
Key Derivation Algorithms for Monotone Access
Structures in Cryptographic File Systems

Mudhakar Srivatsa and Ling Liu

College of Computing, Georgia Institute of Technology
{mudhakar, lingliu}@cc.gatech.edu

Abstract. Advances in networking technologies have triggered the “storage as a
service” (SAS) model. The SAS model allows content providers to leverage hard-
ware and software solutions provided by the storage service providers (SSPs),
without having to develop them on their own, thereby freeing them to concen-
trate on their core business. The SAS model is faced with at least two important
security issues: (i) How to maintain the confidentiality and integrity of files stored
at the SSPs? (ii) How to efficiently support flexible access control policies on the
file system? The former problem is handled using a cryptographic file system,
while the later problem is largely unexplored. In this paper, we propose secure,
efficient and scalable key management algorithms to support monotone access
structures on large file systems. We use key derivation algorithms to ensure that a
user who is authorized to access a file, can efficiently derive the file’s encryption
key. However, it is computationally infeasible for a user to guess the encryption
keys for those files that she is not authorized to access. We present concrete algo-
rithms to efficiently and scaleably support a discretionary access control model
(DAC) and handle dynamic access control updates & revocations. We also present
a prototype implementation of our proposal on a distributed file system. A trace
driven evaluation of our prototype shows that our algorithms meet the security
requirements while incurring a low performance overhead on the file system.

1 Introduction

The widespread availability of networks, such as the Internet, has prompted a prolif-
eration of both stationary and mobile devices capable of sharing and accessing data
across networks spanning multiple administrative domains. Today, efficient data stor-
age is vital for almost every scientific, academic, or business organization. Advances
in the networking technologies have triggered the “storage as a service” (SAS) model
[15][13]. The SAS model allows organizations to leverage hardware and software so-
lutions provided by third party storage service providers (SSPs), thereby freeing them
to concentrate on their core business. The SAS model decouples physical storage from
file management issues such as access control and thus allows the file system to scale
to a large number of users, files, and organizations. However, from the perspective of
the organization (content owner), the SAS model should address at least two important
security issues: (i) How to maintain the confidentiality & integrity of files stored at the
SSPs? (ii) How to securely and efficiently support flexible access control policies on
the file system?

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 347–361, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

348 M. Srivatsa and L. Liu

Cryptographic File Systems. Cryptographic file systems address the first problem.
These file systems essentially maintain the confidentiality and integrity of the file data
by storing it in an encrypted format at the SSPs. With the advent of high speed hard-
ware for encrypting and decrypting data, the overhead in a cryptographic file system
due to file encryption and decryption is affordably small. Examples of cryptographic
file systems include CFS [4], TCFS [7], CryptFS [29] and NCryptFS [28]. Examples of
wide-area distributed cryptographic file systems include Farsite [2] and cooperative file
system [8].

Access Control. Access control in a cryptographic file system translates into a secure
key management problem. Cryptographic access control [12] is achieved by distribut-
ing a file’s encryption key to only those users that are authorized to access that file.
A read/write access to the files stored at the SSP is granted to all principals, but only
those who know the key are able to decrypt the file data. However, there is an inher-
ent tension between the cost of key management and the flexibility of the access control
policies. At one extreme the access control matrix is highly flexible and can thus encode
arbitrary access control policies (static). An access control matrix [17] is (0, 1) matrix
MU×F , where U is a set of users and F is a set of files and Muf = 1 if and only if user
u can access file f . Implementing cryptographic access control would require one key
for every element Muf such that Muf = 1. This makes key management a challenging
performance and scalability problem in a large file system wherein, access permissions
may be dynamically granted and revoked.

Our Approach. The access control matrix representation of the access control rules
does not scale well with the number of users and the number of files in the system. A
very common strategy is to impose an access structure on the access control policies.
An access structure, as the name indicates, imposes a structure on the access control
policies. Given an access structure, can we perform efficient and scalable key manage-
ment without compromising the access control policies in the file system? We propose
to use an access structure to build a key derivation algorithm. The key derivation algo-
rithm uses a much smaller set of keys, but gives the same effect as having one key for
every Muf = 1. The key derivation algorithm guarantees that a user u can use its small
set of keys to efficiently derive the key for any file f if and only if Muf = 1.

