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Abstract. This work investigates the effects of nonrigid transformation model
and deformation constraints on the results of deformation-based morphometry
(DBM) studies. We evaluate three popular registration algorithms: a B-spline
algorithm with several different constraint terms, Thirion’s demons algorithm,
and a curvature PDE-based algorithm. All algorithms produced virtually identi-
cal overlaps of corresponding structures, but the underlying deformation fields
were very different, and the Jacobian determinant values within homogeneous
structures varied dramatically. In several cases, we observed bi-modal distribu-
tions of Jacobians within a region that violate the assumption of gaussianity that
underlies many statistical tests. Our results demonstrate that, even with perfect
overlap of corresponding structures, the statistics of Jacobian values are affected
by bias due to design elements of the particular nonrigid registration. These find-
ings are not limited to DBM, but also apply to voxel-based morphometry to the
extent that it includes a Jacobian-based correction step (“modulation”).

1 Introduction

Deformation-based morphometry (DBM) [112] is an increasingly popular method to as-
sess anatomical population differences between different groups [3], or to track changes
in individual subjects over time [4]. Both changes over time and differences between
groups are commonly represented and analyzed as the Jacobian determinant maps of
nonrigid coordinate transformations between the images involved [5]]. This procedure
is based on the fact that the Jacobian of the transformation at each point represents the
local volume change of the coordinate space.

There is a fundamental difference between the application of nonrigid registration
for the purpose of matching two images and for DBM. For multi-modality image fu-
sion, for example, the sole criterion for success is the correct match of visible image
features. However, when performing analysis of the deformation itself, as is done in
DBM, the information stored in the deformation does not depend on the image content
alone. We can, therefore, no longer rely on feature alignment. Two different deforma-
tion fields may achieve equal accuracy at all visible features, yet be very different in
regions without such features. Ideally, the deformation should be equally distributed
inside homogeneous structures. In the brain, for example, if there is a volume change in
the ventricles, then the deformation should reflect this homogeneously rather than have
substantial peaks in some areas.
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A common view of image registration is that it is driven by two types of forces: 1) ex-
ternal forces that result from the dissimilarity of the two images that are being matched
and that drive the transformation in the direction that improves the image match, and 2)
internal forces that aim to minimize an inherent energy of the coordinate mapping, thus
for example enforcing its smoothness. In homogeneous image regions, the image forces
should be zero, because the image similarity measure is only sensitive to changes in the
transformation that lead to a change in mapped pixel intensities. In such regions, the
transformation is determined entirely by the internal forces. Our requirement as stated
above thus translates into the condition that the internal forces alone should lead to a
distribution of local volume changes that is maximally uniform.

On a conceptual level, a nonrigid registration method is defined by 1) an optimization
method, 2) an image similarity metric, 3) a parametric coordinate transformation model,
and, finally, 4) a regularizer or smoother that favors legitimate transformations over such
that are not physically or otherwise reasonable. From these four building blocks, we can
assume that the optimal similarity measure is determined by the types of images to be
registered. The optimal registration transformation in regions with no image forces is
then exclusively determined by transformation model and regularizer. We, therefore,
focus in this paper on evaluating the effects that these two components have on the
statistics of Jacobian determinants as they are commonly used in DBM.

2 Methods

We evaluate in this work three popular examples of nonrigid registration algorithms,
for which implementations are publicly available. The particular selection of algorithms
does not imply any judgment of the performance of these compared with other methods,
except for our group’s experience that each of the three method below is effective at
successfully registering both intra-subject (i.e., longitudinal) and inter-subject images.

2.1 B-Spline Registration

Rueckert et al. [6] introduced a nonrigid registration algorithm that uses B-spline in-
terpolation between uniformly spaced control points as its transformation model. The
control points move independently, thus deforming the underlying image, until a lo-
cal maximum of the image similarity measure is found. We use an algorithm similar
to Rueckert’s, but, for the purpose of this study, the sum of squared differences (SSD)
image similarity measure is used rather than normalized mutual information.

The B-spline transformation model incorporates implicit smoothness and continu-
ity constraints. Nonetheless, it was recognized early that additional constraints can be
necessary to enforce physically meaningful transformations, and to incorporate prior
information about permissible deformations. This is achieved by adding a weighted
constraint term Feonstraint (€€ below) to the similarity measure. We thus obtain the
total cost function Fyoa = Essp + W Eeconstraint, Which is minimized during the regis-
tration. In this paper, we evaluate the following regularization approaches:

1. Unconstrained registration, driven only by the similarity measure, which is equiv-
alent to a zero constraint term.
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2. Smoothness constraint based on second-order derivatives of the transformation that
models the bending energy of a thin metal plate [6l7]]. For details on the computa-
tion of the constraint using derivatives of the B-spline transformation, see [§].

