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Abstract. With the growing trend towards the use of web applications
the danger posed by cross site scripting vulnerabilities gains severity. The
most serious threats resulting from cross site scripting vulnerabilities are
session hijacking attacks: Exploits that steal or fraudulently use the vic-
tim’s identity. In this paper we classify currently known attack methods
to enable the development of countermeasures against this threat. By
close examination of the resulting attack classes, we identify the web
application’s characteristics which are responsible for enabling the sin-
gle attack methods: The availability of session tokens via JavaScript,
the pre-knowledge of the application’s URLs and the implicit trust re-
lationship between webpages of same origin. Building on this work we
introduce three novel server side techniques to prevent session hijack-
ing attacks. Each proposed countermeasure removes one of the identified
prerequisites of the attack classes. SessionSafe, a combination of the pro-
posed methods, protects the web application by removing the fundamen-
tal requirements of session hijacking attacks, thus disabling the attacks
reliably.

1 Introduction

Web applications as frontends for online services enjoy an ever growing popu-
larity. In addition, a general direction towards web applications replacing tra-
ditional client side executables can be observed during the last years. Email,
banking, project management or business services move from specialized pro-
grams to the web browser.

In close connection to this trend, web application vulnerabilities move from be-
ing mere annoyances towards posing severe threats. With companies like Google
and Yahoo starting to integrate various web applications under one authentica-
tion process the impact of single vulnerabilities even increases, as one weakness
could now endanger a whole range of different applications. One of the most
common threats is session hijacking, an attack method that targets the victim’s
identity. Session hijacking is often feasible because web applications frequently
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suffer from cross site scripting (XSS) vulnerabilities. In most cases one single
XSS vulnerability suffices to compromise the entire application.

Even though XSS is known at least since the year 2000 [4], this class of weak-
nesses is still a serious issue. In 2005 alone 167 XSS vulnerabilities have been
reported to the BugTraq mailing list. Also, the year 2005 brought a shift to
more sophisticated XSS attacks: In July 2005 Anton Rager presented the XSS
proxy, a tool that allowed for the first time a systematic, semi automatic ex-
ploitation of XSS vulnerabilities [I8]. Wade Alcorn described in September 2005
an XSS virus that is able to self propagate from server to server, provided all
these servers run the same vulnerable web application [2]. Finally, in October
2005 the self replicating “mySpace XSS worm” infected more than one million
user profiles [19]. While the cause of XSS vulnerabilities is almost always insuf-
ficient output sanitization in connection with handling of user provided input
strings, ensuring the absence of this flaw is of growing difficulty. Today’s web
applications are complex. They often consist of numerous different server side
technologies, legacy code and third party components. Thus, enforcing consistent
input handling a non-trivial task. In this paper we describe a novel approach to
protect web applications against XSS session hijacking attacks. Instead concen-
trating on user input, we disable session hijacking by removing the attacks’ basic
requirements.

The remainder of the paper is organized as follows. Section [ discusses web
application security topics that are relevant for the proposed methods. Section (3]
describes and classifies currently known XSS session hijacking attacks. In Section
[ follows a description of our countermeasures; those countermeasures then will
be discussed in Section Bl Finally, after looking at related work in Section [B, we
conclude in Section [7]

2 Technical Background

2.1 Session Management
Because of http’s stateless nature [7] web applications that require authentica-
tion need to implement additional measures to keep their users authenticated.
To achieve this, session identifiers (SID) are used: After a successful authentica-
tion the web application generates the SID and transmits it to the client. Every
following http request that contains this SID is regarded as belonging to this par-
ticular user. Thus the SID is a credential that both identifies and authenticates
the user. The protection of this information is therefore essential for the security
of the application. There are three methods of implementing SIDs: inclusion of
the identifier in the URL, communication of the identifier via POST parameters
or storing the identifier in browser cookies:

URL query strings: The SID is included in every URL that points to a
resource of the web application: <a href="some page?SID=g2k42a">...</a>

