
Analysis of Skeletal Microstructure with Clinical

Multislice CT

Joel Petersson1,2, Torkel Brismar3, and Örjan Smedby1,2,4
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Abstract. In view of the great effects of osteoporosis on public health,
it would be of great value to be able to measure the three-dimensional
structure of trabecular bone in vivo as a means to diagnose and quantify
the disease. The aim of this work was to implement a method for quan-
titative characterisation of trabecular bone structure using clinical CT.

Several previously described parameters have been calculated from
volumes acquired with a 64-slice clinical scanner. Using automated region
growing, distance transforms and three-dimensional thinning, measures
describing the number, thickness and spacing of bone trabeculae was
obtained. Fifteen bone biopsies were analysed. The results were evaluated
using micro-CT as reference.

For most parameters studied, the absolute values did not agree well
with the reference method, but several parameters were closely correlated
with the reference method. The shortcomings appear to be due to the
low resolution and high noise level. However, the high correlation found
between clinical CT and micro-CT measurements suggest that it might
be possible to monitor changes in the trabecular structure in vivo.

1 Introduction

The high prevalence and great societal costs of osteoporosis necessitate meth-
ods to quantify the disease in vivo, in particular when evaluating treatment.
Currently, such quantification is most commonly made with dual energy X-ray
absorptiometry (DXA) [1], a method which measures the mineral content of
bone but fails to describe its trabecular structure. In post-mortem specimens,
several parameters describing the structure in terms such as number, thickness
and spacing of bone trabeculae have been identified, initially from micrographs
of 2D sections, but later also from micro computed tomography [2]. For clinical
as well as research purposes, it would be very attractive to be able to make
similar measurements with a modality that can be used in vivo, such as clinical
computed tomography (CT).
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The aim of this work was to ascertain whether useful estimates of parameters
describing bone structure in specimens can be obtained with clinical CT, by
implementing such a method, testing it in vitro and correlating it to the reference
method micro-CT.

2 Material and Methods

All the methods described in this section was implemented using MATLAB on
a standard PC with two 1.7 GHz processors and 2 GB of RAM.

2.1 Samples

The samples consisted of 15 bone biopsies from the radius. The biopsies were
approximately cubic with a side of 10 mm. Each cube included a thin slab of
cortical bone on one side to facilitate orientation. One of the samples is shown in
Figure 1. When imaged with clinical CT, the bone sample was placed in a test
tube filled with water, and the tube was then placed in the centre of a paraffin
cylinder with a diameter of approximately 10 cm, representing soft tissue to
simulate measurement in vivo.

Fig. 1. One of the trabecular bone biopsies reconstructed from micro-CT data

2.2 Data Acquisition

The clinical CT used was a 64-slice LightSpeed VCT (GE Medical Systems,
Milwaukee, WI, USA). The acquired data were reconstructed using the kernel
called ”boneplus”. Acquisition parameters are shown in Table 1. Micro-CT data
were acquired with a small desktop CT used for analysing biopsies and other
specimens (µCT 40; SCANCO Medical AG, Bassersdorf, Switzerland). The spec-
imens can have a maximum diameter of 36 mm and a maximum length of 80 mm.
The micro-CT volumes were acquired at SCANCO using a tube voltage of 70
kVp and an isotropic resolution of 20 µm. The micro-CT data were used as a
reference to evaluate the clinical CT data.

A cube, approximately 8 mm in side, containing only trabecular bone was
extracted from each dataset for analysis. The coordinate system was placed
with the z-axis along the axial sections and the y-axis along the cortical slab.
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Table 1. Clinical CT acquisition protocol

Property Value

Voxel size 0.188×0.188×0.1 mm
Slice thickness 0.625 mm
Tube voltage 120 kV
Effective mAs 130
Field of view 96 mm
Matrix 512×512
Convolution kernel Boneplus

2.3 Segmentation

To obtain approximately isotropic voxels, each pair of sections was averaged
into one single section in the volumes acquired with clinical CT, thus obtaining
a resolution of 0.188×0.188×0.2 mm. Due to the averaging, some of the noise was
also eliminated. The trabecular structure was then extracted using a modified
version of the automated 3D region growing algorithm (ARG), developed by
Revol-Muller et al. [3].

