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Abstract. Cephalometric analysis of lateral radiographs of the head is
an important diagnosis tool in orthodontics. Based on manually locating
specific landmarks, it is a tedious, time-consuming and error prone task.
In this paper, we propose an automated system based on the use of Active
Appearance Models (AAMs). Special attention has been paid to clinical
validation of our method since previous work in this field used few ima-
ges, was tested in the training set and/or did not take into account the
variability of the images. In this research, a top-hat transformation was
used to correct the intensity inhomogeneity of the radiographs generating
a consistent training set that overcomes the above described drawbacks.
The AAM was trained using 96 hand-annotated images and tested with a
leave-one-out scheme obtaining an average accuracy of 2.48mm. Results
show that AAM combined with mathematical morphology is the suitable
method for clinical cephalometric applications.

1 Introduction

Cephalometry means measurement of the head. Accordingly, a cephalometric
analysis consists of characterizing distances and angles between significant struc-
tures in a x-ray image of the head. The whole process is based on the localization
of cephalometric landmarks. These points correspond to specific locations on the
radiograph and are accurately defined for hard, external soft and pharyngeal tis-
sues [1]. Figure 1 shows the location of commonly chosen cephalometric points
for several methods. Once located, lines are traced between the points to measure
angles and distances, which are the cephalometric indices. After a comparison of
these measurements with the norms stated for the same age, ethnicity and sex,
a diagnosis can be established and a treatment forecast.

Manual positioning of landmarks is a tedious, time-consuming and error prone
task. Depending on the quality of the radiograph and the experience of the user,
the location will be slightly different. According to Dean et al. [2] and Geelem
et al. [3], inter-expert variability during the positioning task varies from 3.3mm
to 5mm and intra-expert variability is of 1mm.
� Radiographs provided by Y. Perrin, A. Sanpietro and the Eastman Dental Institute.
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Fig. 1. Lateral cephalometric points of bony tissue for different methods of analysis

The orthodontist spends on average 15-20 minutes per analysis depending on
the quality of the cephalogram, his/her experience and the number of points con-
sidered in the method selected. A fully automated system would detect landmarks,
thus reducing the time required to carry out an analysis, improving the accuracy
of landmark localization and decreasing errors due to expert subjectivity.

2 Previous Work

Several approaches have been proposed for the automatic detection of cephalo-
metric landmarks. They can be classified into 3 groups:

Knowledge-based Systems. The first attempt was undertaken by Levy et
al. [4], who applied enhancement filters and a knowledge-based line tracker to
extract edges. Landmarks were located according to their geometric definitions.
The method was tested on two high-quality x-ray images. 23 of 36 landmarks
were located on good quality images. Parthasaraty et al. [5] improved the previ-
ous work by including a four level resolution pyramid to reduce time-processing.
The testing was done in five images. Nine of the landmarks considered in that
study, 58% were within ±2mm, 18% within ±1mm and 100% within ±5mm.
These studies used few images for training and tested the method on the train-
ing set. In the presence of artifacts and bad quality images, these methods will
not work and, therefore, cannot be used for clinical cephalometric systems.

Template Matching. Template matching methods implement a grey-level
model around each landmark on each image in the training set. Then, they search
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for a correspondence between the model and new images. Cardillo et al.[6] applied
a pattern-matching algorithm based on mathematical morphology to detect land-
marks. They considered 40 images in the training set. The testing was done on 20
images. Of 20 landmarks, 66% were within ±2mm. Grau et al. [7] improved on
the work of Cardillo et al. by using a line detection module to search for the most
significant lines. They used 20 images for training and 20 for testing and reported
that 90% of the 17 landmarks tested were repeatedly located within ±2mm. Chen
et al. [8] developed a method of neural networks and genetic algorithms to search
for sub-images containing each of the cephalometric points. These methods con-
sider the texture around each point. However, this appearance can vary from one
image to another making local detection worse. Moreover, not enough images were
used to represent the variability existing in cephalograms. In our experience, these
methods, when used on images slightly different from the ones of the training set,
are not sufficiently accurate for clinical applications.

Statistical Models. Statistical methods are one of the most suitable options
for considering the huge amount of variability in cephalograms, as they take into
account the variation of characteristics in the images. Hutton et al. [9] applied
Active Shape Models (ASMs) to cephalometric point detection. They used 63
randomly selected cephalograms and tested the training set with a drop-one-
out method. 13% of 16 landmarks were within ±1mm, 35% within ±2mm and
74% within ±5mm. The authors concluded that ASM did not give sufficient
accuracy for landmark detection in clinical applications and could only be used
as a good starting point for global landmark identification. ASM mainly considers
the variation in shape present on the images. The intensity variations are only
modeled in the profiles normal to the contour. Accordingly, to improve accuracy
it is necessary to add more information to the system. The appearance of the
radiographs contains useful information that should be taken into account.