POST parameters: Instead of using hyperlinks for the navigation through
the application HTML forms are used. In this case, the SID is stored in a hidden
form field. Whenever a navigation is initiated, the according HTML form is
submitted, thus sending the SID as part of the request’s body.
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Cookies: Using cookies for SID storage is broadly used in today’s web ap-
plications. Web browser cookies technology [14] provides persistent data storage
on the client side. A cookie is a data set consisting at least of the cookie’s name,
value and domain. It is sent by the web server as part of an http response message
using the Set-Cookie header field. The cookie’s domain property is controlled by
the URL of the http response that is responsible for setting the cookie. The prop-
erty’s value must be a valid domain suffix of the response’s full domain and con-
tain at least the top level domain (tld) and the original domain. The cookie’s do-
main property is used to determine in which http requests the cookie is included.
Whenever the web browser accesses a webpage that lies in the domain of the
cookie (the domain value of the cookie is a valid domain suffix of the page’s URL),
the cookie is automatically included in the http request using the Cookie field.

2.2 Cross Site Scripting

Cross Site Scripting (XSS) denotes a class of attacks. These attacks are possible,
if a web application allows the inclusion of insufficiently filtered data into web
pages. If a web application fails to remove HTML tags and to encode special
characters like ", >, < or > from user provided strings, an attacker will be capable
of inserting malicious script code into webpages. Consequently, this script code is
executed by the victim’s web browser and runs therefore in the victim’s security
context. Even though XSS is not necessarily limited to JavaScript, attacks may
also use other embedded scripting languages, this paper focuses its description of
attacks and countermeasures on JavaScript. While completely removing scripting
code through output filtering is feasible to disarm XSS threats posed by more
obscure client side scripting languages like VBScript, this procedure is not an
option in the case of JavaScript. JavaScript is ubiquitous, deeply integrated
in common DHTML techniques and used on the vast majority of websites. A
rogue JavaScript has almost unlimited power over the webpage it is contained
in. Malicious scripts can, for example, change the appearance of the page, steal
cookies, or redirect form actions to steal sensitive information (see Section Bland
[9] for further details).

2.3 JavaScript Security Aspects

JavaScript contains semantics of object oriented programming as well as as-
pects that are usually found in functional languages. In this paper we describe
JavaScript from an object orientated point of view. JavaScript in webpages is
executed “sandboxed”: It has no access to the browser’s host system and only
limited access to the web browser’s properties. JavaScript’s capabilities to ma-
nipulate the appearance and semantics of a webpage are provided through the
global object document which is a reference to the root element of the page’s
DOM tree [II]. A script can create, delete or alter most of the tree’s elements.
JavaScript 1.5 has been standardized by ECMA as “ECMAScript” [6] in 1999.

The same-origin policy: The “same-origin policy” defines what is accessi-
ble by a JavaScript. A JavaScript is only allowed read and/or write access to
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properties of windows or documents that have the same origin as the script itself.
The origin of an element is defined by specific elements of the URL it has been
loaded from: The host, the port and the protocol [§]. While port and protocol
are fixed characteristics, JavaScript can influence the host property to mitigate
this policy. This is possible because a webpage’s host value is reflected in its
DOM tree as the domain attribute of the document object. JavaScript is allowed
to set this property to a valid domain suffix of the original host. For example, a
JavaScript could change document .domain from www.example.org to the suffix
example.org. JavaScript is not allowed to change it into containing only the top
level domain (i.e. .org) or some arbitrary domain value. The same-origin policy
defines also which cookies are accessible by JavaScript.

Public, privileged and private members in JavaScript objects: A lit-
tle known fact is, that JavaScript supports information hiding via encapsulation.
The reason for this obscurity is that JavaScript does not provide access specifiers
like “private” to implement encapsulation. Encapsulation in JavaScript is imple-
mented via the scope of a variable. Depending on the context in which a variable
or a method is created, its visibility and its access rights are defined [6]. From
an object oriented point of view this translates to three access levels: “public”,
“privileged” and “private” [B]: “Public” members of objects are accessible from
the outside. They are either defined by prototype functions [6] or created as
anonymous functions and added to the object after object creation. Either way:
They are created within the global scope of the object’s surroundings. Public
methods cannot access private members. “Private” members are only accessible
by private or privileged methods in the same object. They are defined on object
creation and only exist in the local scope of the object. Private methods can-
not be redefined from the outside after object creation. “Privileged” methods
are accessible from the outside. They can read and write private variables and
call private methods. Privileged methods have to be defined on object creation
and exist therefore in the local scope of the object. The keyword this is used
to export the methods to the global scope, so that they can be accessed from
outside the object. If a privileged method is redefined from the outside after
object creation, it will become part of the global scope and its state will change
therefore to “public”.

