrapping. Variations
in the phase induce variations in the frequency of the signal, and therefore, a fre-
quency analysis performed using Gabor filters on Iϕ(x, y, z) can extract textural
information about the phase.

Our subband filtering is similar to that of Zhan and Shen [2], with a bank of
non symmetric Gabor filters applied in the coronal and sagittal plane. Because
of the anisotropic nature of the images, the Gabor filter bank must be designed
in the real space instead of the pixel space. Therefore, a bank of filters with 6
orientations and 5 scales is used in the sagittal plane, and only 3 scales in the
coronal plane to accommodate the poor high frequency content in that plane.
A 3D Gaussian filter is then applied on the magnitude of the output of each
filter to smooth the response across slices. As it is important to preserve rota-
tion invariance, the magnitude of the output of the filters is summed across all
orientations in order to obtain a set of features that is rotation invariant. Fig. 2
presents the features obtained in the sagittal plane from the magnitude and the
phase images with TE = 8.6 ms. The feature images illustrate the discrimination
power of the phase between bones and surrounding tissues.

4 Contour Refining Segmentation

The extracted features are classified using the support vector machines (SVM)
classifier [10] in a pixel-wise fashion. The implementation relies on SVMLIB [11].
We use an RBF kernel, with the parameters (C, γ) optimised using a five fold
cross validation. SVM are among the most effective methods for classification,
but they usually require a large number of support vectors to address com-
plicated non-linear problems, resulting in a high computational cost. Training
methods have been designed to improve their efficiency through a smaller num-
ber of support vectors used [12]. However, they usually require to sacrifice some
of the accuracy in order to significantly increase the decision speed. In our
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Fig. 2. Magnitude features (top row) and phase features (bottom row). The features
represent a 5 level decomposition, from low to high frequencies (presented from left to
right)

approach, we consider the classification problem in terms of image processing,
where bones are large compact objects, and not all of the pixels need to be clas-
sified to get a good representation of their shape. Therefore, we propose a novel
coarse-to-fine scheme that recursively refines the boundary of the objects, with
a reduced number of pixels classified inside/outside of the object.

The standard multiscale approach is aimed at identifying homogeneous re-
gions on the coarser scale, and recursively refining this estimation using finer
scales [13,14]. However, these techniques are designed to improve segmentation
results while reducing sensitivity to noise, but do not typically target the speed of
the segmentation process. Our implementation is specifically designed to reduce
the number of pixels being classified by the SVM, and improve the segmentation
speed. We use a coarse-to-fine approach to get a representation of the objects
at the lowest resolution, and use this representation to identify the pixels lying
on the contour. This contour is recursively refined until the highest resolution is
obtained, thus only classifying the pixels lying on this contour.

Consider a set of feature images F(x, y, z), a coarse segmentation of the bones
can be obtained by subsampling F(x, y, z) by a scaling factor 2k (k ∈ N), such
that Fk = F ↓ 2k, and classify Fk through SVM to produce a segmented mask
Sk = SV M(Fk).

Sk is then upsampled by a factor 2 to produce an upsampled mask Uk−1 such
that Uk−1 = Sk ↑ 2. The upsampled mask Uk−1 is then eroded and dilated using
a cubic structuring element A of 1 pixel radius to produce two masks, respectively
Ek−1 = Uk−1 � A and Dk−1 = Uk−1 ⊕ A, and obtain a contour mask Ck−1 =
Dk−1−Ek−1. The contour mask Ck−1 identifies the pixels where the real bound-
ary of the object is most likely to be located, and therefore needs to be refined.

The feature images F(x, y, z) are then subsampled by a factor 2k−1 to produce
Fk−1 and match the scale of Ck−1. The segmented image Sk−1 corresponding
to the scale k − 1 is obtained as a combination of the eroded image Ek−1,
with the newly classified pixels of Fk−1 lying within Ck−1, such that Sk−1 =
SV M(Fk−1 ∩ Ck−1) ∪ Ek−1.

This process is repeated k times until the full resolution is reached. Fig. 3 il-
lustrates the process with k = 4, showing the intermediate segmentations at each
scale Fig. 3(a-e), and the corresponding contour masks Fig. 3(k-n) generated



924 P. Bourgeat et al.

through erosion and dilation of these segmented images. This approach reduces
dramatically the number of pixels that need to be classified to obtain the full res-
olution segmented image. Moreover, the number of pixels classified is further re-
duced by keeping a list of the pixels already classified at previous scales, and pre-
vent reclassifying the same pixel several time. A diagram of the complete scheme is
presented in Fig. 4. This type of approach could be easily adapted to a multiclass
problem by computing the contour masks for each class, and merge these masks
into a single mask containing all the pixels that need to be refined for all classes.
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Fig. 3. Segmented images with k = 4 presented from scale 4 to 0 (a-e), along with the
corresponding probability images (f-j), the contour masks showing where the contour
is refined at each scale (k-n), and the manual segmentation (o). The images are all
scaled at the same size for clarity.

