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Abstract. Brain MRI segmentation remains a challenging problem in
spite of numerous existing techniques. To overcome the inherent dif-
ficulties associated with this segmentation problem, we present a new
method of information integration in a graph based framework. In ad-
dition to image intensity, tissue priors and local boundary information
are integrated into the edge weight metrics in the graph. Furthermore,
inhomogeneity correction is incorporated by adaptively adjusting the
edge weights according to the intermediate inhomogeneity estimation.
In the validation experiments of simulated brain MRIs, the proposed
method outperformed a segmentation method based on iterated condi-
tional modes (ICM), which is a commonly used optimization method in
medical image segmentation. In the experiments of real neonatal brain
MRIs, the results of the proposed method have good overlap with the
manual segmentations by human experts.

1 Introduction

Accurate and efficient voxel based segmentation of white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) is essential for quantitative brain
image analysis. The main challenge of automatic brain tissue segmentation stems
from the problem of the absence of distinct boundaries between different brain
tissues. This problem is due to a combination of multiple factors, such as imaging
noise, field inhomogeneity, partial volume effect, and intrinsic tissue variation.
To overcome these difficulties, it is necessary to integrate complementary in-
formation derived from the image as well as prior knowledge [1]. This paper
presents a new method of information integration to facilitate the brain tissue
segmentation, in a graph based framework [2].

Markov Random Field (MRF) theory provides a sound background to model
context dependent image segmentation, in which image segmentation is formu-
lated as a problem of energy minimization. Let P denotes the set of voxels in
the image. The MRF-based energy function describes the total energy associated
with assigning each voxel p ∈ P one of the labels in the label set L. There are
various forms of energy functions to model specific image segmentation prob-
lems. Finding the energy minimum yields the desired image segmentation. A
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successful image segmentation depends crucially on both the formulated energy
function and the optimization method. Let an image be denoted by I, a defined
neighborhood system by N , and the labeling on the image by f , the MRF-based
energy function has the basic form given by

EI(f) = λ
∑

p∈P
Dp(fp) +

∑

{p,q}∈N
Vp,q(fp, fq), (1)

where the data term Dp(fp) is a function derived from the observed data and
measures how well the label fp can be assigned to the voxel p based on a chosen
probabilistic model. The smoothness term Vp,q(fp, fq) measures the neighbor-
hood interaction by penalizing discontinuities between the voxel pair {p, q} in a
specified neighborhood system N . The coefficient λ weights the relative contri-
bution between the data term and the smoothness term.

For an MRF-based energy function, global optimization methods, such as
Gibbs Sampler [3], are often computationally too inefficient to be applicable to
3D medical image segmentation. On the other hand, iterated conditional modes
(ICM) [4], a deterministic optimization method which has been widely applied to
medical image segmentation, is well known to suffer from local minima trapping
[5]. The graph cut method is a relatively recent development in minimizing
context-dependent MRF problems [2,6]. It has been proven to be able to locate
global minima for a certain class of two-label energy functions [5,7]. Although
global minimization is NP-hard for multi-label energy functions, the graph cut
method can guarantee strong approximation to global minima [2]. In the graph
formulation, the MRF-based energy function in Equ.(1) is coded into the edge
weights. The cost of graph cut is equal to the total energy of the corresponding
segmentation.

To address the specific problems in brain MRI tissue segmentation, we propose
an automatic brain tissue segmentation method based on the multi-label graph
cut method described in [2]. Our method integrates intensity, local boundary
information, and tissue priors into the edge weight metrics. In addition, inho-
mogeneity correction is incorporated in the adaptive graph construction. This is
done by updating the edge weights according to the intermediate inhomogeneity
field estimation. The proposed method was validated on both simulated and real
brain MRIs.

2 Method

The binary graph cut method and the extension to multi-label graph cuts by
the α-expansion algorithm are described in [6] and [2], respectively. Given an
image with a set of voxels P , the goal of segmentation is to partition P into K
disjoint sets Pi, i.e., P =

⋃K
i=1 Pi and Pi

⋂Pj = ∅, if i �= j. For the proposed
algorithm, the image is represented by a weighted graph, G = 〈V , E〉, where
the set of nodes is denoted by V = P ⋃L. L denotes the set of terminal nodes
which represents the labels. The set of edges is denoted by E = EN

⋃ ET , where
EN denotes the set of voxel-to-voxel edges in the defined neighborhood system



Integrated Graph Cuts for Brain MRI Segmentation 833

GM WM CSF

Terminal Nodes (Labels)

p q

n-links
Voxel Nodes

t-links

Fig. 1. Example of the graph with three terminals for brain MRI tissue segmentation
of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The set of
nodes V includes all voxels and terminals.The set of edges E includes all n-links and
t-links.