3 A Classification of XSS Session Hijacking Attacks

All currently known XSS session hijacking attack methods can be assigned to
one of the following different classes: “Session ID theft”, “Browser Hijacking”
and “Background XSS Propagation”.

3.1 Session ID Theft

As described in Section 2.1 web applications usually employ a SID to track the
authenticated state of a user. Every request that contains this SID is regarded
as belonging to the authenticated user. If an attacker can exploit an XSS vul-
nerability of the web application, he might use a malicious JavaScript to steal
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Fig. 1. The three classes of XSS session hijacking attacks [24]

the user’s SID. It does not matter which of the methods described in Section 2.1]
of SID storage is used by the application - in all these cases the attacking script
is able to obtain the SID. The attacking script is now able to communicate the
SID over the internet to the attacker. As long as the SID is valid, the attacker
is now able to impersonate the attacked client [13].

3.2 Browser Hijacking

This method of session hijacking does not require the communication of the SID
over the internet. The whole attack takes place in the victim’s browser. Modern
web browsers provide the XMLHttpRequest object, which can be used to place
GET and POST requests to URLs, that satisfy the same-origin policy. Instead
of transferring the SID or other authentication credentials to the attacker, the
“Browser Hijacking” attack uses this ability to place a series of http requests
to the web application. The application’s server cannot differentiate between
regular, user initiated requests and the requests that are placed by the script. The
malicious script is therefore capable of acting under the identity of the user and
commit arbitrary actions on the web application. In 2005 the so called “mySpace
Worm” employed this technique to create a self replicating JavaScript worm that
infected approximately one million profiles on the website myspace.com [19].

3.3 Background XSS Propagation

Usually not all pages of a web application are vulnerable to cross site scripting.
For the attacks described above, it is sufficient that the user visits only one
vulnerable page in which a malicious script has been inserted. However, other
attack scenarios require the existence of a JavaScript on a certain webpage to
work. For example, even when credit card information has been submitted it
is seldom displayed in the web browser. In order to steal this information a
malicious script would have to access the HTML form that is used to enter it.
Let us assume the following scenario: Webpage A of the application is vulnerable
against XSS whereas webpage B is not. Furthermore, webpage B is the page
containing the credit card entry form. To steal the credit card information, the
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attacker would have to propagate the XSS attack from page A to page B. There
are two techniques that allow this attack:

Propagation via iframe inclusion: In this case, the XSS replaces the dis-
played page with an iframe that takes over the whole browser window. Further-
more, the attacking script causes the iframe to display the attacked webpage,
thus creating the impression that noting has happened. From now on every user
navigation is done inside the iframe. While the user keeps on using the applica-
tion, the attacking script is still active in the document that contains the iframe.
As long as the user does not leave the application’s domain, the malicious script
is able to monitor the user’s surfing and to include further scripts in the webpages
that are displayed inside the iframe. A related attack is described in [18].

Propagation via pop under windows: A second way of XSS propagation
can be implemented using “pop under” windows. The term “pop under” window
denotes the method of opening a second browser window that immediately sends
itself to the background. On sufficiently fast computers users often fail to notice
the opening of such an unwanted window. The attacking script opens such a
window and inserts script code in the new window’s body. The new window has
a link to the DOM tree of the original document (the father window) via the
window.opener property. This link stays valid as long as the domain property
of the father window does not change, even after the user resumes navigating
through the web application. The script that was included in the new window
is therefore able to monitor the user’s behavior and include arbitrary scripts in
web pages of the application that are visited during the user’s session.

4 Countermeasures Against Session Hijacking

In the next Sections we propose countermeasures against the described session
hijacking attacks. Each of these countermeasures is designed to disarm at least
one of the specified threats.

4.1 Session ID Protection Through Deferred Loading

The main idea of the proposed technique is twofold: For one, we store the SID
in such a way that malicious JavaScript code bound by the “same-origin policy”
is not able to access it any longer. Secondly, we introduce a deferred process of
loading the webpage, so that security sensitive actions can be done, while the
page is still in a trustworthy state. This deferred loading process also guarantees
the avoidance of timing problems.

