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Abstract. A motion-based Inverse Kinematics Knee (IKK) model was
developed for Total Knee Replacement (TKR) joints. By tracking a se-
quence of passive knee motion, the IKK model estimated ligament prop-
erties such as insertion locations. The formulation of the IKK model
embedded a Forward Kinematics Knee (FKK) [1] model in a numerical
optimization algorithm known as the Unscented Kalman Filter [2]. Sim-
ulation results performed on a semi-constrained TKR design suggested
that ligament insertions could be accurately estimated in the medial-
lateral (ML) and the proximal-distal (PD) directions, but less reliably in
the anterior-posterior (AP) direction for the tibial component. However,
the forward kinematics produced by both the true and estimated liga-
ment properties were nearly identical, suggesting that the IKK model
recovered a kinematically equivalent set of ligament properties. These re-
sults imply that it may not be necessary to use a patient-specific CT
or MRI scan to locate ligaments, which considerably widens potential
applications of kinematic-based total knee replacement.

1 Introduction

We previously introduced [3] and validated [1] a Forward Kinematics Knee
(FKK) model for postoperative knees. Given a set of joint parameters such
as ligament insertion locations, our FKK model predicts the location of the
femorotibial contact for each joint angle using the principle of ligament strain
minimization [4]. Knee motion can be reconstructed by finding successive femoro-
tibial contact from full extension to full flexion.

We now introduce an Inverse Kinematics Knee (IKK) model that performs
the opposite: by tracking a sequence of knee motion, the IKK model decomposes
the motion into a set of actual joint angles and the corresponding femorotibial
contact locations. The observed joint angles are used by the FKK model to
produce a set of predicted femorotibial contacts that are contrasted with the
observed contacts. Together, the predictor-actual pair of contacts are used in the
Unscented Kalman Filter [5] to estimate the joint parameters that would lead
to the observed knee motion.
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2 Method

Articular surfaces of a size-3 Sigma Knee (Johnson & Johnson) were laser-
scanned at a resolution of 0.4mm, resulting in two point clouds of approximately
31, 000 and 19, 000 points for the femoral (F ) and tibial (T ) components, re-
spectively. Joint coordinate systems [6] were assigned to the components. The
absolute, space-fixed coordinate system was associated with the tibial compo-
nent, and the relative, body-fixed coordinate system was associated with the
femoral component. Without loss of generality, the Z-axes were aligned with the
anatomical axis of the lower limb. The X-axes were perpendicular to the Z-axes
lying on the sagittal plane with the anterior direction being positive. The Y -axes
were derived as the cross product of the two: Y = Z × X . The centroid of the
point clouds were chosen as the origin of the coordinate systems.

These two coordinate systems were related by a homogeneous transformation.
If p̄f is a 3 × 1 column vector that measures the coordinate of a point in the
femoral system, then its corresponding tibial location p̄t can be expressed as:[

p̄t

1

]
=

[
R d̄
0 1

] [
p̄f

1

]
(1)

where R is a 3 × 3 rotation matrix and d̄ is a 3 × 1 translation vector. Because
the tibial was assumed to be fixed, R and d̄ represented the relative joint an-
gle and position of the femoral component. The rigid-body transformation of a
point is a rotation (R) to the space-fixed coordinate system followed by a linear
displacement (d̄).

2.1 Forward Kinematics Knee Model

The FKK for the passive knee was developed based on the principle of ligament
strain minimization[4]: In a passive knee where no external force and torque is
present, the knee would rest into an equilibrium position where the strain stored
in the knee ligaments is minimized. The passive FKK model can be formalized as:

d̄ = FKK(F, T, R, L̄) (2)

where F and T are the geometry of the femoral and the tibial TKR components,
respectively, R is the femorotibial joint angle, and L̄ is a state vector representing
the mechanical properties of knee ligaments. L̄ is a concatenation of n filament
state vectors, each with the following format:

l̄i = [pf
x, pf

y , pf
z , pt

x, pt
y, pt

z, K, B]T (3)

where l̄i represents the ith filament of the ligament, [pf
x, pf

y , pf
z ]T and [pt

x, pt
y, p

t
z]

T

are the 3D femoro- and the tibial- insertion locations, respectively, and K and B
are the optional spring constants for the filament. The filaments are modeled as
springs that store no compressive force, with the strain energy of each filament
calculated as:

E =
{

.5 × K × (L′ − L̃)2 + B × (L′ − L̃), if L′ ≥ L̃

0, if L′ < L̃
(4)
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where L̃ is the neutral length of the filament, L′ is the Euclidean distance between
filament attachment points, and K and B are the spring constants.

The vector d̄ in Eqn. (2) represents the femorotibial contact location where
the total ligament strain energy stored in L̄ is minimized [3]; thus, the 4 × 4

homogeneous matrix
[

R d̄
0 1

]
completely specifies the femorotibial pose. Knee

kinematics can be reconstructed by varying R from full extension to full flexion
and computing the corresponding displacement vectors

{
d̄
}
.