Monotone Access Structure. In this paper we consider access control policies based
on monotone access structures. Most large enterprises, academic institutions, and mili-
tary organizations allow users to be categorized into user groups. For example, let {g1,
g2, g3} denote a set of three user groups. A user u can be a member of one or more
groups denoted by Gu. Access control policies are expressed as monotone Boolean ex-
pressions on user groups. For example, a file f may be tagged with a monotone Bf = g1
∧ (g2 ∨ g3). This would imply that a user u can access file f if and only if it belongs to
group g1 and either one of the groups g2 or g3. For example, if Gu1 = {g1, g3} and Gu2

= {g2, g3}, then user u1 can access file f , but not user u2. Monotone access structures
are a common place in role-based access control models [25]. In the RBAC model, each
role (say, a physician or a pharmacist) is associated with a set of credentials. Files are
associated with a monotone Boolean expression Bf on credentials. A role r can access
a file f if and only if the credentials for role r satisfies the monotone Bf .

Key Derivation Algorithms for Monotone Access Structures 349

Our Contribution. In this paper, we propose secure, efficient and scalable key manage-
ment algorithms that support monotone access structures in a cryptographic file system.
(i) Number of Keys: We ensure that each user needs to maintain only a small number of
keys. It suffices for a user to maintain only one key per group that the user belongs to.
For example, a user u with Gu = {g1, g2} needs to maintain keys one key corresponding
to group g1 and group g2. (ii) Efficient Key Derivation: It is computationally easy for a
user to derive the keys for all files that she is authorized to access. For example, a user
who has the key for groups g1 and g2 can easily derive the encryption key for a file f
with Bf = g1 ∧ (g2 ∨ g3). (iii) Secure Key Derivation: It is computationally infeasible
for a user to derive the key for any file that she is not authorized to access. For exam-
ple, for a user who has the keys only for groups g2 and g3, it is infeasible to guess the
encryption key for a file f with Bf = g1 ∧ (g2 ∨ g3). (iv) Discretionary Access Control
(collusion resistance): It is computationally infeasible for two or more colluding users
to guess the encryption key for a file that none of them are independently authorized
to access. For example, two colluding users u1 with Gu1 = {g1} and u2 with Gu2 =
{g3} should not able to guess the encryption key for a file f with Bf = g1 ∧ (g2 ∨
g3). (v) Revocation: Our key management algorithms support dynamic revocations of a
user’s group membership through cryptographic leases. A lease permits a user u to be a
member of some group g from time a to time b. Our algorithms allow the lease duration
(a, b) to be highly fine grained (say, to a millisecond precision).

Paper Outline. The following sections of this paper are organized as follows. Sec-
tion 2 describes the SAS model and monotone access structures in detail. Section 3
presents a detailed design and analysis of our key management algorithms for imple-
menting discretionary access control using monotone access structures in cryptographic
file systems. Technical report [26] sketches an implementation of our key management
algorithms on a distributed file system followed by trace-driven evaluation in Section 4.
Finally, we present related work in Section 5 followed by a conclusion in Section 6.

2 Preliminaries

In this section, we present an overview of the SAS model. We explicitly specify the
roles played by the three key players in the SAS architecture: content provider, storage
service provider, and users. We also formally describe the notion of user groups and the
properties of monotone access structures on user groups.

2.1 SAS Model

The SAS model comprises of three entities: the content provider, the storage service
provider and the users.

Storage Service Providers (SSPs). Large SSPs like IBM and HP use high speed stor-
age area networks (SANs) to provide large and fast storage solutions for multiple or-
ganizations. The content provider encrypts files before storing them at a SSP. The SSP
serves only encrypted data to the users. The content provider does not trust the SSP
with the confidentiality and integrity of file data. However, the SSP is trusted to per-
form read and write operations on the encrypted files. For performance reasons, each

350 M. Srivatsa and L. Liu

file is divided into multiple data blocks that are encrypted separately. An encrypted data
block is the smallest granularity of data that can be read or written by a user or a content
provider.

Content Provider. The content provider is responsible for secure, efficient and scalable
key management. We assume that there is a secure channel between the group key man-
agement service and the users. This channel is used by the content provider to distribute
keys to the users. We assume that the channel between the content provider & the SSP
and that between the users & the SSP could be untrusted. An adversary would be able
to eavesdrop or corrupt data sent on these untrusted channels. The content provider also
includes a file key server. The users interact with the file key server to derive the encryp-
tion keys for the files they are authorized to access. The channel between the user and
the file key server may be untrusted. In the following sections of this paper, we present
an efficient, scalable and secure design for the file key server.

Users. We use an honest-but-curious model for the users. Content providers authorize
users to access certain files by securely distributing appropriate keys to them. Let K(f)
denote the encryption key used to encrypt file f . If a user u is authorized to access file f ,
then we assume that the user u would neither distribute the key K(f) nor the contents
of the file f to an unauthorized user. However, a user u′ who is not authorized to access
file f would be curious to know the file’s contents. We assume that unauthorized users
may collude with one another and with the SSP. Unauthorized users may eavesdrop or
corrupt the channel between an authorized user and the SSP. We use a discretionary ac-
cess control (DAC) model to formally study collusions amongst users. Under the DAC
model the set of files that is accessible to two colluding users u1 and u2 should be no
more than the union of the set of files accessible to the user u1 and the user u2. Equiv-
alently, if a file f is accessible neither to user u1 nor to user u2 then it should remain
inaccessible even when the users u1 and u2 collude with one another.

