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Abstract. In this paper, we treat the problem of reducing the false pos-
itives (FP) in the automatic detection of colorectal polyps at Computer
Aided Detection in Computed Tomography Colonography (CAD-CTC)
as a shape-filtering task. From the extracted candidate surface, we obtain
a reliable shape distribution function and analyse it in the Fourier domain
and use the resulting spectral data to classify the candidate surface as
belonging to a polyp or a non-polyp class. The developed shape filtering
scheme is computationally efficient (takes approximately 2 seconds per
dataset to detect the polyps from the colonic surface) and offers robust
polyp detection with an overall false positive rate of 5.44 per dataset at
a sensitivity of 100% for polyps greater than 10mm when it was applied
to standard and low dose CT data.

1 Introduction

According to the World Health Report [1], colorectal cancer caused approxi-
mately 622,000 deaths in 2002. It is understood that the risk of colon cancer
could be reduced considerably if growths in the colon called polyps are removed
before they become cancerous.

CAD-CTC is being developed as a reliable technique for early detection of pre-
malignant polyps useful in mass screening of risky individuals. It involves the
analysis of the images of the colon obtained using a Computed Tomography (CT)
examination of the abdominal region. Computer vision is used for the automatic
detection of potential polyps by analyzing the three-dimensional model of the
colon obtained by combining the two-dimensional axial images obtained from
the CT examination. Many methods developed for CAD-CTC suffer from severe
false-positive (FP) findings owing to the confusion in correctly distinguishing
polyps from other colonic shapes such as folds, residual materials, etc.

In this paper, we propose a novel method to accurately discriminate the polyp
shapes from other colonic shapes (folds) by analysing a reliable shape distrib-
ution function (SDF) in the frequency domain. After a detailed analysis of the
SDF in the frequency domain, we developed a novel technique that addresses the
polyp−non-polyp classification as a shape filtering problem. In order to evaluate
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the validity of the proposed technique we have analysed its performance when
applied to a large number of synthetic (scanned with standard and low radiation
dose) and real CT datasets (scanned at a standard radiation dose).

This paper is organised as follows. In section 3, the method designed to extract
the candidate surfaces from the CT data is briefly explained. In section 4, we
introduce the SDF of an extracted colonic surface and discuss its properties.
The next two sections discuss the properties of the polyp and non-polyp SDFs
and explain the motivation for analysing the SDF in the frequency domain in
terms of its power spectral density. In section 5.1, we detail the implementation
of the novel shape filtering scheme developed for polyp−non-polyp classification.
In the concluding section, we present the results obtained on the large number
of real patient datasets on which the shape filtering technique was tested.

2 Materials and Method

In order to perform bowel cleansing, the patients were instructed to follow a
low-residue diet for 48 hours, followed by the ingestion of clear fluids for 24
hours. Before the examination, the colon is gently insufflated with room air at
the maximum level tolerated by the patient and the CT data acquisition was
performed on a Siemens-Somatom 4-slice multi-detector spiral CT scanner by
the radiologists at the Mater Hospital, Dublin, Ireland. The scanning parame-
ters in use are 120kVp, 100mAs tube current, 2.5mm collimation, 3mm slice
thickness, 1.5mm reconstruction interval, and 0.5 gantry rotation. The scanning
is performed in a single breath-hold and the acquisition time is in the interval
of 20 to 30 seconds depending on the body-size of the patient. The scanning is
performed first with the patient in the supine position and then repeated with
the patient in the prone position. Typically the number of slices varies from 200
to 350 and the total size of the volumetric CT data is approximately 150MB.

3 Candidate Surface Extraction

The candidate surface extraction method consists of two main stages. In the first
stage, the colonic wall is identified in the CT data based on the high contrast be-
tween the gas insufflated regions and the colon tissue. In this way, the gaseous
region can be successfully identified by using a simple region growing algorithm
where the colonic wall is defined by the voxels that are adjacent to the colon tissue.
The threshold value for region growing algorithm was set to −800 HU [2] to ensure
that only the voxels inside the colon (gas filled volume) are segmented. The sec-
ond stage of the algorithm attempts to identify the convex surfaces from the colon
wall by analysing the intersections of the normal vectors which are calculated us-
ing the Zucker-Hummel operator [3]. The normal intersections are recorded for a
number of Hough points that are uniformly distributed from 2.5 mm to 10 mm
in the normal direction for each voxel of the colon wall. The normal intersections
are recorded into a 3D histogram and the candidate surfaces are generated by the
Hough points that have more than 5 intersections in the 3D histogram. In order to
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eliminate the voxels associated with spurious non-convex surfaces an additional
convexity test is performed [2],[4]. During the candidate surface processing, the
centre-point and the radius of each candidate cluster is calculated by finding the
sum of weighted Gaussian distances dG for each point of the surface (full details
about the implementation of this algorithm can be found in [2]).

