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Abstract. Segmentations of MR images of the human brain can be
generated by propagating an existing atlas label volume to the target
image. By fusing multiple propagated label volumes, the segmentation
can be improved. We developed a model that predicts the improvement
of labelling accuracy and precision based on the number of segmentations
used as input. Using a cross-validation study on brain image data as well
as numerical simulations, we verified the model. Fit parameters of this
model are potential indicators of the quality of a given label propagation
method or the consistency of the input segmentations used.

1 Introduction

Established methods for segmenting magnetic resonance (MR) images of the hu-
man brain rely either on automatic tissue classification or on manual delineation
of anatomical regions. Automating anatomical segmentation would enable excit-
ing new image analysis applications in diagnostic radiology and imaging research,
such as brain volumetry on cohorts.

Given an unsegmented target image and an atlas (a reference MR image with
a corresponding set of manually generated labels), estimating spatial anatomical
correspondence between the image pair makes it possible to adapt the segmen-
tation of the atlas to the target image [II23]. This process is sometimes referred
to as label propagation. Errors in the reference (atlas) segmentation and the
anatomical correspondence estimate affect the accuracy of the propagated la-
bel set. The precision of the method (i.e., agreement between propagated labels
from multiple atlases onto a target) depends on the consistency with which the
different atlases have been segmented.
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By combining multiple segmentations of a single target using vote rule deci-
sion fusion [4], random errors in the atlas segmentation and registration tend
to cancel, resulting in an improved target segmentation. This has been demon-
strated for confocal microscopy images of bee brains [5] as well as for MR images
of human brains (albeit with large atlas regions) [1]. Decision fusion has also been
applied successfully to a method of parcellation of the human cortex [6]. The
method can also be refined by differential weighting of the input classifiers based
on expectation-maximization algorithms [7I8].

The aim of this work was to investigate the relationship between the number
of equally weighted input classifiers and the segmentation improvement achieved.
We hypothesized that the rate of convergence with increasing atlas numbers can
be modelled using a characteristic equation. By fitting model parameters based
on limited input data, the maximum achievable segmentation accuracy as well as
the quality of the registration can be determined. We carried out a leave-one-out
cross-validation study on 30 expertly segmented human brain MR image volumes.
The effect of the input data upon the fitted model was explored using simulations.

2 Method

Data. Three-dimensional T1-weighted MR volumes were available from 30 nor-
mal volunteers, age range 20—54 years, median age 30.5 years, 15 male, 15 female,
25 strongly right-handed, 5 non-right-handed. Each data set was accompanied by
a set of labels in the form of an annotated image volume, where every voxel was
coded as one of 67 anatomical structures (or background, code 0). These labels
had been prepared using a protocol for manually outlining anatomical structures
on two-dimensional sections from the image volume. The protocol used was an
augmented version of a published prototype [9].

Image Registration and Label Propagation. Every subject was paired with
every other subject for image registration. Intracranial structures were extracted
from the target MR images using “BET” [I0]. All image pairs were aligned using
3D voxel-based registration, maximizing normalized mutual information [I1] in
three steps. Rigid and affine registration corrected for global differences. In the
third, nonrigid step, alignment of details in the image pair was achieved by
manipulating a free-form deformation represented by displacements on a grid of
control points blended using cubic B-splines [12]. The spacing of control points
defines the local flexibility of the nonrigid registration. It was carried out in a
multi-resolution fashion using successive control point spacings of 20 mm, 10
mm, 5 mm and 2.5 mm.

The final transformation was applied to the atlas labels using nearest-neighbor
interpolation, generating 29 propagated label volumes for each target individual.
In addition, we generated propagated label volumes based on less detailed reg-
istration, using the intermediate (rigid, affine and nonrigid with a control point
spacing of 20 mm) transformation output to propagate the label volumes.

Segmentation Comparison. As a measure of agreement between two seg-
mentations of a target, we used the similarity index (ST). For a pair of labels, it
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is defined as the ratio between the volume of the intersection (overlap) and the
mean volume of a pair of labels in the same coordinate space [I3]. To compare
full label sets, we calculated the mean ST over all structures.