To successfully protect the SID, it has to be kept out of reach for any
JavaScript that is embedded into the webpage. For this reason, we store the SID
in a cookie that does not belong to the webpage’s domain. Instead, the cookie
is stored for a different (sub-)domain that is also under the control of the web
application. In the following paragraphs the main web application will reside
on www.example.org, while the cookies will be set for secure.example.org.
The domain secure.example.org is hosted on the same server as the main web
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application. Server scripts of the main web application have to be able to share
data and/or communicate with the server scripts on secure.example.org for
this technique to work. On the secure domain only two simple server scripts
exist: getCookie.ext and setCookie.ext. Both are only used to transport the
cookie data. The data that they respond is irrelevant - in the following descrip-
tion they return a 1 by 1 pixel image.

To carry out the deferred loading process we introduce the “PagelLoader”.
The Pageloader is a JavaScript that has the purpose to manage the cookie
transport and to load the webpage’s content. To transport the cookie data from
the client to the server it includes an image with the getCookie.ext script as
URL. For setting a cookie it does the same with the setCookie.ext script. To
display the webpage’s body the Pagel.oader requests the body data using the
XMLHttpRequest object. In the following specifications the abbreviations “RQ”
and “RP” denote respectively “http request” and “http response”.

Getting the cookie data. The process of transferring an existing cookie
from the client to the server is straight forward. In the following scenario the
client web browser already possesses a cookie for the domain secure.example.
org. The loading of a webpage for which a cookie has been set consists of the
following steps (see figure 1.a):

1. The client’s web browser sends an http request for www.example.org/
index.ext (RQ1).

2. The web server replies with a small HTML page that only contains the
PageLoader (RP1).

3. The PageLoader includes the getCookie.ext image in the DOM tree of
the webpage. This causes the client’s web browser to request the image
from the server (RQ2). The cookie containing the SID that is stored for
secure.example.org is included in this request automatically.

4. The PageLoader also requests the webpage’s body using the XMLHttpRe-
quest object (RQ3). This http request happens parallel to the http request
for the getCookie.ext image.

5. The web server waits with the answer to RQ3 until it has received and
processed the request for the getCookie.ext image. According to the cookie
data that this request contained, the web server is able to compute and send
the webpage’s body (RP2).

6. The Pageloader receives the body of the webpage and uses the
document .write method to display the data.

The web server has to be able to identify that the last two http requests (RQ2
and RQ3) where initiated by the same PageLoader and therefore came from the
same client. For this reason the PageLoader uses a request ID (RID) that is
included in the URLs of the request RQ2 and RQ3. The RID is used by the web
server to synchronize the request data between the domains www and secure.

Setting a cookie: The usually preceding process of transferring existing
cookie data from the client to the server, as described above, is left out for
brevity. With this simplification the setting of a cookie consists of the following
steps (see figure 1.b):
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Fig. 2. schematic view of the processes

1. The client’s web browser sends an http request for www.example.org/
index.ext (RQ1).

2. The web server replies with the PageLoader (RP1) and the PageLoader
subsequently requests the body data (RQ2).

3. The web server computes the request RQ2. Because of the outcome of the
computation the server decides to place a cookie. The server replies with
“SETCOOKIE” to the PageLoader’s request for the body data (RP2).

4. The PagelLoader receives the ¢“SETCOOKIE” token and includes the
setCookie.ext image in the DOM tree of the webpage. This causes the
client’s web browser to request the image from the server (RQ3).

5. The PageLoader also requests the webpage’s body once more (RQ4). This http
request happens parallel to the http request for the setCookie.ext image.

6. The web server receives the request for the image and includes the cookie data
in the response (RP3). The web server marks the RID as “used” (see below).

7. The web server waits with the answer to RQ4 until it successfully delivered
the setCookie.ext image to the client. After the image request has been
processed the body data gets sent (RP4).