4 Shape Distribution Function

Robust polyp detection is very difficult to achieve since the polyps and other
convex colonic structures such as folds have a large number of shapes and sizes.
Typically the polyps can be assumed to have a spherical shape where the nominal
model for folds is cylindrical. Based on this geometrical characterization, many
researchers attempted to perform the polyp/fold classification using geometrical
features that are extracted from candidate surfaces [5][6][7]. Unfortunately very
often the polyp and fold surfaces present very subtle shape differences as illus-
trated in Fig. 1 and as a result the geometrical approaches return high sensitivity
in polyp detection but at the expense of an increased number of false positives.

Fig. 1. Images illustrating some examples of the extracted surfaces for polyps (first
row) and folds (second row)

In the next section we detail the shape distribution function and describe its
properties that make it suitable for robust polyp−non-polyp classification.

4.1 Definition and Properties

For a given candidate colonic surface, the computation of the shape distribution
function that we use in this paper can be explained as follows. Given the coordi-
nates of the n voxels defining the candidate surface U and the Gaussian center
v of the voxels [4] associated with the candidate surface, we find the n−length
array w which lists the Euclidean distances between each of the n surface voxels
and the Gaussian center v of the candidate surface U. We call the histogram
x of the entries in w as the shape distribution function(SDF) of the candidate
colonic surface U, which is a distribution function of the relative distances of
the surface voxels of the candidate colonic surface.
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The SDF x is simple in definition and computationally efficient. Also, x is
robust to characterise the shape of the candidate surface when the voxel data
is sparse or affected by noise. Since x is invariant to rotation and translation of
the surface, it has a very important advantage that it is dependent only on the
colonic shape and independent of the colonic orientation. The SDF used here is
similar to the shape distribution function D1 used for object recognition [8].

Another important benefit in using the SDF is the significant reduction in
the dimensionality that is achieved by transforming 3D data (U) to a 1D time-
series (x) without losing interesting shape cues. This dimensionality reduction,
as discussed later, reduces the complexity of the analysis thus making it suitable
for real-time operation.

5 Analysis of the SDFs Using the Autocorrelation
Functions

Some of the observed general characteristics and behaviours of the 3−neighbour
averaged samples SDFs of polyps and non-polyps illustrated in Fig. 2 are as
follows. The SDF of a polyp is, in general, a smooth curve having a single and
global maxima. Conversely, a non-polyp SDF is noisy and might have single or
multiple maxima, which might be similar to that of polyps, but whose location
or variance near the neighbourhood of the maxima are random.
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Fig. 2. SDFs of polyps and non-polyps surfaces from real-datasets shows significant
differences in smoothness and maxima characteristics

We now briefly describe the observed characteristics of the SDF and evaluate
the need to analyse the autocorrelation functions of the SDF for obtaining the
information that differentiates the polyp surfaces from non-polyp surfaces.

Although the SDFs for polyp and fold surfaces depicted in Fig. 2 offer the
primary discrimination between these surfaces, there is no robust directly recog-
nisable shape for the SDF curve for any one of the classes. As a result, we cannot
apply straight-forward SDF shape matching technique to classify polyps from
non-polyps. In addition, since there are multiple maxima with unpredictable
variances in their neighbourhoods for a non-polyp SDF, techniques based on
probability density function fitting or variance-based feature extraction will be
less efficient in finding optimal patterns to classify non-polyp surfaces correctly.
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Since the polyp and non-polyp SDFs are generated by unknown probability
distributions and appear to be corrupted by noise, there is an uncertainty in
the location and variance of the maxima in the SDFs. Hence, it is necessary to
compare each of the SDF time-series x with a delayed version of itself and others.
This can be done by analysing the autocorrelation functions Rxx of the SDFs.

Moreover, in order to study the effects of noisy frequency components on the
variance (power) of the SDF, it is necessary to see the contribution of the vari-
ous frequency components of x to the total variance. According to the Wiener-
Khinchin theorem, the power spectral density Sxx of a signal x is the Fourier
transform of Rxx. In practice, for computational purposes, the Sxx is calculated
using Fast Fourier Transform methods.