67
1 2n(LE N LY)
Shn = 67 2 n(Lk) + n(Ib/k) e
k=1 a b
Llé,zf Labels compared; k: structure code; n: Number of voxels. The measure
ranges from 0 (for label sets that have no overlapping regions) to 1 (for label
sets that are identical).

Decision Fusion Model. Label volumes represent classifiers that assign a
structure label to every voxel in the corresponding MR image volume. To com-
bine the information from multiple individual propagated label volumes into a
consensus segmentation, the classifiers were fused on a per-voxel basis using vote
rule decision fusion as described by Kittler et al. [4]. For each of the 30 target
brain images, we created consensus (fused) segmentations from subsets of prop-
agated label volumes of varied sizes (n = {3,5,7,..,29}). Where possible (for
n < 13), we used multiple non-overlapping subsets. Individually propagated seg-
mentations and fused label volumes were then compared with the manual label
volume to determine the behaviour of ST, as a function of n. Similarly, fused
label volumes from independent sets of classifiers were compared with each other.

As the number of input label volumes increases, the ST values are expected
to increase from an initially low level resulting from the combined effects of both
systematic and random errors, towards an asymptotic value that reflects only
the systematic errors. Assuming a Gaussian distribution for SI, we expect it to
evolve with the number (n) of classifiers fused according to the secular equation:

b
Vn

where a and b are parameters to be determined. Parameter a determines the
asymptotic upper limit and reflects systematic differences between the labels
being compared, whereas b is related to the random variability of the propagated
labels. A small value of a implies consistent labelling.

SI(n)=1—a-— (2)

Numerical Simulations. Numerical simulations were performed using a two-
dimensional model as follows: A filled circle of radius 10 mm in an image matrix
with 1 mm x 1 mm pixels was defined to represent a ground truth label Io;.;q.
A random free-form deformation was applied by overlaying a grid of control
points with 8 mm spacing and displacing these control points. The displacements
were drawn from a Gaussian distribution with a mean of zero and a standard
deviation of o4ys. The resulting label I, represents an approximation to the
ideal circular label containing systematic error. The model label, I, was then
deformed multiple times with grid-point displacements drawn from a different
Gaussian distribution with mean zero and standard deviation ¢,qy,q, producing
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an ensemble of shapes that contained random errors, representing propagated
labels. In step 3, independent ensembles were fused to create labels (I" fyseq)
that represented estimates of the original, circular label, subject to systematic
and random error. The agreement (as measured by ST) of individual and fused
labels with the original gold standard label and with other fused labels was
then investigated to explore the behaviour of ST as a function of the number of
classifiers fused.

3 Results

MR Data. The accuracy of individual propagated label sets as measured by
their mean ST, with the manually generated target label set was 0.754 (range
0.692-0.799, SD = 0.016, n = 870). Compared to this baseline result, decision
fusion consistently improved the level of agreement with the manual sets. The
maximum accuracy was achieved using 29 classifiers: 0.836 (range 0.820-0.853,
SD = 0.009, n = 30). The relationship between the number of input classifiers
and the agreement level was described by Equation[2] with 95 % confidence inter-
vals not exceeding the uncertainty of the individual data points. Fit parameters
were a = 0.144 and b = 0.10 (see Fig. [ fused-manual).

The precision of segmentation-fusion as measured by mean ST,,, between inde-
pendently generated fused label sets was also dependent on the number of input
classifiers for each fused set. For three classifiers, ST, was 0.812 (SD = 0.005,
n = 270). Adding classifiers resulted in progressive improvement of this pre-
cision measure, up to 0.908 (SD = 0.003, n = 30) for subsets containing the
maximum possible odd number of 13 independent classifiers (see Fig. [l fused-
fused). Again, the model described the curve appropriately, albeit with a wider
confidence margin. Parameter estimates were a = 0.016 and b = 0.29.

Model parameters were dependent on the level of detail considered by the im-
age registration algorithm underlying the label propagation process. The model
fit for coarse registrations resulted in higher values of the a parameter, indicat-
ing that the maximum achievable agreement level for infinite classifier numbers
is lower. The b parameter was also higher, indicating that the approach to con-
vergence as classifier numbers increase is slower when coarser registration is
used (Fig. ).