2.2 FKK Model Validation

A spring-ligament apparatus mimicking passive TKR knee was constructed as a
validation tool for the FKK model [1]. The apparatus is composed of the laser-

Springs

DRB
DRB

TKR

Fig. 1. A spring-ligament apparatus simulating the kinematics of passive knee

scanned TKR components held in contact by the tensile forces stored within a
set of mechanical springs. The mechanical properties needed to satisfy Eqn. (3)
were determined for each spring.

A Dynamic Reference Body (DRB) was rigidly attached to each TKR com-
ponent, allowing the motion of the components to be tracked with an optical
tracker (OPTOTRAK 3020, NDI, Canada). Let Pf and Pt be the poses of the
DRBs, in the OPTOTRAK coordinate system, attached to the femoral and tib-
ial components, respectively, and let Qf and Qt be the 4×4 registration matrices
that register the scanned femoral and the tibial point clouds to their respected
components. Then for a given tracked instance, the relative femorotibial pose,
in the scanned tibial point cloud coordinate system, is given by Eqn. (5):[

R′ d̄′

0 1

]
= Q−1

t P−1
t PfQf (5)

where R′ is the actual femorotibial angle and the d̄′ is the actual femoral dis-
placement. Thus, knowing the spring ligament properties of the apparatus, the
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observed actual femorotibial angle R′ can be used as the input to Eqn. (2); the
computed virtual displacement vector d̄ be compared to the actual displacement
vector d̄′.

Given accurate inputs needed by Eqn.(2), the FKK model was found [1]
to predict the femorotibial contact locations (and the displacement vector d̄)
with sub-millimeter accuracy. Simulation results suggested that, when a semi-
constrained TKR (such as the Sigma) is used, a simple single-bundle ligament
model is sufficient to generate accurate knee kinematics: it is better to get a
good rough estimate of knee-ligament geometry rather than to toil for a other
aspect of a complex ligament model.

2.3 Unscented Kalman Filter

The Square-Root Unscented Kalman Filter [5] (SQ-UKF) was implemented as
the numerical optimization algorithm for its numerical stability and efficiency.
Kalman and related filters operate in a predictor-corrector and iterative fashion.
In the Kalman filter paradigm, the state of a stochastic process is represented by
a set of variables that evolves through time according to a process model. The
state variables are related to a set of observable variables through a measurement
model. When an new observation is available, the current state vector is advanced
in time through the process model and a predicted measurement is generated
through the measurement model accordingly. The difference between the actual
and the predicted measurements, called the innovation, is used to correct the
state vector so the state vector better fits the observation.

We apply the UKF to ligament parameter estimation in which the ligament
properties were treated as the unknown. The process and measurement models
needed for UKF are:

L̄k+1 = L̄k + vk (6)
d̄k = FKK(F, T, R, L̄k, ) + nk (7)

That is, the process model for parameter estimation is the identity function,
because the quantities to be estimated are assumed to remain constant over
time. The measurement model is the FKK model itself, where the quantity to
be measured, as a function of the ligament state vector, is the displacement
vector d̄ of a given femorotibial angle R. The noise vectors vk and nk refer to
the uncertainties of the process and measurement models, respectively.

A set of 1089 synthetic displacement vectors d̄ of varying femorotibial angles
was precomputed using a 3-ligament (PCL, MCL, and LCL) FKK model. The
single-bundle ligament geometry was adapted from our previous study [3]: the
single-bundle ligament was artifically generated by taking the geometrical mean
of the ligament insertions in the multi-bundle ligament configuration, using the
summed spring constants. The femorotibial angle ranged from 0◦ to 120◦ in flex-
ion, −1◦ to 1◦ in varus, and −1◦ to 1◦ in internal angulation, all at 1◦ intervals.
This set of synthetic displacement vectors is destinated as the true observations
since it was calculated using the known and correct ligament geometry.
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Due to the computational complexity, our simulations were performed using a
2-ligament state vector (MCL plus LCL) in which the ligament properties of the
PCL were assumed known. Furthermore, the spring constants needed for Eqn.(3)
were assumed to be known because the formulation of Eqn. (4) did not require
the absolute value of the spring constants, only the relative stiffness between the
ligaments [7]. Hence the state vector for the IKK model has a dimensionality of
12, in which the femoral and the tibial insertions of both the MCL/LCL were
the unknowns.

The iterative process of UKF parameter estimation proceeded as follows.
First, an initial guess of each of the ligament insertion was given and the state
vector L̄ need for Eqn. (2) was constructed according to Eqn. (3). At each itera-

Fig. 2. The iterative process of UKF parameter estimation. When a new observation
becomes available, the current estimate of the state vector is used to predict the femoro-
tibial contact locations using the FKK model. The difference in the predicted and the
observed femorotibial contact locations, call the innovation, is used to correct the state
vector estimation.

tion when a new observation (i.e. an actual displacement d̄′) became available, a
predicted measurement (i.e. d̄ using Eqn. (2)) was computed using the estimated
state vector. The innovation term was calculated and propagated through the
UKF formulation [5], and the state vector was updated accordingly.