There is an important timing aspect to take into consideration: The
PageLoader should not display the HTML body data before the cookie setting
process is finished, and the web server should never reply more than once to a
setCookie.ext request containing the same RID value. Otherwise, the security
advantage of the proposed method would be lost, because after the HT'ML body
data is displayed in the client’s browser a malicious JavaScript might be exe-
cuted. This script then could read the DOM tree to obtain the full URL of the
setCookie.ext image and communicate this information via the internet to the
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attacker. If at this point of time the web server still treats this image URL (more
precise: the RID value) as valid, the attacker would be able to successfully re-
quest the image including the cookie data from the web server. If no invalidation
of the RID happens, the described technique will only shift the attack target
from losing the cookie value to losing the RID value. For the same reason the
RID value must be random and of sufficient length in order to prevent guessing
attacks. Because of the restrictions posed by the same-origin policy, the cook-
ies stored for secure.example.org are not accessible by JavaScript embedded
into a page from www.example.org. Furthermore, JavaScript is not allowed to
change document.domain to secure.example.org because this value is not a
valid domain suffix of the original host value www.example.org. The secure sub-
domain only contains the two specified server scripts for cookie transportation.
The reply data of these server scripts does not contain any dynamic data. Thus,
an XSS attack on secure.example.org is not feasible. Therefore, the proposed
technique successfully prevents cookie stealing attacks without limiting cookie
usage.

4.2 One-Time URLs

To defend against browser hijacking (seeB.2) we have to remove the fundamental
basis of this attack class. Every browser hijacking attack has one characteristic
in common: The attacking script submits one or more http requests to the server
and potentially parses the server’s response. The basis for this attack is there-
fore the attacker’s knowledge of the web application’s URLs. The main idea of
the proposed countermeasure is to enhance the application’s URLs with a se-
cret component which cannot be known, obtained, or guessed by the attacking
JavaScript. As long as the server responds only to requests for URLs with a
valid secret component, the attacker is unable to execute a browser hijacking
attack.

To determine the requirements for successful URL hiding we have to examine
the abilities of rogue JavaScript. The secret URL component has to satisfy the
following limitations:

— It has to be unguessable.

— It must not be stored in an HTML element, e.g. a hidden form field.
JavaScript can access the DOM tree and therefore is able to obtain any
information that is included in the HTML code.

— It must not be stored in public JavaScript variables. All JavaScript code
in one webpage exists in the same namespace. Therefore, a malicious script
is able to execute any existing JavaScript function and read any available
public variable.

— It must not be hard coded in JavaScript. Every JavaScript element (i.e. ob-
ject, function or variable) natively supports the function toString() which
per default returns the source code of the element. Malicious script could
use this function to parse code for embedded information.
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— It has to be valid only once. Otherwise, the attacker’s script could use the
value of document . location to emulate the loading process of the displayed

page.

Thus, the only place to keep data protected from malicious JavaScript is a
private variable of a JavaScript object. In the following paragraphs we show
how this approach can be implemented. We only describe this implementation
in respect of randomizing hyperlink URLs. The randomization of HTML forms
is left out for brevity - the applicable technique is equivalent.

The URLRandomizer Object: Our approach uses a URL GET parameter
called “rnonce” to implement the URL randomization. Only URLs containing a
valid rnonce are treated as authorized by the web server. To conduct the actual
randomization of the URLs we introduce the URLRandomizer, a JavaScript
object included in every webpage. As introduced above, the URLRandomizer
object contains a private variable that holds all valid randomization data. Dur-
ing object creation the URLRandomizer requests from the web server a list of
valid nonces for the webpage’s URLs. This request has to be done as a separate
http request on runtime. Otherwise, the list of valid nonce would be part of the
source code of the HTML page and therefore unprotected against XSS attacks.
The URLRandomizer object also possesses a privileged method called “go()”
that has the purpose to direct the browser to new URLs. This method is called
by hyperlinks that point to URLs that require randomization:

<a href="#" onclick="URLRandomizer.go(’placeOrder.ext’);">0rder</a>

The “go()” method uses the function parameter and the object’s private random-
ization data to generate a URL that includes a valid rnonce. This URL is imme-
diately assigned to the global attribute document.location causing the client’s
web browser to navigate to that URL. Listing 1 shows a sketch of the URL-
Randomizer’s go() function. In this code “validNonces” is a private hashtable
containing the valid randomization data.

r N
this.go = function(path){
nonce = validNonces [path];
document .location =
"http://www.example.org/"+path+"?rnonce="+nonce;
}
- J

Listing 1.1. sketch of the URLRandomizers go() function

Timing aspects: As mentioned above, the URLRandomizer obtains the valid
randomization data from the server by requesting it via http. This leads to
the following requirement: The URL that is used to get this data also has to
be randomized and limited to one time use. It is furthermore important, that
the URLRandomizer object is created early during the HTML parsing process
and that the randomization data is requested on object creation. Otherwise,
malicious JavaScript could examine the source code of the URLRandomizer to
obtain the URL for the randomization data and request it before the legitimate
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object does. As long as the definition and creation of the URLRandomizer object
is the first JavaScript code that is encountered in the parsing process, this kind
of timing attack cannot happen.