3. Volume preservation constraint as introduced by Rohlfing et al. [8]. The constraint
penalizes the deviation of the local Jacobian from 1 (or, more generally, the global
affine scaling factor) anywhere in the image. For small weights w, the volume
preservation constraint is relaxed and becomes a folding prevention constraint.

2.2 Demons Registration

Thirion [9] introduced a registration algorithm based on image forces and Gaussian
regularization of the deformation field. The transformation model of this method is a
local displacement field: at each and every pixel x the deformation is described by
a displacement vector u[x] such that T[x] = x + u[x]. The algorithm updates the
displacement field u iteratively. The field is updated in each step by adding a delta in the
direction of the image force field to the displacement field from the previous step. For
regularization, convolution with a Gaussian kernel smooths the updated deformation
field after each step. The image forces for the registrations in this paper are computed
by a symmetric force based on both reference and sample image gradients as suggested
by [9]. We use an implementation of the algorithm that is publicly available as part of
the Insight Toolkit (ITK).

2.3 Curvature-Based Registration

Variational registration algorithms casts the registration problem as a system of dif-
ferential equations and solves these using variational methods. Popular examples of
variational methods include elastic matching [10] and viscous fluid registration algo-
rithms [[11]]. The transformation model for variational methods is a local displacement
field, analogous to one used by the demons algorithm. The registration is driven by
two components, a distance function D that is minimized when both images are iden-
tical, and a regularization term (also known as smoother) S that is minimized when
the deformation field satisfies some smoothness constraints. The registration problem
thus becomes the problem of minimizing Fiotal = D[R, T;u] + «S[u], that is, we
need to minimize the image distance D while simultaneously minimizing the smooth-
ing term S, weighted by an adjustable parameter . In this paper in particular, we use
the curvature regularization term introduced by Fischer & Modersitzki [[12]. This term
has several advantageous properties: it does not penalize global affine transformation
components, and it can be implemented with time complexity O(n logn), where n is
the number of image pixels. We have made our implementation of this algorithm pub-
licly available by contributing it to ITK. For the purpose of this paper, the image forces
that drive the registration are implemented as the symmetric demons forces as described

by [9].
2.4 Electronic Phantom

We model volume gain and volume loss using a pair of simple geometric phantom im-
ages, depicted in Fig.[Il Each of the two images has 1283 isotropic voxels and contains
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(a) Inner radius 40 pixels (b) Inner radius 50 pixels (c) Triplanar slices

Fig. 1. Electronic phantom images. The pictures show the central axial slices through the isotropic
3D volume. Due to spherical symmetry, the other orthogonal central slices are identical. The
radius of the outer sphere is 100 pixels in both images. The radius of the inner sphere is 40
pixels in image (a), and 50 pixels in image (b). Picture (c) shows a three-dimensional rendering
of triplanar slices through the volumetric phantom image with 50 pixel inner sphere.

two concentric spheres. The radius of the outer sphere is 100 voxels, whereas the radius
of the inner sphere is 40 voxels in one image, and 50 voxels in the other. The voxels
inside the inner spheres have constant pixel intensity 50, the voxels inside the outer
sphere but outside the inner sphere have constant intensity 200. The image background
outside the outer sphere is set to zero. One can think of these images as extremely crude
approximations of the human brain and the ventricles. Note that a key characteristic of
our phantom images, due to the constant size of the outer sphere, is that they cannot be
registered using a global affine transformation, i.e., we force a successful registration
transformation to be truly nonrigid.

The volumes (in pixels) of the inner spheres in the two images are V; 49 = 267761
for thew sphere with radius 40 pixels, and V; 59 = 523305 for the sphere with radius 50
pixels. The volumes of the outer spheres after subtraction of the inner spheres’ volumes
are V,, 10 = 3920096 and V, 50 = 3664552. Based on these volumes, we can compute
the “ideal” Jacobian determinants J; and J, of the deformation field throughout the
inner and outer sphere. For registration using the 40-pixel inner sphere as the reference
image, these factors are J; = V; 50/V; 40 =~ 1.954 and J, =V, 50/ V5,40 ~ 0.935.

3 Results

All registration methods performed virtually indistinguishable as judged by achieving
overlap between corresponding structures in the two images (recognition rates between
0.9994 and 0.9997 for all methods). The residual differences were caused by sub-pixel
misalignments along the boundaries of the different structures, which was verified by
visually inspecting the subtraction images.

