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Abstract. In this paper, an automatic knowledge-based framework for
level set segmentation of 3D calvarial tumors from Computed Tomog-
raphy images is presented. Calvarial tumors can be located in both soft
and bone tissue, occupying wide range of image intensities, making auto-
matic segmentation and computational modeling a challenging task. The
objective of this study is to analyze and validate different approaches in
intensity priors modeling with an attention to multiclass problems. One,
two, and three class Gaussian mixture models and a discrete model are
evaluated considering probability density modeling accuracy and seg-
mentation outcome. Segmentation results were validated in comparison
to manually segmented golden standards, using analysis in ROC (Re-
ceiver Operating Curve) space and Dice similarity coefficient.

1 Introduction

Segmentation of calvarial tumors in Computed Tomography (CT) images is an
important research topic in the framework of the CRANIO project for computer
and robot assisted craniotomy [1]. Calvarial tumors can be located in both soft
and bone tissue, occupying wide range of image intensities, making automatic
segmentation and computational modeling a challenging task. CT is the imaging
modality of choice in the CRANIO project due to superiority Magnetic Reso-
nance Imaging (MRI) in geometrical precision [2], required for intraoperative
registration and robotic resection accuracy, and in depiction of the cranial bone
involvement [3].

In our previous studies, the advantage of the level set approach in compar-
ison with other methods has been demonstrated [4] followed by the extension
of the level set framework with intensity priors [5]. We have demonstrated im-
provements in segmentation accuracy and convergence of level set propagation as
prior knowledge about the intensity distribution of calvarial tumors is integrated
into the level set speed function alongside image specific gradients. Monomodal
Gaussian intensity modeling has been used.

The objective of this study is to analyze methods to model intensity distribu-
tion of calvarial tumors for establishing a belief map, the likelihood that an image
element, i.e. voxel, belongs to the tumor class. The belief map is used as one of the
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speed terms in the level set propagation and for seed points generation. Hence,
it is an essential part of the automatic segmentation process presented here.

Gaussian mixture models (GMMs) are commonly used in the tissue classifica-
tion problems under the hypothesis that each physical tissue type corresponds
to one Gaussian distribution [6]. Expectation-Maximization algorithm is a stan-
dardly used method to predict parameters of the GMM. Touhami et al. [7]
have proposed a discrete method to model prior intensities for knowledge-based
segmentation of kidneys from 2D CT images, attractive for its computational
simplicity in the contrast to the complexness of parameter optimization for the
mixture models.

Intensity priors have already been used within the level set framework, utiliz-
ing different appearance of brain tumors in T1 and T2 weighted MRI images [8]
or with trained mixture models [9,10].

In this paper the following open issues will be tackled:

– Which method for modeling of intensity priors is the most suitable for cal-
varial tumors?

– If Gaussian mixture model is used, how many classes should be assumed?
– What is the influence of this modeling on accuracy and robustness of the

segmentation algorithm?

2 Methods

2.1 Intensity Priors

Let I(x), I : R
3 → R, x = [x, y, z]T , be a 3D gray-level CT image, and S(x),

S : R
3 → {0, 1}, the result of an expert manual segmentation, then T (x), I :

R
3 → R, an extracted tumor gray-level region is defined as follows:

T (x) =
{

I(x), ∀x | S(x) = 1
0, ∀x | S(x) = 0 . (1)

The objective is to model intensities of manually extracted tumor regions Ti(x),
i = 1...N , where N is the total number of extracted tumors in the training set.
The Gaussian mixture model approach assumes that the intensities take values
of n Gauss distributions, with probability density function (PDF):

PDFg(t) =
n−1∑
i=0

πi · Gμi,σi(t), (2)

where πi is a proportion of the i-th class and Gμ,σ(t) is a Gaussian distribution:

Gμ,σ(t) =
1

σ
√

2π
· e−

t−μ

2σ2 . (3)

The optimization objective is to find three parameters for each class, i.e. mean
value, standard deviation, and proportion. Expectation Maximization (EM) al-
gorithm can optimize likelihood of the distribution, but could fail to find the
global maximum [11].