Entering the randomized domain: It has to be ensured that the first
webpage, which contains the URLRandomizer object, was not requested by a
potential malicious JavaScript, but by a proper user of the web application.
Therefore, an interactive process that cannot be imitated by a program is re-
quired for the transition. The natural solution for this problem is combining the
changeover to one-time URLs with the web application’s authentication process.
In situations where no authentication takes place CAPTCHA (Completely Au-
tomated Public Turing-Test to Tell Computers and Humans Apart) technology
[23] can be employed for the transition. If no interactive boundary exists between
the realms of static and one-time URLs, a malicious JavaScript would be able to
request the URL of the entry point to the web application and parse its HTML
source code. This way the script is able to acquire the URL that is used by the
URLRandomizer to get the randomization data.

Disadvantages of this approach: The proposed method poses some re-
strictions that break common web browser functionality: Because it is forbidden
to use a random nonce more than once, the web server regards every http re-
quest that includes a invalidated nonce as a potential security breach. Depend-
ing on the security policy such a request may result in the termination of the
authenticated session. Therefore, every usage of the web browser’s “Back” or
“Reload” buttons pose a problem because these buttons cause the web browser
to reload pages with invalid nonces in their URLs. A web application using one-
time URLs should be verbose about these restrictions and provide appropriate
custom “Back” and “Reload” buttons as part of the application’s GUI. It is
also impossible to set bookmarks for URLs that lie in the randomized area of
the web application, as the URL of such a bookmark would contain an invalid
random nonce. Other issues, e.g. the opening of new browser windows, can be
solved using DHTML techniques. Because of the described restrictions, a limita-
tion on the usage of one-time URLs for only security sensitive parts of the web
application may be recommendable.

Alternative solutions: Some of the limitations mentioned above exist be-
cause the proposed URLRandomizer object is implemented in JavaScript. As
described above the separation of two different JavaScript objects running in the
same security context is a complex and limited task. Especially the constraint
that a random nonce can be used only once is due to the described problems. An
alternative approach would be using a technology that can be separated cleanly
from potential malicious JavaScript. There are two technologies that might be
suitable candidates: Java applets [22] and Adobe Flash [I]. Both technologies
have characteristics that suggest that they might be suitable for implementing
the URL randomizing functionality: They provide a runtime in the web browser
for client side code which is separated from the JavaScript runtime, they possess
interfaces to the web browser’s controls, they are able to export functionality to
JavaScript routines and they are widely deployed in today’s web browsers. Before
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implementing such an solution, the security properties of the two technologies
have to be examined closely, especially in respect of the attacker’s capability to
include a malicious Java or Flash object in the attacked web page.

4.3 Subdomain Switching

The underlying fact which is exploited by the attacks described in Section
is, that webpages with the same origin implicitly trust each other. Because of
this circumstance rogue iframes or background windows are capable of inserting
malicious scripts in pages that would not be vulnerable otherwise. As years of
security research have taught us, implicit trust is seldom a good idea - instead
explicit trust should be the default policy. To remove this implicit trust between
individual webpages that belong to the same web application, we have to en-
sure that no trust relationship between these pages induced by the same-origin
policy exists: As long as the document.domain property for every page differs,
background XSS propagation attacks are impossible.

To achieve this trust removal, we introduce additional subdomains to the web
application. These subdomains are all mapped to the same server scripts. Every
link included into a webpage directs to a URL with a subdomain that differs from
the domain of the containing webpage. For example a webpage loaded from http:
//sl.www.example.org only contains links to http://s2.www.example.org.
Links from s2.www.example.org would go to s3.www... and so on. As a result
every single page possesses a different document .domain value. In cases where a
page A explicitly wants to create a trust relationship to a second page B, pages
A and B can change their document .domain setting to exclude the additional
subdomain.