Simulated Label Data. The ST between the fused and the gold standard label
was well approximated by the model for nearly all o5y and 0qnqa. The model fit
was worse for ST calculated between two fused labels, reproducing the finding
in the experimental data. Fig. B shows a plot of SI versus n, where the random
parameters were 0gys = 4 and orqng = 5.

The variation of the a and b parameters with o,.qy4 is shown in Fig.[dl Param-
eter b was found to be linear over the range of values studied. Parameter a was
negative for low values of 0,454, indicating a failure of the Gaussian assumption
as the ST values approached the limiting value of 1. For multiple simulated la-
bels the distribution of ST values passed a Kolmogorov-Smirnov normality test
(o =0.01, n = 100) once the level of systematic error (o,ys) exceeded 1mm.
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Fig.1. SI vs. number of subjects in subset. Parameters a and b are shown as deter-
mined by model fitting. Error bars indicate standard deviation. Dashed lines indicate
95 % confidence intervals of the model fit. Agreement between fused labels is high with

a poorer model fit.
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Fig. 2. Fused-to-fused comparisons: ST vs. number of subjects per subset (n) for dif-
ferent registration strategies. The a and b parameters are shown as determined by
nonlinear model fitting.

4 Discussion and Conclusions

When multiple propagated segmentations of a brain image are regarded as classi-
fiers and combined using a suitable decision fusion algorithm, the resulting fused
segmentation can be more accurate than any of the constituent segmentations,
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Fig. 3. Plots of ST versus n for various comparisons of simulated labels. The comparison
between [fysea and Iorig is well fitted by the model. Overlaps between Igys and Iorig
are shown for comparison. Random parameters: osys = 4 and orqnd = 5.
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Fig. 4. Fit parameters a and b in simulated data. Both parameters increased with
increasing inconsistency of individual classifiers (as parameterized by o,and)-

as random errors in the source labelling as well as the propagation process will
tend to cancel each other out. The result will still be subject to systematic bias
arising from the input data and the process itself.

We investigated the relationship between the number of classifiers used to
form a fused segmentation and the accuracy of the result, and found a model
that describes this relation. By performing parameter fitting, it was possible
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to quantify the impact of the scale of the transformation used to propagate
individual brain segmentations (affine, coarse nonrigid, fine nonrigid). The model
thus provides a possible quality measure. In Fig. @ all the methods of label
propagation show increasing precision with increasing n. Thus precision is not
in itself a guarantee of appropriate labelling (fusion of many labels without any
registration will lead to convergence to a mean label, but not a useful one). It
is notable, however, that the approach to consistency with the number of fused
labels was slower for less detailed registration methods. The b value was largest
when no registration was employed and showed the minimum value when the
non-rigid registration with the smallest control point spacing was used. b may
therefore represent a means of comparing the accuracy of different registrations.

As Fig. [[ shows, the data from fused label propagation on the human brain
was consistent with the model described by Equation[2l For comparisons between
independent fused label volumes, the a parameter of the model fit was much
smaller, indicating that the averaging that takes place in the label fusion process
leads to highly precise (if not necessarily unbiased) results.

The simulations reproduced all key features of the experimental results: the
b parameter correlates with o,.qnq (Fig. H), showing that it can be used as an
indication of the precision of segmentations fused in the experiment. The a pa-
rameter describes the accumulated systematic error that cannot be eliminated
by considering further classifiers in the fusion process. We conclude that the
model (Equation [2]) describes the core behavior well.

The appropriateness of the model depends on the assumption that ST values
produced for fused labels are normally distributed. Formally, this assumption
cannot be correct, since SI has both upper and lower bounds. Nevertheless, S1
values produced by random perturbations of the label boundary passed a test of
consistency with a normal distribution. This makes the use of the chosen model
plausible. Our results suggest that the model can be used to estimate the veracity
of fused propagated labels in the absence of a gold standard segmentation. In
future work, we are planning to assess the usability of the model for assessing
segmentation quality when using fused label propagation in clinical and scientific
application scenarios.
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