3 Method

Active Appearance Models (AAMs), recently proposed by Cootes et al. [10][11],
can model both shape and texture variability existing in a training set. To create
a model we need a set of labeled images representative of the real variability
of the object we want to segment. AAMs have proved to be powerful tools for
medical image segmentation and understanding [12]. The more homogeneous the
images of the training set are, the more robust the model will be. The problem
of the images we work with in this research is that they can be greatly different
and present huge luminosity inhomogeneity. Mathematical morphology can solve
this; in particular, we will apply a top-hat transformation [13] on the images to
extract light objects from an uneven background.

3.1 Selection of the Training Set

The images forming the training set must be representative of the variability
existing in clinical cases. The data and the source should reflect the target
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population for the algorithm that is being developed. In particular, it is nec-
essary to consider: the anatomical and morphological variability of the human
head, the variability of texture depending on image quality, the variability of
structures present in a cephalogram (not all the radiographs have the same size
and include the same structures), the variability of capturing the x-ray (i.e. dou-
ble structures appearing because of the non-orthogonal position of the patient
during capture of a lateral head film) and the variability of the source.

3.2 Luminosity Inhomogeneity Correction

Depending on the source, the cephalogram can present varied textures and thus
be completely different from one another. Background cannot be separated from
the rest due to its non-uniformity. Therefore, a purely preprocessing approach
for intensity inhomogeneity correction is required to improve results when using
AAM. Mathematical morphology [14], which is based on set theory, provides
powerful tools for image analysis. Fundamental operations are erosion, dilation,
opening and closing. An opening consists of an erosion followed by a dilation. A
structuring element defines the size and the shape of the transformation to be
done. In our case we will use a circular structuring element with a radius of 75
pixels. We use this size to extract the structures of interest correctly. The white
top-hat ρ(f) extracts bright structures and is defined as the difference between
the image f and its opening γ(f):

ρ(f) = f − γ(f) (1)

Subtracting the open image from the original provides an image where re-
moved objects stand out clearly. This technique is used to extract contrasted
components with respect to the background. The result of applying this trans-
formation can be seen in Fig. 2 (right column).

3.3 Training the Model

To generate a statistical model of shape and texture variation it is necessary
to describe the shape and the texture of each training example. Therefore, we
represent n landmark points, (xi, yi), for each image as a 2n vector, x, where
x = (x1, . . . , xn, y1, . . . , yn)T will describe the shape of an object. The anno-
tated training set is aligned into a common co-ordinate frame using a Procrustes
Analysis [15]. Hence, we obtain the Point Distribution Model (PDM) for all
the images of the training set. The mean shape is extracted and the appear-
ance variation collected by establishing a piece-wise affine warp (based on the
Delaunay triangulation) between each image of the training set and the mean
shape. Next, the intensity is sampled from the shape-normalized images over the
region covered by the mean shape. The resulting samples are then normalized
to minimize the effect of global lighting variation and the texture (grey-levels)
vector g is obtained. Finally, for both shape and texture, we perform a Principal
Component Analysis (PCA) on the aligned training set to describe the shape
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and appearance variations of the object. Often, shape and texture are corre-
lated. Therefore, we can deduce a combined model of shape and texture with
parameters c, controlling the shape and texture at the same time. We get:

x = x + Qsc , g = g + Qgc (2)

where x and g are the mean shape vector and the mean normalized grey-level
vector, Qs and Qg are matrices describing the modes of variation derived from
the training set and c the combined PCA parameters. New images of the object
can be synthetically constructed from c. More details about AAMs can be found
in [10][11].

3.4 Segmenting New Images

We first place an initial template model over the unseen image. We then use a
principal component multivariate linear regression model to generate new images
to fit the unseen image in the best way. Once the process converges, a match can
be declared. Finally, an optimization scheme accomplishes further refinement of
the match.

3.5 Model Evaluation

The final step of the whole process consists of testing the performance of the
algorithm. Care should be taken to test the algorithm in data that has not been
used in the training.

In this case, we will use a common methodology called leave-one-out. In this
approach, a set of M images (ground truth) is split in M different ways into a
training set of size M-1 and a test set of size 1. For each of the M splits, training
is done on the M-1 images and then testing is done on the remaining 1 item.
Performance is then estimated as the average of the M tests.