2.2 Monotone Access Structures

In this section, we describe monotone access structures based access control policies.
Our access control policies allow files to be tagged with monotone Boolean expressions
on user groups. Let G = {g1, g2, · · · , gs} denote a set of s user groups. A user may
be a member of one or more user groups. Each file f is associated with a monotone
Boolean expression Bf . For example, Bf = g1 ∧ (g2 ∨ g3) would mean that the file f is
accessible by a user u if and only if u is a member of group g1 and a member of either
group g2 or group g3.

We require that the Boolean expression Bf be a monotone. This assumption has sev-
eral consequences: (i) Let Gu denote the set of groups to which user u belongs. Let
Bf (Gu) denotes Bf (g1, g2, · · · , gs) where gi = 1 if the group gi ∈ Gu and gi = 0
otherwise. For two users u and v if Gu ⊆ Gv then Bf (Gu) ⇒ Bf (Gv). (ii) Let us
suppose that a user u is authorized to access a set of files F. If the user u were to obtain
membership to additional groups, it does not deny u access to any file f ∈ F (monotone
property). (iii) For all files f , Bf can be expressed using only ∧ and ∨ operators (with-
out the NOT (∼) operator) [18]. (iv) Access control policies specified using monotone
Boolean expressions are easily tractable. Let Gu denote the set of groups to which user

Key Derivation Algorithms for Monotone Access Structures 351

Fig. 1. FSGuard Architecture

Table 1. Comparison of Key Management Algorithms

File Bf Gu Num keys Storage
Access Update Update per User Overhead

FSGuard 1cpu + 1net - - 4 1disk
Key-per-User - 103cpu + 10net 106cpu + 104net 1 20disk
Key-per-File - 103cpu + 10net 106cpu + 104net 104 1disk

u belongs. Then, one can efficiently determine whether the user u can access a file f by
evaluating the Boolean expression Bf (Gu). Note that evaluating a Boolean expression
on a given input can be accomplished in O(|Bf |) time, where |Bf | denotes the size of
the Boolean expression Bf .

3 User Groups

3.1 Overview

Figure 1 shows the entities involved in our design. The core component of our design
is the file key server. We use the file key server for securely, efficiently and scaleably
managing the file encryption keys. A high level description of our key management
algorithm is as follows. Each file f is encrypted with a key K(f). The key K(f) is
encrypted with a key encryption key KEK(f). The encrypted file is stored at the SSP.
The content owner stores the key encryption keys in the trusted file key server in a
compressed format. The key server can use the stored information to efficiently derive
the key encryption keys on the fly (Section 3.4) and distributes a secure transformation
of the KEKs to the users. A transformation on KEK(f) is secure if the transformed
version can be made publicly available (to all users and the SSP) without compromis-
ing the access control guarantees of the file system (Sections 3.2 and 3.3). We handle
dynamic revocations of file accesses to users using a novel authorization key tree [26].
For comparison purposes, we describe two simple key management algorithms in this
section: key-per-user and key-per-file.

Key-per-User. The key-per-user approach associates a secret key K(u) with user u.
For any file f , the key server determines the set of users that are permitted to access file
f based on the group membership of user u and the monotone Bf . For all users u that
can access file f , the key server stores EK(u)(KEK(f)) along with the attributes of
file f at the SSP. Note that EK(x) denotes a symmetric key encryption of input x using
an encryption algorithm E (like DES [10] or AES [21]) and key K . However, such an
implementation does not scale with the number of files and users in the system since
the key server has to store and maintain updates on KEK(f) for all f , Bf for all f ,
K(u) for all u, and Gu for all u. For example, if Gu changes for any u, the key server
needs to inspect all the files in the system before determining the set of files to which
the user u’s access needs to be granted or revoked. For all files f , whose access is either
granted to user u, the key server has to add EK(u)(KEK(f) to its attribute. For all files
f , whose access is revoked to user u, the key server has to update KEK(f) (to say,

352 M. Srivatsa and L. Liu

KEK ′(f)); the key server has to add EK(u′)(KEK ′(f)) for all other users u′ that are
allowed to access file f .

Key-per-File. The second approach is the key-per-file approach. This approach asso-
ciates a key K(f) with file f . For each user u, the key server determines the set of files
that the user is permitted to access based on the group membership of the user u and
the monotone Bf . We use the key server to distribute KEK(f) to all users that are
permitted to access the file f . We use a group key management protocol [20] to update
KEK(f) as the set of users permitted to access file f varies. However, the key-per-file
approach also suffers from similar scalability problems as the key-per-user approach.