Fig. 4. Diagram of the multiscale scheme
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The SVM can be trained to output a probability estimate, along with the
hard segmentation. Our coarse-to-fine approach can also be used to generate
probability maps where the initial probability is set by the segmentation at the
coarse scale, and the probability estimate on the contour of the object is then
recursively refined within the contour masks Ck. An example of the probability
maps at each scale for k = 4 is presented Fig. 3(f-j). These probability maps can
then be used as appearance model to drive an active shape model (ASM) with the
shape constraints used to generate a more anatomically correct representation
of the bones, as presented in [1] and [2].

5 Experimental Results and Discussion

From the database of 18 knees, where the bones have been manually segmented,
4 knees are used for training of the classifier with 10.000 points extracted from
each image, and 14 knees are used for testing.

For the first experiment validating the usefulness of the phase in bone segmen-
tation, the classifier was trained with 3 different sets of features (Gabor filtering
applied on magnitude only, phase only, or magnitude and phase) using either
the first echo only, the second echo only, or both echos.

Table 1. Mean (standard deviation) of the DSC on the bone segmentation over the
14 testing datasets

TE1 TE2 TE1TE2

Magnitude 0.77 (0.05) 0.80 (0.04) 0.88 (0.03)
Phase 0.67 (0.08) 0.73 (0.05) 0.83 (0.05)
Magnitude and Phase 0.83 (0.04) 0.85 (0.03) 0.90 (0.02)

Since we are looking at segmenting 4 large bones, a size filter is applied to the
segmented image to preserve the 4 largest connected components, and remove
small misclassified volumes. The mean and standard deviation of the Dice simi-
larity coefficient (DSC)1 after filtering are presented in Table 1 for the 14 test im-
ages. The combination of phase and magnitude information improves the results
by increasing the mean DSC, and reducing the standard deviation. This leads to
more accurate results with less variation across the dataset. This is an important
result as the phase is always acquired during any type of acquisition and can be
readily included in segmentation algorithms. Also, in the case of an acquisition
with 2 echos, including the 2 echos dramatically improves the results (+0.08 on
the magnitude, +0.1 on the phase and +0.05 on the magnitude and phase), to
produce an excellent DSC of 0.9 with the phase-magnitude combination.

For the second set of experiments, the multiscale approach is compared with
regards to the number of scales k used (k = 0 being the full resolution) in terms

1 DSC = 2(A∩B)
|A|+|B| where A and B are two binary objects.
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of percentage of pixels classified (Fig. 5(a)), and DSC of the segmented images
(Fig. 5(b)) keeping only the 4 largest connected components. The experiments
are conducted over the 14 testing dataset using the two echos, and the three
sets of features. Fig. 5(a) shows the exponential decrease in the number of pix-
els classified when k is increased. The improvement is even more pronounced
when the segmentation is more accurate, as it creates large areas with fewer
contours. Interestingly, the DSC is also improved when k is increased as pre-
sented Fig. 5(b), to reach a peak for k = 3. This corresponds to an optimum
where small misclassified volumes inside the bone will be correctly classified as
they are not detected at the coarser scales, and therefore not refined. However, if
k is increased above 3, small objects such as the thin fibula will not be detected
at the coarser level, and will be missed out in the final segmentation. Therefore,
k must be set according to the size of the smallest object to be segmented. With
k = 3, only 8% of the pixels of the image are classified using magnitude, or
combined phase and magnitude features. As a result, a classification that would
take over 1 hour on 3.2GHz desktop computer if all the pixels were classified, can
be performed in 5 minutes (the extra cost of the contour extraction accounting
for only 10 seconds of this time).
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Fig. 5. Performance results of the multiscale scheme for different k values in terms of
speed (a), and accuracy (b)

6 Conclusion

Phase can be easily integrated in a feature extraction scheme to provide su-
perior tissue discrimination compared to magnitude only based features. Phase
information is always acquired and its incorporation into current image anal-
ysis techniques provides an exciting new field of research. In the case of bone
segmentation, the use of phase improves the accuracy and robustness of the
segmentation, resulting in a higher DSC and smaller standard deviation across
the 14 testing dataset. The multiscale scheme dramatically improves the speed
of the segmentation, speed being the most prominent drawback of SVM-based
image segmentation algorithm. The segmented images can be used as an auto-
matic initialisation of ASM models through registration with an atlas, or can be
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directly used via the probability estimate to drive the ASM deformation. Future
work will look into other approaches to extract phase information without phase
unwrapping, and study other organs where phase can assist segmentation and
analysis.
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