Tracking subdomain usage: As mentioned above, all added subdomains
map to the same server scripts. Therefore, the URL http://s01.www.example.
org/order.ext points to the same resource as for example the URL http://
s99.www.example.org/order.ext. The subdomains have no semantic function;
they are only used to undermine the implicit trust relationship. If a malicious
script rewrites all URLs in a page to match the script’s document . domain value,
the web application will still function correctly and a background propagation
attack will again be possible. For this reason, the web server has to keep track
which mapping between URLs and subdomains have been assigned to a user’s
session.

Implementation aspects: The implementation of the subdomains is highly
dependent on the application server used. For our implementation we used the
Apache web server [16] which allows the usage of wildcards in the definition of
subdomain names. Consequently, we had unlimited supply of applicable sub-
domain names. This allows the choice between random subdomain names or
incrementing the subdomain identifier (s0001.www links to s0002.www which
links to s0003.www and so on). On application servers that do not offer such an
option and where therefore the number of available subdomain names is limited,
the web application has to be examined closely. It has to be determined how
many subdomains are required and how the mapping between URLs and sub-
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domains should be implemented. These decisions are specific for each respective
web application.

5 Discussion

5.1 Combination of the Methods

Before implementing the countermeasures described in Section [ the web ap-
plication’s security requirements and environment limitations have to be exam-
ined. A combination of all three proposed methods provides complete protection
against all known session hijacking attacks: The Deferred Loading Process pre-
vents the unauthorized transmission of SID information. Subdomain Switching
limits the impact of XSS vulnerabilities to only the vulnerable pages. Further-
more Browser Hijacking attacks that rely on the attacker’s capability to access
the content of the attack’s http responses are also prevented as the XMLHttpRe-
quest object is bound by the same origin policy: With Subdomain Switching in
effect the attacking script would have to employ iframe or image inclusion to
create the attack’s http request. One-Time URLs prevent all Browser Hijack-
ing attacks. Furthermore Session Riding [20] attacks would also be impossible
as this attack class also relies on the attacker’s prior knowledge of the applica-
tion’s URLs. It is strongly advisable to implement all three methods if possible.
Otherwise, the targeted security advantage might be lost in most scenarios.

5.2 Limitations

As shown above, a combination of the countermeasures protect against the ses-
sion hijacking attacks described in Section Bl However, on the actual vulnerable
page in which the XSS code is included, the script still has some capabilities, e.g
altering the page’s appearance or redirecting form actions. Thus, especially web-
pages that include HTML forms should be inspected thoroughly for potential
weaknesses even if the described techniques were implemented.

The described techniques are not meant to replace input checking and output
sanitation completely. They rather provide an additional layer of protection to
mitigate the consequences of occurring XSS vulnerabilities.

5.3 Transparent Implementation

An implementation of the proposed methods that is transparent to existing web
applications is desirable. Such an implementation would allow to protect legacy
applications without code changes.

Deferred Loading: There are no dependencies between the deferred loading
process and the content of the application’s webpages. Therefore, a transparent
implementation of this method is feasible. It can be realized using an http proxy
positioned before the server scripts: The proxy intercepts all incoming and out-
going http messages. Prior to transferring the request to the actual server scripts,
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Fig. 3. Transparent implementation of the “get cookie” process

the “get cookie” process is executed (see figure B]). Before sending the http re-
sponse to the client, all included cookies are stripped from the response and send
to the client via the “set cookie” process.

One-Time URLs and Subdomain Switching: We only describe the prob-
lems in respect to One-Time URLs. Most of these issues also concern Subdo-
main Switching, while Subdomain Switching does not pose additional difficulties.
A transparent implementation of these methods also would employ proxy like
functionality. All incoming requests are examined whether their URLs are valid,
i.e. contain a valid random nonce. All outgoing HTML data is modified to use
the specified URLs. Implementing such a proxy is difficult because all applica-
tion local URLs have to be rewritten for using the randomizer object. While
standard HTML forms and hyperlinks pose no special challenge, prior existing
JavaScript may be harder to deal with. All JavaScript functions that assign
values to document.location or open new windows have to be located and
modified. Also all existing onclick and onsubmit events have to be rewritten.
Furthermore, HTML code might include external referenced JavaScript libraries,
which have to be processed as well. Because of these problems, a web application
that is protected by such a solution has to be examined and tested thoroughly.
Therefore, an implementation of the proposed methods as a library for hyperlink
and form creation is preferable.