The ARG algorithm iterates a minimum variance region growing algorithm,
[4], until the optimal segmentation is achieved according to an assessment func-
tion. Several assessment functions are proposed in [3]; in this study the DGL-
function was used. The function is region-based and measures the distance be-
tween the grey level function and a step function based on the average level in
the segmented region and background respectively.

The original ARG method was developed for bimodal histograms. However,
the noise level of clinical CT was too high and there was no minimum between the
distributions corresponding to bone and water respectively. Instead, the following
method was used. The seed region, i.e. the first undersegmented volume, was
created by thresholding at a level obtained by adding to the histogram maximum
a constant large enough to ensure undersegmentation. The lower limit of the
variance interval was chosen as the variance of the voxels corresponding to the
undersegmented volume. The upper limit was chosen as the lower limit multiplied
by a constant.

For the micro-CT data, the histogram was bimodal and the two distributions
could be approximated with two gaussian functions. The intersection between the
two gaussians was used as a threshold. The variance of the thresholded volume
was used as the centre of the variance interval. The length of the interval was
chosen by multiplying the centre variance by a constant. And the initial seed
region was obtained by performing an erosion of the thresholded volume.

There was no need for individual thresholding of the volumes, and thus the
segmentation could be performed in a completely automated mode.

2.4 Thinning

The thinning algorithm is a morphologic operation designed to erode a binary
volume without changing its topology, i.e. the number of cavities, tunnels and
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components are preserved. The segmented structure was thinned to a unit-wide
skeleton representing the midline of the structure. The method implemented
in this study was a parallel algorithm based on the removal of simple points
[5]. Using a thinning algorithm to estimate the midline, rather than, e.g., a
centres-of-maximal-balls algorithm, guarantees that the skeleton is unit-wide
with preserved topology. This makes it is possible to estimate parameters such
as the number of nodes per volume (Tb.Nd) and termini per volume (Tb.Tm).
An example of the thinning process is shown in Figure 2.

Fig. 2. Left: Result of the segmentation of a trabecular bone cube acquired with clinical
CT. Right: Result of the thinning process applied to the left image. The first ten voxel
layers are brighter for clarity.

2.5 Distance Transforms

When a distance transform is applied to a binary region, the value in each back-
ground voxel is replaced by its distance to the closest component voxel. In this
study, the exact Euclidean distance transform was used whenever feasible. How-
ever, for the centres-of-maximal-balls algorithm described below, which requires
a locally derived distance map, the faster chamfer 3-4-5 distance transform [6]
was used instead.

2.6 Estimation of Mean Distance

Two methods to estimate the mean distance were used, local maxima (LM), and
centres of maximal balls (CMB).

Local Maxima (LM). The local maximum is here defined by:

Definition 1. Let DTEuc be the Euclidean distance transform of a binary vol-
ume. A voxel p ∈ {DTEuc > 0} is considered a local maximum if all its 26-
neighbours, q ∈ N26

e (p), has a distance label less or equal to the distance label of q:

p ∈ LM ↔ DTEuc(p) ≥ DTEuc(q) ∀ q ∈ N26
e (p) (1)

The mean distance is then estimated by averaging the distance labels of the
detected LM.
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Centres of Maximal Balls (CMB). Each value in a distance map can be
considered as the radius of a sphere, the surface of which touches at least one
object in the corresponding binary image. The centres-of-maximal-balls algo-
rithm detects all spheres not completely covered by another sphere. As the CMB
algorithm generalised to 3D [7] requires a locally defined distance transform, the
chamfer 3-4-5 distance was used. The mean distance is then estimated by aver-
aging the distance labels of the detected CMB.

2.7 Calculating Structural Parameters

All the parameters are calculated directly from the three-dimensional data. No
models describing the shape of trabeculae were assumed. The parameters studied
have been standardized by Parfitt et al. [2] except for Tb.Nd and Tb.Tm, which
have been generalized to 3D in this study. Some of the parameters were estimated
using both local maxima and centres of maximal balls. To distinguish these, LM
or CMB have been added after the parameter abbreviation.

The bone fraction (BV/TV) was calculated as the number of voxels identi-
fied as bone in the segmentation divided by the total number of voxels in the
volume.

Trabecular separation (Tb.Sp LM and Tb.Sp CMB) is the mean distance
between the borders of the segmented trabeculae, calculated using local max-
ima and centres of maximal balls, respectively. The parameter is illustrated in
Figure 3.

Fig. 3. The definition of Tb.Sp and Tb.N respectively. The measure is three-
dimensional but shown as a two-dimensional section for clarity.