866 A. Popovic et al.

Important to notice is that the EM-GMM parameter prediction is performed
upon the entire training set, treating it as a single sample, rather then finding
parameter sets for each tumor and averaging them, as in our previous study [5].

An alternative approach is to discretely model distribution, as in [7]:

PDFd(t) =
1
N

N−1∑
i=0

⎛
⎝1

k

∑
Ti(x)=1

δ(Ti(x) − t)

⎞
⎠ , (4)

where k is the number of voxels x so that Ti(x) = 1 and δ is Dirac delta
function. Obvious advantage of this approach is its forward computation without
initialization problems.

Following computation of prior PDF from the training set, a belief map is
generated for each image under investigation. In each voxel, x, of the image,
I(x), assumed belief that the voxel is inside of the tumor region could be defined
as follows:

B(x) = PDFg,d(I(x)). (5)

Since probability densities for a given intensity are typically very small, the
image obtained from Eq. 5 is rescaled to the intensity range [−1, 1]. Negative
probability is the surface evolution self correcting term allowing negative values
of the speed function (see section 2.2).

2.2 Level Set Algorithm

Level sets provide a computational and tracking framework for evolution of
closed surface(s) along the perpendicular direction under a given velocity field.
For image segmentation problems, the movement rule is specified with a spatially
varying speed function, F (x), dependant on the image features. The surface evo-
lution is defined as:

∂Ψ(x, t)
∂t

= −∇Ψ(x, t) · F (x), (6)

where Ψ(x, t) is a 4D implicit surface model. Here, the following framework is
used for the speed function:

F (x) = Fp(x) + Fc(x) + Fa(x), (7)

Fp(x) = α·(δ ·B(x)+PI(x)), Fc = −β ·PI(x)·κ(x), Fa = γ ·∇Q(x)· |∇Ψ |
∇Ψ

, (8)

where κ(x) is the curvature of the current front (∇ ∇Φ
|∇Φ|), PI is an edge potential

map and Q is the advection force, defined as:

PI(x) = e−|∇G∗I(x)|, Q(x) = −|∇(Gσ ∗ I(x))|, (9)

where Gσ is the Gaussian filter. Fp, Fc, Fa are propagation, curvature, and
advection speed terms, respectively. Our prior knowledge specific contribution
is the enhancement of the propagation term with the belief map, B(x).
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Initialization. The algorithm was initialized with the set of points rather than
the contours. The advantage of level set propagation to evolve in separated
fronts that could be later merged allows this kind of initialization. Voxels with
prior PDF larger than a predefined threshold and prior PDF of all neighbors in
the 2x2x2 neighborhood above the threshold were selected as seed points. The
threshold was empirically set to 0.8. Level set distance map was initialized with
the spheres (r=3) around seed points.

2.3 Experimental Set-Up

Five patient datasets were available (A÷E), four thereof with diagnosed menin-
gioma and one with skull metastasis. All patients were scanned with Siemens
Somatom Plus CT, resolution: 0.43 x 0.43 x 3mm. Tumors were manually de-
lineated by an expert. Performance estimation of learning models is done with
leave-one-out cross-validation. The method results in four EM training sets.

To address the issues introduced in section 1 following experiments were con-
ducted:

1. Assessment of the optimal number of Gaussian classes in Eq. 2.
2. Accuracy and robustness analysis of the segmentation algorithm for different

PDF modeling approaches, Eq. 2 and Eq. 4.

An open source software system Insight Segmentation and Registration Tool-
kit [?] (version 2.4.1.) was used to implement all image processing and segmen-
tation filters needed for this study.

3 Results

3.1 Intensity Priors

For each training sample, one, two, and three-modal GMMs have been opti-
mized, i.e. GMM1, {(μ1

0, σ
1
0 , π

1
0)}, GMM2, {(μ2

0, σ
2
0 , π

2
0), (μ2

1, σ
2
1 , π2

1)}, GMM3,
{(μ3

0, σ
3
0 , π

3
0), (μ3

1, σ
3
1 , π

3
1), (μ3

2, σ
3
2 , π3

2)}. More than 3 classes could not be found.
Quality of GMM estimation and the comparison between the models have

been performed using Kolmogorov-Smirnov (KS) method in the CDF (Cumu-
lative Distribution Function) domain. KS differences (difference of CDF values
of original and estimated sample for all intensities) have shown that for more
classes the GMM modeling is more realistic, Table 1, Fig. 1. The first class has
been found around HU=80, i.e. soft tissue, second class around HU=200, i.e.
trabecular bone, and third class around HU=800, i.e. cortical bone. The soft
tissue portion was about 80% of the entire distribution.