5.4 Future Work

It still has to be specified how the proposed methods can be integrated into
established frameworks and application servers. Such an integration is the pre-
requisite for examinations concerning performance issues and backwards com-
patibility. Recently we finished developing a transparent solution as described in
Section [0.3] for the J2EE framework [24]. This implementation will be the basis
for further investigations .
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6 Related Work

The first line of defense against XSS attacks is input filtering. As long as
JavaScript code is properly stripped from all user provided strings and special
characters are correctly encoded, XSS attacks are impossible. However, imple-
menting correct input filtering is a non-trivial task. For example, in 2005 an XSS
input filter was added to the PHPNuke content management system that still
was vulnerable against numerous known XSS attack vectors [3].

Scott and Sharp [21] describe an application level firewall which is positioned
in front of the web server. The firewall’s ruleset is defined in a specialized security
policy description language. According to this ruleset incoming user data (via
POST, GET and cookie values) are sanitized. Only requests to URLs for which
policies have been defined are passed to the web server. The Sanctum AppShield
Firewall is another server side proxy solution [I3]. AppShield executes default
filter operations on all user provided data in order to remove potential XSS at-
tacks. Opposed to Scott and Sharp’s approach, AppShield requires no application
specific configuration which makes it easy to install but less powerful.

Kirda et al. proposed “Noxes”, a client side personal firewall [I2]. Noxes pre-
vents XSS induced information leakage, e.g. stealing of cookie data, by selectively
disallowing http requests to resources that do not belong to the web application’s
domain. The firewall’s ruleset is a combination of automatically constructed and
manually configured rules. Noxes does not offer protection against bowser hi-
jacking attacks.

“Taint analysis” is a method for data flow tracking in web applications. All
user controlled data is marked as “tainted”. Only if the data passes sanitizing
functions its status will change to “untainted”. If a web application tries to
include tainted data into a webpage a warning will be generated. Taint analysis
was first introduced by Perl’s taint mode [I5]. In 2005 Huang et al. presented
with WEBSSARI a tool that provides static taint analysis for PHP [10].

Microsoft introduced an “http only” option for cookies with their web browser
Internet Explorer 6 SP1 [I7]. Cookies that are set with this option are not
accessible by JavaScript and therefore safe against XSS attacks. The http only
option is not standardized and until now there are no plans to do so. It is
therefore uncertain if and when other web browsers will implement support for
this option.

7 Conclusion

In this paper we presented SessionSafe, a combination of three methods that
successfully prohibits all currently known XSS session hijacking attacks.

To achieve this, we classified currently known methods for session hijacking.
Through a systematic examination of the resulting attack classes, we identified
the basic requirements for each of these attack methodologies: SID accessibility
in the case of Session ID Theft, prior knowledge of URLs in the case of Browser
Hijacking and implicit trust between webpages in the case of Background XSS
Propagation.
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There are only two instruments provided by the web browser architecture
that can be used to enforce access restrictions in connection with JavaScript:
The same-origin policy and private members in JavaScript objects. Using the
knowledge gained by the classification, we were able to apply these security
mechanisms to remove the attack classes’ foundations: To undermine the SID
accessibility, the SID is kept in a cookie which belongs to a different subdomain
than the main web application. To achieve this, we developed a deferred load-
ing process which allows to execute the cookie transport while the web page is
still in a trustworthy state. To undermine the pre-knowledge of the application’s
URLs, valid One-Time URLs are hidden inside private members of the URL-
Randomizer JavaScript object. Finally, additional subdomains are introduced
by Subdomain Switching, in order to create a separate security domain for every
single webpage. This measure employs the same-origin policy to limit the im-
pact of XSS attacks to the vulnerable pages only. Consequently, each proposed
countermeasure removes the fundamental necessities of one of the attack classes,
hence disabling it reliably. By preventing session hijacking, a large slice of the
attack surface of XSS can be removed.

The proposed countermeasures do not pose limitations on the development of
web applications and only moderate restrictions on web GUI functionality. They
can be implemented as an integral component of the application server and thus
easily be integrated in the development or deployment process.
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