The results for the demons and curvature registration algorithms are visualized in
Fig. Dl The results for the B-spline registration algorithm are visualized in Fig.[3l For
each algorithm, the images on the left visualize the deformation field as gray-level en-
coded Jacobian values (left half) and as deformed Cartesian grids (right half). These
serve to assess the spatial structure of the variation within the deformation field. The
two line graphs show the distribution of Jacobians over all pixels in the inner (left)
and outer (right) sphere. The average Jacobians in these graphs are represented by
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(d) Curvature registration, multi resolution

Fig. 2. Results for PDE-based registration methods. For each method we show (from left to right):
Jacobian map of the coordinate transformation; deformed Cartesian grid; plots of the distributions
of Jacobians for the inner and outer spheres. Note that Jacobian map and deformed grid are
essentially symmetric with respect to the image center, and only one half of each is shown. Note
also that the deformed grid is represented in the coordinates of the target image and thus does not
match the structure of the Jacobian map, which is represented in the coordinates of the reference
image.
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(a) B-spline registration, unconstrained
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(b) B-spline registration, smoothness constraint (w =5 - 107h
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(c) B-spline registration, volume-preservation constraint (w = 10~3)

Fig. 3. Results for the B-spline registration method with different deformation constraint terms.
See text and caption for Fig. Plfor details.

dashed vertical lines. Ticks labeled “Correct” mark the a priori correct values. All Ja-
cobian maps are shown with a linear gray scale centered at 1.0 with a window width
of 2.0.

All registration methods produced deformations fields for which the average Jaco-
bian over each region was very close to the theoretically correct value. This is a neces-
sary side effect of the correctly compute volume overlap. The multi-resolution demons
and curvature algorithms approximated the correct value for the smaller sphere with
slightly lower accuracy than the other method, but only marginally so.

The unconstrained B-spline registration (Fig.Bla)) produced a deformation field with
a noticeable geometric structure, which is determined by the properties of the B-spline.
This observation, which is also illustrated in Fig. [ previously appeared in graphical
form in works by others (e.g., [3]), but was never considered in detail as a fundamental
issue for subsequent deformation field analysis.
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Fig.4. Jacobian determinant map of B-spline free-form deformations with different angles of
control point movement. Each image is covered by 3x3 control points (solid circles). (a) Central
control point (empty circle) moved by (41, 0) grid units (to solid white circle). (b) Central control
point moved by (+ \}2 ,+ \}2 ). Note the different shapes of the two iso-Jacobian contour sets.

Noteworthy in Fig.2lis the improved spatial homogeneity of the Jacobian maps when
a multi-resolution strategy (4 levels) is used. However, the multi-resolution strategy
introduces geometrical artifacts similar to those observed in Fig. Bl(a) for the uncon-
strained B-spline registration. Here, this effect is an artifact of refining coarser defor-
mation fields (with larger voxels) to finer resolutions.

None of the registration algorithms produced either uniform (desirable from a con-
ceptional point of view) or Gaussian (desirable for statistical testing) distributions of
Jacobians. Several registration algorithms even produced distributions in the smaller
sphere that were bi-modal: B-spline with smoothness constraint (w = 5-10~'; Fig.3[b)),
and the single-resolution demons and curvature algorithms (Fig.2(a) and (c)). Such dis-
tributions grossly violate the assumption of Gaussian distribution of the Jacobian values
that is made by most commonly applied statistical tests, e.g., t-tests.

4 Discussion

The key concept in DBM is the pixelwise comparison and statistical testing of mea-
sures derived from nonrigid coordinate transformations. The results presented in this
paper demonstrate how such derived measures are determined by the absence of image
features, and by the mathematical properties of the nonrigid coordinate transformation
model. This includes any regularizers used to constrain the optimization problem. These
effects are not random, but show strong spatial and distributional structure. DBM results
may, therefore, vary greatly depending on the particular choice of the building blocks
of the algorithm that is used for registration.

None of the methods tested in this work performed perfectly, although the multi-
resolution demons algorithm appeared to have the relatively lowest level of artifact.
Nonetheless, we found that the demons algorithm, too, produced a bi-modal, and thus
highly nongaussian, Jacobian distribution when run at only a single spatial resolution.
On the positive side, because for all methods the average of the Jacobian determinants
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over all pixels in homogeneous regions was close to the correct volume ratios, we sug-
gest that DBM best be performed by segmented regions rather than locally by pixels.

We note that the problems described in this paper are not limited to DBM, but also
apply to application of voxel-based morphometry (VBM) [[13]. The so-called “opti-
mized VBM” [14] protocol incorporates a “modulation” step, in which the maps of
brain tissue weights are corrected for inter-subject volume changes. This correction is
achieved by multiplying the tissue weights at each pixel with the Jacobian determinant
of the transformation that maps each subject into template space.
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