5.1 Power Spectral Density of SDFs

order to understand the distribution of the variance of the SDFs in the frequency
domain, we analyse the power spectral density of the SDFs on which we make
certain interesting observations which help us to design a robust shape filtering
scheme as explained in this section.

Let x = x0, . . . , xM−1 be the time-series corresponding to an SDF. The sam-
ples of its discrete Fourier transform is given by Xl =

∑M−1
k=0 xke

−i2πkl
M so that

the power spectral density of SDF is given by Sxxl
= XlX

∗
l , the product of Xl

and its conjugate and normalised in accordance with the desired resolution of Xl.
We used a 128-point FFT to compute the power spectral density Sxx of the

SDFs and we noticed that Sxx of the fold surfaces attenuate much quicker than
those associated with polyps. Our experiments indicate that the frequency fdB

at which Sxx reaches 12.5% of its power at DC frequency offers a robust dis-
crimination between the polyp and fold surfaces as illustrated in the Fig. 3.
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Fig. 3. Sxx for the Shape Distribution Functions used in Fig.2 shows faster attenuation
for Non-polyps than Polyps

Thus the classification criterion can be defined as follows: an SDF belongs
to the polyp class if its fdB is higher than an experimentally selected threshold
frequency fth.

The threshold-based rejection rule mentioned above works very well for small
and medium sized polyps but it rejects very large polyps whose SDFs are not
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very different from those associated with folds. Based on observations on an ex-
perimental set of samples, we find that for certain large polyps fdB lies in an
uncertain classification region fmin < fth < fmax. References [4] and [2] have
shown that the sum of the weighted Gaussian distances dG of the voxels that
define the candidate surface offers robust discrimination between the surfaces
associated with large polyps and those derived from folds. Based on the ex-
perimentation with various sizes of polyps having a weighted sum of Gaussian
distances, d1 and d2, corresponding to fmin and fmax, we devised a technique
to compute adaptively the classification threshold frequency f ′

th according to
the following linear function: f ′

th = fmax + (dG − d2) fmin−fmax

d1−d2
. In this way, a

SDF belongs to a polyp surface if its fdB is higher than the computed threshold
frequency f ′

th, otherwise it is classed as a fold surface.

6 Experiments and Results

In this section we discuss the tests that we carried out using the shape filtering
scheme and present the results obtained which we compare with other established
CAD-CTC techniques.

The shape filtering CAD-CTC technique was tested on 61 real datasets ob-
tained as part of the clinical study in conjunction with the Mater Hospital,
Dublin, Ireland. The shape filtering technique was also tested on custom-built
phantom datasets [9] which contain a large number of synthetic structures which
replicate accurately the real polyp shapes encountered in clinical studies.

One of the main concerns associated with CTC as a mass screening technique
for colorectal polyp detection is the patient exposure to ionising radiation. A
reduction in the radiation dose will increase the level of noise in the CT data
and our aim is to fully evaluate the impact of the radiation dose on the perfor-
mance of our CAD-CTC system. In this regard, we have used in our experiments
a synthetic phantom that have 47 synthetic polyps that have different shapes
(sessile, pedunculated and flat) and sizes (3 to 18mm). In our experiments we
used the phantom CT data that has been obtained for the following radiation
doses: 100mAs, 60 mAs, 20mAs, and 13mAs. The results of the shape filtering
CAD-CTC for the Phantom Data [9] are summarised in Tables 1 to 4. The ex-
perimental results indicate that the radiation dose does not have a significant
impact on the performance of our polyp detection method since the sensitivity
for clinical relevant polyps (larger than 10mm) is not affected. A small reduction
in sensitivity for polyps in the range 5-10mm has been noticed when the data
has been scanned with 20mAs radiation dose.

Table 5 shows the performance of the shape filtering technique when applied
to 61 real patient datasets. These results were validated by our clinical partners
from the Mater Hospital, Dublin, Ireland and indicate that the technique achieved
100% sensitivity for detection of polyps larger than >10mm which are the most
important features to be examined in clinical studies. The experimental data also
show that there is a high true positive rate for polyps with sizes ranging between
5mm - 10mm where a sensitivity of 81.25% is achieved in spite of some polyps
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Table 1. Phantom Data (100 mAs)

Polyp
Type

Total
Polyps

True
Positives

Sensitivity
%

≥ 10 mm 14 14 100
[5, 10) mm 19 19 100
< 5 mm 5 4 80

Flat 9 2 22.22
Total 47 39 83.97
Phantom Dataset(100 mAs): FP = 1

Table 2. Phantom Data (60 mAs)