(n-links) and ET denotes the set of voxel-to-terminal edges (t-links). A typical
graph construction for brain tissue segmentation is illustrated in Fig.1, where
the three terminal nodes refer to the three brain tissue types. The set of edges
E can be formulated such that a segmentation derived from the solution of the
graph cut algorithm [2] minimizes certain MRF-based energy functions. In the
graph construction, Dp(·) in Equ.(1) describes the edge weights of the t-links,
whereas Vp,q(·) describes the edge weights of the n-links. A graph cut C ∈ E is a
set of edges such that the linked nodes are in disjoint sets while each voxel node
has to connect with only one terminal node which corresponds to its label. The
resulting graph is denoted by G = 〈V , E − C〉. The cost of the cut |C| is the sum
of its edge weights in the edge set C.

2.1 Information Integration in Edge Weight Metrics

In this graph cut method, t-links are the major force in segmentation, while
n-links enforce smoothness in a specified neighborhood. Intensity is the primary
voxel-wise image feature used to define the edge weight metrics for both t-links
and n-links. Generally the weights of t-links ET are derived from a certain prob-
abilistic model according to the intensity distribution of each tissue type in the
image, and the weights of n-links are derived from the similarity measured be-
tween nodes. To cope with the complexity and variability in brain MRI, prior
knowledge of brain anatomy and tissue properties is an important resource to be
integrated into automatic segmentation. Furthermore it is well understood that
the intensity-based methods are susceptible to field inhomogeneity in MRIs [1].
Local boundary information provides complementary information which helps
to detect the actual boundary between different tissues. In the following section,
we describe the integration of tissue priors, local boundary information, and
intensity information in the edge weight metrics.
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Integration of Tissue Priors in T-Links. To integrate prior knowledge of
brain tissues, the MRF energy function given in Equ.(1) is reformulated to in-
clude the atlas-based prior knowledge which becomes

E(f) = γEI(f) + (1 − γ)EA(f), (2)

where the new energy E(f) is biased by the atlas-based energy term EA(f), and
the user-selected parameter, γ ∈ [0, 1], moderates the two terms and is derived
empirically. The atlas-based energy EA is derived from the probabilistic atlas
priors, which are generated by registering a sufficient number of pre-segmented
MRIs to a canonical atlas space. Trained individuals segment brain tissues on
each of the MRIs used in the atlas construction. Effective atlas construction
relies on a robust inter-subject registration method. A symmetric diffeomorphic
flow-based registration method was used [8]. The prior probability that a voxel
is assigned a label is estimated by averaging the manual labeling of that voxel
over the set of registered MRIs within the canonical atlas space. This average is
denoted as PA. The energy contribution from each voxel labeling is defined as

EA(fp) = − lnPA(fp), (3)

where fp ∈ L. Therefore, conjoining Equ.(1), (2), and (3) leads to the following
total energy function to be minimized,

E(f) =
∑

p∈P
(λγDp(fp) + (1 − γ)EA(fp)) + γ

∑

{p,q}∈N
Vp,q(fp, fq). (4)

Based on Equ.(4),the edge weight of t-links in the graph is

Tp(Li) = λγDp(Li) + (1 − γ)EA(Li), (5)

where Li ∈ L, and Dp(Li) is defined as the negative log-likelihood of the image
intensity distribution,

Dp(Li) = − lnPI(Ip|Li), (6)

where PI(Ip|Li) is estimated by a Gaussian model of the intensity distribution
of each tissue type.

Integration of Local Boundary Information in N-Links. Intensity and
local boundary information are combined into the calculation of the edge weights
of n-links. Image intensity is denoted as Ip for voxel p ∈ P . The Lorentzian error
norm [9], a type of robust metric, is used to measure the intensity difference
between two voxel nodes p and q within a neighborhood,

ρ(p, q) = ln

(
1 +

1
2

( |Ip − Iq |
σ

)2
)

,

where the robust scale σ can be estimated from the input image [9]. This quantity
is used to calculate the intensity-based component of the edge weights of n-links

WR
p,q = 1/(1 + ρ).
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The boundary-based component of the n-link edge weight is derived from
intervening contour probabilistic map B [10]. This map is computed through
a transformation using the gradient image G. For any voxel p, Bp = 1 −
exp(−Gp/σG), where σG is the normalization factor. The probability to have
a gradient-based boundary between any two voxels {p, q} is defined as the max-
imal intervening contour probability in the set of voxels along the line joining p
and q, denoted as Mp,q. The boundary-based component of the edge weight of
the n-links is thus defined as

WB
p,q = 1 − max

x∈Mp,q

(Bx).

Combining the intensity and boundary components, the n-link edge weight
metric becomes

Wp,q = cW I
p,q + (1 − c)WB

p,q , (7)

where the coefficient c ∈ [0, 1] is used to weight the importance of intensity
versus boundary information to enforce the edge preserving smoothness. It is
noted that Wp,q is equivalent to Vp,q(fp, fq) in Equ.(4) after assigning a label to
each voxel.