3 Results

Figure 3 depicts a typical result of the ligament parameter estimation using the
UKF paradigm. Each of the 4 ligament insertion locations was erroneously and
intentionally chosen at a location 10mm away from the true insertion.

Figure 3(a) shows the convergence of each of the MCL-femoral, MCL-tibial,
LCL-femoral, and LCL-tibial insertion from their respective initial guess. Dur-
ing the UKF iterations, all 4 insertion estimates converged to a steady-state
after about 200 observations. After this point, the LCL-tibial insertion estimate
remained about 4.0mm away from the true location, and the MCL-tibial inser-
tion estimate remained about 4.7mm away from the true location. The femoral
insertion estimates for both ligaments had errors about 2.0mm
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Fig. 3. Simulation results for ligament parameter estimation using UKF. Insertion lo-
cations of both MCL and LCL were initialized to be 10mm away from the true location.

After the ligament estimates reach a steady state, they were used in the FKK
model to produce a sequence of passive knee motion from full extension (0◦)to
full flexion (120◦) at 1◦ intervals. Figure 3(b) depicts a visualization of knee
kinematics by plotting the (x, y, z) components of the displacement vector {d̄}:
Both the true and the estimated ligament insertions produced near identical
passive forward kinematics.

Figure 3(c) and (d) show the convergence of the ligament insertions of the MCL
and the LCL ligament, respectively, in each of the AP, ML, and PD directions.
For MCL ligament estimation (Figure 3(c)), the largest error was the tibial AP
(x-axis) direction, which had a magnitude of about 4mm. Errors in the other
two directions had a magnitude of 2mm or smaller. For LCL ligament estimation
(Figure 3(d)), the largest error was the tibial AP (x-axis) direction, with a magni-
tude of about 4mm. Errors in other directions were 2mm or smaller in magnitude.

4 Discussion

The complexity of the SQ-UKF parameter estimation algorithm is O(n2) [5],
where n is the dimension of the state vector L̄. Using a 2GHz computer with
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sufficient memory, the IKK model took about 5−7 days to iterate through 1089
observations. It should be noted that the IKK process can be terminated as soon
as the state vector reaches a steady-state: on the example shown above, the IKK
model provided a steady-state estimate in about 1 day. In addition, the UKF
can be implemented with ease in a multi-threaded environment: up to (2n + 1)
computers can be used to obtain a linear speed-up.

In the example shown above, the parameter estimation process was not able to
fully recover all components in the state vector. In particular, the tibial anterior-
posterior component for both MCL and LCL insertion sites had much higher
error compared to other two directions. However, the resulting forward kine-
matics generated by both the true and the estimated ligament insertions were
nearly identical. This explains why the IKK could not converge any further:
the innovation vectors needed to correct the state vector were almost zero and
thus had negligible effect on updating the state vector. One can also think of
this phenomena as reaching a local minima, where there exist multiple solutions
to the IKK model. Thus, the IKK model has recovered a kinematics-equivalent
ligament properties.

The sensitivity of the surgical placement on the resulting kinematics can be
attributed to the geometry of the TKR components. Most TKR designs are more
congruent on the coronal plane than on the sagittal plane; thus a small mis-
placement of the TKR components in the coronal plane would greatly influence
the elongation of the knee ligaments (see Eqn. (4)) changing the femorotibial
contact location. For the same reason, the surgical placement of the femoral
component would have a more profound effect on the knee ligament because is
is more convex than the tibial component.

5 Conclusion

We introduced an Inverse Kinematics Knee model that embeds a Forward Kine-
matics Knee model in the Unscented Kalman Filter paradigm. Given an observed
knee motion and an initial guess of the ligament properties, the IKK model re-
covers a set of kinematics-equivalent ligament properties with a semi-constrained
TKR design. Simulation results suggested that:

– Surgeons have some freedom in the surgical placement of the tibial compo-
nent in the anterior-posterior direction without changing the postoperative
passive kinematics,

– Precise placement of the femoral component is indicated as the resulting
kinematics are sensitive to the placement,

– There is a direct, and yet complex, relationship between the TKR design,
the surgical placement, and the resulting knee kinematics: The less congruent
the TKR geometry is in a given direction, the greater freedom the surgeon
has in the surgical placement of the component in that direction.

This study is limited by the number of ligaments examined, the configuration of
the ligaments, and the number of prosthesis designs included in the study. Future
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works include applying the IKK model to more TKR designs, for postoperative
TKR assessment, and extending the IKK model to natural knees.

We believe that the IKK model may provide a new paradigm for TKR surgical
planning; the ligament insertions may be estimated prior to TKR surgery. These
results may suggest that it is not necessary to use a patient-specific CT or
MRI scan to locate ligaments, which considerably widens potential applications
of kinematic-based total knee replacement. Further inquiry into this subject is
indicated.
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