Trabecular number (Tb.N) is the inverse of the mean spacing between the
midlines of the trabeculae. The midlines of the trabeculae are estimated using
the thinned structure. The spacing is calculated using both LM and CMB. The
difference between T.Sp and Tb.N is illustrated in Figure 3.

The thickness of the trabeculae (Tb.Th) was estimated by first calculating
the Euclidean distance transform of the complement of the segmented volume.
Thus, each voxel value in the trabeculae is replaced with the distance to the
nearest background voxel. The distance labels along the thinned structure are
then extracted and averaged to estimate the mean thickness.

Nodes per volume (Tb.Nd) is the number of trabecular intersections per vol-
ume. A node is identified in the thinned structure as a voxel with at least three
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neighbours in its 26-neighbourhood, detected nodes within a 5×5×5-region was
treated as one. The total number of nodes is then divided by the total volume.

A terminus is a free end of a trabecula. The number of termini per volume is
denoted by Tb.Tm. This parameter is also calculated from the thinned structure
as the number of voxels with only one neighbour in its 26-neighbourhood divided
by the total volume.

To study dependence on orientation, the mean intercept length (MIL) was
calculated in the three main directions using a three-voxel matching kernel.
The kernel consists of two one-voxels and one zero-voxel. The kernel is traversed
through the volume and intersections between bone and background are counted.
The total traversed length is then divided by the number of water-to-bone
intersections.

3 Results

The relationship between parameters estimated from clinical CT and micro-
CT data is illustrated in Table 2. The results show considerable overestimation
of thickness and distance parameters such as Tb.Th and Tb.Sp with clinical
CT. Consequently, the parameter Tb.N, which is the inverse of the trabecular
spacing, is underestimated. When the correlation coefficients between clinical
CT and micro-CT were calculated, however, they were all above 0.7, except for
Tb.Th and Tb.Tm.

Table 2. Results from clinical CT compared to micro-CT

Clinical CT Micro-CT
mean ± SD mean ± SD r (95% confidence limits)

Tb.Sp LM [mm] 0.797 ± 0.049 0.683 ± 0.126 0.89 ( 0.71; 0.96)
Tb.Sp CMB [mm] 0.830 ± 0.131 0.618 ± 0.128 0.77 ( 0.42; 0.92)
Tb.N LM [mm−1] 0.677 ± 0.038 1.151 ± 0.167 0.77 ( 0.43; 0.92)
Tb.N CMB [mm−1] 0.795 ± 0.071 1.357 ± 0.223 0.81 ( 0.51; 0.93)
Tb.Th Euc [mm] 0.633 ± 0.016 0.128 ± 0.015 0.61 ( 0.14; 0.85)
BV/TV [1] 0.424 ± 0.063 0.095 ± 0.033 0.93 ( 0.80; 0.98)
Tb.Nd [mm−3] 0.296 ± 0.049 4.919 ± 1.778 0.74 ( 0.37; 0.91)
Tb.Tm [mm−3] 0.147 ± 0.025 0.792 ± 0.248 0.08 (-0.45; 0.57)
MILx [mm] 3.068 ± 0.468 2.423 ± 0.894 0.83 ( 0.55; 0.94)
MILy [mm] 2.445 ± 0.397 2.026 ± 0.638 0.80 ( 0.48; 0.93)
MILz [mm] 5.140 ± 0.708 3.470 ± 1.039 0.76 ( 0.41; 0.92)

4 Discussion

In this study, a method for analysing trabecular structure was implemented and
tested in bone samples. The results indicate that most of the parameters used for
characterising trabecular bone in micro-CT can also be calculated for specimens
imaged with clinical CT, with a result that is closely correlated to the reference
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method, although yielding large systematic errors. Only for trabecular thick-
ness and number of termini, which seem to be most sensitive to low resolution,
correlation coefficients below 0.7 were obtained.

A major reason for choosing the ARG segmentation was the possibility to au-
tomate the algorithm. Another consequence of the region growing is that small
isolated structures are excluded. Simple thresholding and removal of small com-
ponents would probably create similar result. However, the choice of threshold
is not obvious and the results would depend on the individual selecting it.