Polyp
Type

Total
Polyps

True
Positives

Sensitivity
%

≥ 10 mm 14 14 100
[5, 10) mm 19 19 100
< 5 mm 5 4 80

Flat 9 3 33.33
Total 47 40 85.11
Phantom Dataset(60 mAs): FP = 1

Table 3. Phantom Data (20 mAs)

Polyp
Type

Total
Polyps

True
Positives

Sensitivity
%

≥ 10 mm 14 14 100
[5, 10) mm 19 17 89.47
< 5 mm 5 3 60

Flat 9 2 22.22
Total 47 36 76.60
Phantom Dataset(20 mAs): FP = 0

Table 4. Phantom Data (13 mAs)

Polyp
Type

Total
Polyps

True
Positives

Sensitivity
%

≥ 10 mm 14 12 85.71
[5, 10) mm 19 18 94.74
< 5 mm 5 3 60

Flat 9 1 11.11
Total 47 34 72.34
Phantom Dataset(13 mAs): FP = 1

Table 5. Real Datasets (100 mAs)

Polyp
Type

Total
Polyps

True
Positives

Sensitivity
%

≥ 10 mm 10 10 100
[5, 10) mm 32 26 81.25
< 5 mm 104 62 59.62

Mass 11 7 63.64
Flat 2 1 50
Total 159 106 66.89

FP/ Real Dataset = 5.44

having very complex shapes. The false positives returned by our shape filtering
method stands at an average of 5.44 per dataset and compares well with the tech-
niques that will be examined in the next section.

The method detailed in this paper has not been developed to primarily detect
the flat polyps since these polyps have many geometrical characteristics that are
similar with those of the folds. High sensitivity for flat polyps detection cannot
be achieved by using methods that attempt to discriminate the polyp and fold
surfaces based on global shape models and the flat polyps should be approached
as a distinct category of polyps.

The average time for surface extraction per dataset for processing each volume
of data is approximately 80 seconds on a Pentium-IV 3-GHz processor machine
with 1GB memory. The computation of the power spectral density Sxx and the
shape-filtering process takes in average 2 seconds per dataset when the algorithm
was executed on the same machine.

6.1 Comparison with Established Techniques

In order to evaluate the validity of our shape filtering CAD-CTC we compare
its performance with the results in polyp detection obtained by other relevant
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documented techniques. Though they were not tested on the same datasets, the
reported sensitivity and false positive per dataset (FP) should be indicative of
their relative robustness in polyp detection.

For polyps larger than 10mm, the CAD-CTC techniques evaluated in this
section present the following results. The method developed by Summers et al.
[5] which uses surface curvature information gives a sensitivity of 29% − 100%
with a varying FP rate (6 − 20) depending on the scanning parameters. The
method proposed by Vining et al. [6] based on surface extraction and curvature
analysis recorded a 73% sensitivity with a very inconsistent FP rate in the range
9−90. Yoshida et al. [7] used various shape indices (cup, rut, saddle, ridge, cap)
and curvedness values on small volumes of interest in conjunction with fuzzy
clustering. They report a sensitivity of 89% with an FP of 2.0 which increased
by a factor of 1.5 when sensitivity was increased to 100%.

For polyps larger than 5mm, the technique developed by Kiss et al. [4] based
on surface normal distribution and sphere fitting achieves a sensitivity of 90%
with a FP of 2.82. It is useful to note that this performance is obtained when
they applied their method to high resolution CT data (0.8mm reconstruction
interval). We have evaluated the performance of our shape filtering technique
on CT data with a lower resolution (1.5mm reconstruction interval) where the
problems caused by the partial volume effects are more pronounced.

The SDF based shape filtering technique that we presented in this paper,
achieved 100% sensitivity for polyps greater than 10mm and 81.25% sensitivity
for polyp sizes between 5 − 10mm with an overall FP of 5.44. The performance
in polyp detection of our polyp detection technique compares well with the
performance returned by the CAD-CTC systems evaluated in this section.

7 Conclusion

We have designed and implemented a simple, stable and robust CAD-CTC tech-
nique which attains better results than other published CAD-CTC techniques.
Currently, the false positive rate stands at an average of 5.44 FPs per dataset
that can be further reduced by fine tuning the technique to increase the detection
rate for flat polyps. For this category of polyps, the developed shape filtering
technique achieved the lowest sensitivity. By taking the 3D shape recognition
into the Fourier domain analysis, we were able to simplify the problem with
significant reductions in processing time. We envisage further extensions to the
shape-distribution based shape recognition technique to further improve the per-
formance in polyp detection for small and medium polyps.
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