4 Experimental Results

We applied the method described to automatically detect cephalometric land-
marks. The open C++ source code AAM-API [17] was partially used in this study.
We implemented the leave-one-out algorithm in Matlab to evaluate the model.

96 images, annotated by an expert, form the training set used in this study.
Image selection fulfils the requirements stated in Sect. 3.1. This number of ima-
ges is sufficient to include all the existing variability. Each image has a size
of 780×1000 pixels and 256 grey-levels. 43 cephalometric landmarks were con-
sidered to assess most of the cephalometric analysis. We used a combination
of scanned and digital x-ray images, coming from different sources, to consider
different image qualities in the training set. Anatomical variability is assessed
with good proportion between ages, different norm groups (Caucasian, black and
oriental), incisor relationship (I,II or III) and dentition (mixed or permanent).
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Fig. 2. Results of the search in a digital image (first row) and a scanned x-ray (second
row) after luminosity inhomogeneity correction. We can appreciate that the original
x-rays are very different and the intensity normalized images are more homogeneous.

We have created a template with 289 points. Points were divided into cephalo-
metric, mathematical and pseudo-landmarks [15]. Double contours were added
to some structures to improve the search giving more specificity to the model [16]
(Fig. 2). The evaluation of the model was assessed using a leave-one-out method.
We considered the initialization of the system to have failed if more than 60% of
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the points have an error larger than 5mm. In these conditions, for 96 images used
in this study, the automatic initialization failed in 9.37% of the cases. Figure 2
shows the results of different quality cephalograms. The first row assesses the
result in a digital x-ray whereas the second row shows the result in a scanned
x-ray with high luminosity variation, black regions and rotation of the head. For
both, the segmentation works well and with high precision. Table 1 assesses the
accuracy of the system for the main landmarks considered. The names of the
landmarks correspond to locations in Fig. 1.

Table 1. Results and comparisons of the main landmarks

mean std ≤ 2mm≤ 3mm≤ 5mm mean std ≤ 2mm≤ 3mm≤ 5mm
(mm)(mm) (%) (%) (%) (mm)(mm) (%) (%) (%)

Na 2.31 1.78 56.32 75.86 91.95 SOr 2.16 1.33 49.42 80.46 96.55
Se 2.04 1.12 52.87 80.46 100 S 2.29 1.26 39.08 70.11 97.70
Or 2.05 1.23 57.47 73.56 97.70 Po 3.66 2.12 18.39 42.53 78.16

PMS 2.24 1.25 48.28 75.86 96.55 Co 2.47 1.35 37.93 64.37 94.25
Ba 2.70 1.79 37.93 67.82 91.95 Ar 2.27 1.41 44.83 74.71 96.55
Pt 2.19 1.22 47.13 78.16 98.85 PtC 2.14 1.37 55.17 78.16 97.70
Cf 2.02 1.18 54.02 85.06 98.85 R1 1.95 1.02 60.92 85.06 100
B 2.19 1.26 43.68 80.46 97.70 Pm 1.97 1 56.32 85.06 98.85
Pg 1.83 1.06 57.47 89.66 98.85 Gn 1.58 1.12 73.56 86.21 98.85
Me 1.59 1.07 70.11 86.21 100 Go 3.88 2.41 26.44 43.68 66.67
R2 2.46 1.43 41.38 71.26 91.95 LIT 1.52 0.90 77.01 94.25 100
LIR 1.55 0.92 67.82 94.25 100 PNS 2.67 1.42 36.78 68.97 91.95
ANS 2.12 1.28 55.17 78.16 96.55 A 2 1.41 67.82 83.91 94.25
UIT 1.82 1.85 75.86 87.36 94.25 UIR 1.98 1.43 65.52 82.76 95.40

On average, for all the cephalometric landmarks considered, the system has a
precision of 2.48mm and an average standard deviation of 1.66mm. Considering
that inter-expert variability varies from 3.3mm to 5mm, these results are to date
the best option for clinical applications. In this study, 50.04% of the landmarks
were located within 2mm, 72.62% within 3mm and 91.44% within 5mm.

5 Conclusions

In this paper, we have shown that AAM achieves precise, automatic detection
of cephalometric landmarks that takes into account the variability existing in
shape and texture. This leads to the clinical applicability of automatic land-
mark identification. Previous work in this field used few images, tested their
methods in the training set or did not select a consistent training set that well
characterized the variability of this type of images. None of the previous studies
undertaken had achieved clinical cephalometric analysis. Our method has proved
to be useful to locate a considerable number of the landmarks with a high preci-
sion rate for clinical cephalometric applications. Image homogeneization and the
use of double contours for some structures improve AAM results when applied
to cephalometric radiographs.
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