The advantage of using a thinning algorithm is that the result is a one voxel
wide structure. Often, the CMB algorithm is used to approximate midlines,
which may result in Tb.N being biased due to the fact that the resulting CMB
region is not one voxel wide. By using the thinned structure instead of LM or
CMB for the Tb.Th calculations, the thickness is not biased by volume. In-
stead, Tb.Th is weighted by length which is more intuitive when measuring an
elongated object.

Unfortunately, the attempt to use the resulting skeleton to estimate the num-
ber of nodes and ends resulted in a resolution dependent method. A thicker
structure, in number of voxels, results in more spurious branching [5]. Future
research will address this matter.

It is not completely clear how the measurements should be averaged. Now all
detected LM or CMB are averaged. In particular with CMB there are more voxels
detected in larger holes. This can be an advantage, as the measures are then to
some degree weighted by volume. However, if volume weighting is desired, then
the method presented by Hildebrand and Ruegsegger [8] is preferable since each
voxel in the background is set to the value of the CMB that covers it. It is not
obvious how this could be performed for LM, since the LM spheres do not cover
the entire volume of background as CMB do.

The Tb.Sp measures show an overestimation due to partial volume effects,
leaving the thinnest trabeculae undetected. Tb.N shows an underestimation in-
stead since it is a measure of the number of trabeculae per length. Thus, with
undetected trabeculae or with several trabeculae treated as one, the result is
fewer trabeculae. Although the absolute values are not correct, the correlation is
surprisingly strong for both Tb.Sp and Tb.N. Consistently using the technique
tested in this report might therefore enable reliable detection of changes in these
parameters in longitudinal studies, provided that it can easily be transferred to
use in vivo.

Tb.Th shows a considerable overestimation and weak correlation, implying
that the resolution is too low to correctly represent this aspect of trabecular
structure. Similar results have previously been found by e.g. Laib and Ruegseg-
ger [9].

The bone fraction, BV/TV, showed the strongest correlation despite the large
overestimation. The overestimation is again a product of the partial volume effect
associated with low resolution.

The MIL parameters show that the each parameter has a relatively strong
correlation to the reference. However, the absolute values are not equally
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overestimated in the three directions. The lowest correlation between clinical
CT and micro-CT is seen for MILz, probably due to the large slice thickness.
This precludes meaningful comparisons between the different directions.

In conclusion, the high correlation for the parameters describing trabecular
separation, trabecular number and bone volume fraction indicate that it might
be possible to monitor changes in the microarchitecture of trabecular bone with
clinical CT, as a complement to measurements of bone mineral density. The
results would probably improve if a smaller slice thickness and a lower noise
level could be produced.

References

1. Cullum, I.D., Ell, P.J., Ryder, J.P.: X-ray dual-photon absorptiometry: a new
method for the measurement of bone density. Br J Radiol 62(739) (1989) 587–
92 Journal Article.

2. Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier,
P.J., Ott, S.M., Recker, R.R.: Bone histomorphometry: standardization of nomencla-
ture, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature
Committee. J Bone Miner Res 2(6) (1987) 595–610

3. Revol-Muller, C., Peyrin, F., Carrillon, Y., Odet, C.: Automated 3D region growing
algorithm based on an assessment function. Pattern Recognition Letters 23(1-3)
(2002) 137–150

4. Revol-Muller, C., Jourlin, M.: A new minimum variance region growing algorithm
for image segmentation. Pattern Recognition Letters 18(3) (1997) 249–258

5. Xie, W., Thompson, R.P., Perucchio, R.: A topology-preserving parallel 3D thinning
algorithm for extracting the curve skeleton. Pattern Recognition 36(7) (2003) 1529–
1544

6. Borgefors, G.: On digital distance transforms in three dimensions. Computer Vision
and Image Understanding 64(3) (1996) 368–376

7. Svensson, S., di Baja, G.S.: Using distance transforms to decompose 3D discrete
objects. Image Vision Comput 20(8) (2002) 529–540

8. Hildebrand, T., Ruegsegger, P.: A new method for the model-independent assess-
ment of thicness in three-dimensional images. Journal of Microscopy 185(1) (1997)
67–75

9. Laib, A., Ruegsegger, P.: Comparison of structure extraction methods for in vivo
trabecular bone measurements. Comput Med Imaging Graph 23(2) (1999) 69–74


	Introduction
	Material and Methods
	Samples
	Data Acquisition
	Segmentation
	Thinning
	Distance Transforms
	Estimation of Mean Distance
	Calculating Structural Parameters

	Results
	Discussion