In accordance to previously modeled intensity distributions, belief maps for
each patient dataset have been generated, Fig. 2. In the case of one class GMM,
it is obvious that there is no sharp distinction in soft tissue between tumorous
and healthy tissue. This behavior is a consequence of the wide intensities range,
raising standard deviation of the Gauss distribution. Less visible differences be-
tween other three models (GMM2, GMM3, and delta priors Eq. 4) have been
further analyzed considering their influence on the segmentation accuracy.
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Table 1. Maximal KS differences

Training set 1 Training set 2 Training set 3 Training set 4 Training set 5

GMM1 0.34 0.36 0.37 0.34 0.33
GMM2 0.036 0.043 0.042 0.038 0.046
GMM3 0.017 0.025 0.026 0.024 0.026
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Fig. 1. Cumulative density functions of original image and three Gaussian mixture
models for two different training sets
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Fig. 2. Belief maps generated for different priors modeling; (A) original image (B)
delta priors, Eq. 4 (C) GMM with one class (D) GMM with two classes (E) GMM with
three classes



Modeling of Intensity Priors for Knowledge-Based Level Set Algorithm 869

3.2 Segmentation Accuracy

The segmentation accuracy has been assessed combining analysis in the Receiver
Operating Curve (ROC) space and the spatial overlap metrics, Dice similarity
coefficient (DSC), [12]. Level set propagation parameters [α, β, γ, δ] range has
been defined prior to leave-one-out procedure. The range has been selected wide
enough to observe the best segmentation qualities for all cases in the middle of
the parameter space.

To illustrate intensity priors influence, two characteristic patient datasets have
been selected: one with substantial bone involvement (patient C, skull metastasis

Table 2. Mean and standard deviation of DSC metric for two characteristic patient
datasets. Patient C is diagnosed with skull metastasis and patient E with meningioma,
WHO grade II.

Patient GMM2 GMM3 Delta
C 0.622 ± 0.1308 0.801 ± 0.0045 0.730 ± 0.0061
E 0.873 ± 0.0171 0.893 ± 0.0016 0.902 ± 0.0016
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Fig. 3. Analysis of the segmentation accuracy in ROC space for 3 different approaches
in generation of intensity priors
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Fig. 4. Example segmentation results for patient C
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from mama carcinoma) and one with with minor bone involvement (patient E,
meningioma, WHO grade II).

Table 2 shows results of DSC evaluation for these two patients. Figure 3
depicts accuracy results in the ROC space.

4 Discussion and Conclusion

Assessment of modeling accuracy with Gaussian mixture models, using
Kolmogorov-Smirnov method, Table 1, has unambiguously shown that the most
accurate model could be obtained by using three classes GMM. This statistical
result, giving modeling accuracy only, has been further validated considering
its influence on the segmentation algorithm outcome. Whereas in the case of
the substantial bone involvement, GMM3 has significantly outperformed other
methods, Table 2 and Fig. 3, in the case of the minor bone involvement, differ-
ence between delta priors and GMM is less obvious (mean DSC 0.89 and 0.9,
respectively). This indicates that delta priors method performs effective in pre-
dominantly single class problems, e.g. for kidney segmentation [7]. GMM2 has
shown inadequate robustness towards segmentation parameter change, Table 2.

Conclusively, GMM with three classes is the most suitable model, of those
utilized in this study, for a complex multi-class problem of the modeling intensity
priors of calvarial tumors. Segmentation accuracy of the automated algorithm
presented here could be regarded as very good (DSC > 0.7) according to [13]. Our
further work will focus on integration of the spatial information in the intensity
prior modeling and level set segmentation framework proposed.
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