2.2 Adaptive Inhomogeneity Correction

The adaptive component of the segmentation combines inhomogeneity correction
and segmentation in an iterative mode. MRI inhomogeneity is characterized by
a low frequency field in the image domain. The inhomogeneity field is assumed
to be multiplicative and uniform for any tissue types. Initial intensity means
are estimated by the K-d tree based K-means clustering method. Given the
intermediate segmentation results, the intensity mean μLi of each label Li is
updated. The voxel value in quotient image Q is computed by Qp = Ip/μfp ,
where Ip denotes the intensity of voxel p, fp denotes the label assigned to voxel
p. The image Q is the input to the field estimation function. A cubic B-spline
approximation scheme for scattered data given in [11] is applied to estimate
the inhomogeneity field H. The inhomogeneities are corrected by dividing the
original image intensity by the estimated inhomogeneity field at each voxel H(p).
This subsequently updates Dp(Li) of voxel p for every terminal node Li in the
t-link metric in Equ.(5).

3 Experimental Results

The proposed method was validated on both simulated and real brain MRIs.
Current implementation of the method is in 2-D. The 3-D image segmentation
is processed slice-by-slice, while inhomogeneity correction was performed in the
3-D volume. The 3-D graph cut algorithm has the same formulation except
that the neighborhood structure is in 3-D and the computation is thus more
expensive. A volumetric overlap metric was used to compare the segmentation
results of the proposed method and the ground truth. For each label Li ∈ L, the
volumetric overlap metric is defined as



OA,B(Li) =
VA

⋂
B(Li)

VA
⋃

B(Li)

where VA
⋂

B(Li) denotes the number of voxels labeled as Li by both the pro-
posed method and the ground truth, and VA

⋃
B(Li) denotes the number of

voxels labeled as Li by either the proposed method or the ground truth.
Simulated images were generated from the BrainWeb MR simulator with 40%

field inhomogeneity and 1%-9% noise [13]. The simulated T1-weighted images
had voxel dimensions 181 × 217 × 181, with voxel size 1 × 1 × 1 mm. As shown
in Fig.2, the graph cuts have stable performance in spite of image noise and
field inhomogeneity, and consistently outperforms an ICM based segmentation
method [12]. To make a fair comparison, the atlas weight γ in Equ.(2) was set
to be zero in this experiment. Atlas priors were used in the following experiment
of real images.

The real images used were MRI scans of neonatal brains, which are more
difficult than adult brains for tissue segmentation because of its greater intrinsic
tissue variation. The neonates used in this study were term newborn infants
with the ages less than 10 days when myelination of white matter was at an
early stage. Therefore, image intensities of myelinated and non-myelinated white
matters were considered to be within the variance range of a single tissue type. It
is noted that, in general, a T2-weighted neonatal MRI has better contrast than
a T1-weighted MRI. Axial T2-weighted images were scanned by using spin-echo
pulse sequence. The image voxel size is 0.35 × 0.35 × 3mm. These images have
low contrast-to-noise ratio, large partial volume effect, and exhibit severe field
inhomogeneity.

Leave-one-out cross validation was applied to ten T2-weighted brain neonatal
MRIs. Gray and white matters in all these MRIs were delineated by two human
experts. Skull and other brain tissues were excluded from the images according
to the manual delineation. In each round, nine of the ten MRIs were used to
generate the probabilistic atlases for gray and white matters. The constructed
atlas was then used in the segmentation of the remaining neonate. Fig.3 shows
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Fig. 2. Overlap metrics for the segmentation of (A) GM and (B) WM of BrainWeb
simulated T1 weighted images with 40% field inhomogeneity, using our integrated graph
cut algorithm (IGC) and the one in [12] using ICM to minimize the energy function.
It is noted that atlas priors are not used in this experiment, and both methods have
the component of adaptive inhomogeneity correction.
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Fig. 3. Example axial slices of T2 weighted brain MRIs of three neonates and the
corresponding segmentation results of the proposed method

some example slices of the segmentation results by the proposed method. The
segmentation results were compared with the corresponding manual segmenta-
tions. The volumetric overlap metric was calculated for gray and white matter
respectively, and the results for the ten neonates are summarized in Table 1. As
shown in the table, the results of the proposed method for real neonatal images
are approximately in the range of inter-rater variance. The construction of the
probabilistic atlas is difficult for the low axial resolution and low contrast-to-
noise ratio in the image. In addition, the performance of the method can be
improved by using a more realistic probabilistic model Dp(·) in Equ.(6).

4 Discussion

This paper describes a new method of information integration in a graph-based
framework [2] for brain MRI segmentation. Although the graph cut method has
provable capability to minimize energy functions, it requires careful formula-
tion of the edge weight metrics to achieve successful performance for specific
problems. In the proposed method, intensity, local boundary information, and
tissue priors have been integrated in the edge weight metrics. Moreover image

Table 1. Overlap metrics of the proposed method, the integrated graph cut (IGC), and
the manual segmentation for the ten real neonatal brain MRIs. The manual segmenta-
tion is derived from the intersection of two manual segmentations by two raters. The
second row of the table shows the overlap metrics of the two manual segmentations.

GM WM

IGC/Manual 0.593 ± 0.035 0.625 ± 0.055

InterRater 0.712 ± 0.022 0.710 ± 0.041
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inhomogeneity correction and image segmentation are combined in an iterative
mode. This paper presents positive results of the proposed method applied to
both simulated and real brain MRIs. More solid validation and comparison with
other popular brain image segmentation methods will be done in future studies.
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