FSGuard. In this paper, we present our key management algorithms for implement-
ing discretionary access control using monotone access structures in a cryptographic
file system. As shown in Figure 1 our approach (FSGuard) does not require any com-
munication between the key server & the group key management service and the key
server & the SSP. Table 1 shows a rough cost comparison between our approach and
other approaches. Our approach incurs a small processing (cpu) and networking (net)
overhead for file accesses. The key-per-user and key-per-file approach incurs several
orders of magnitude higher cost for updating a file’s access control expression Bf

and updating a user’s group membership Gu. The average number of keys maintained
by one user in key-per-file approach is several orders of magnitude larger than our
approach and the key-per-user approach. The storage overhead at the SSP in the key-
per-user approach is at least one order of magnitude larger than our approach and the
key-per-file approach.

3.2 Basic Construction

In this section, we present a basic construction for building a secure transformation.
Recall that a transformation on KEK(f) is secure if the transformed version can be
made publicly available (to all users and the SSP) without compromising the access
control guarantees of the file system. The basic construction assumes that users do not
collude with one another and that the access control policies are static with respect to
time. Further, the basic construction incurs a heavy communication cost between the
key server and the group key management service. We remove these restrictions in later
Sections 3.3 and 3.4.

The key idea behind the basic construction is to transform the KEK(f) such that a
user u can reconstruct KEK(f) if and only if the user u satisfies the condition Bf . Our
construction is based on generalized secret sharing scheme presented in [3]. We assume
that all keys are 128-bits long and all integer arithmetic is performed in a 128-bit integer
domain (modulo 2128). We use K(g) to denote the group key for group g. When a user
u joins group g, it gets the group key K(g) from the group key management service
via a secure channel. In this section, we assume a non-collusive setting: a user u knows
K(g) if and only if user u is a member of group g. We extend our algorithm to permit
collusions in Section 3.3.

Given a monotone Boolean expression Bf we mark the literals in the expression as
follows. The ith occurrence of a literal g in the expression Bf is marked as gi. For
example, Bf = (g1 ∨ g2) ∧ (g2 ∨ g3) ∧ (g3 ∨ g4) is marked as (g1

1 ∨ g1
2) ∧ (g2

2 ∨

Key Derivation Algorithms for Monotone Access Structures 353

g1
3) ∧ (g2

3 ∨ g1
4). The key server published T (KEK(f), Bf), where the transformation

function T is recursively defined as follows:

T (x, A1 ∧ A2) = T (x1, A1) ∪ T (x2, A2) such that x1 + x2 = x

T (x, A1 ∨ A2) = T (x, A1) ∪ T (x, A2)
T (x, gi) = x + Hsalt(K(g), i)

The symbols A1 and A2 denote arbitrary monotone Boolean expressions. The ∪ denotes
the union operator and + denotes the modular addition operator on a 128-bit integer
domain. For the Boolean ∧ operator, we chose x1 and x2 randomly such that x1 + x2
= x. Observe that knowing only x1 or x2 does not give any information about x = x1
+ x2. Note that H denotes a keyed pseudo-random function (PRF) (like HMAC-MD5
or HMAC-SHA1 [16]). The salt value is randomly chosen per file and is stored at the
SSP along with the rest of the file f ’s attributes. The salt value is used as the key for
the PRF H . The above construction can be easily extended to cases where the function
T takes more than two arguments:

T (x,

n∧

i=1

Ai) =
n⋃

i=1

T (xi, Ai) such that
n∑

i=1

xi = x

T (x,
n∨

i=1

Ai) =
n⋃

i=1

T (x, Ai)

T (x, gi) = x + Hsalt(K(g), i)

Theorem 1. The transformation T described in Section 3.2 secure in the absence of
collusions amongst malicious users.

Drawbacks. While the basic construction presents a secure transformation T , it has sev-
eral drawbacks. First, the basic construction does not tolerate collusions among users.
A collusion between two users u1 and u2 may result in unauthorized privilege escala-
tion. For example, let us say that u1 is a member of group g1 and u2 is a member of
group g2. By colluding with one another, users u1 and u2 would be able to access a file
f with Bf = g1 ∧ g2, thereby violating the discretionary access control (DAC) model.
Recall that in a DAC model, the set of files that is accessible to two colluding users u1
and u2 should be no more than the union of the set of files accessible to the user u1
and the user u2. Second, the key server needs to know KEK(f) and Bf for all files
in the system. In a static setting, wherein KEK(f) and Bf do not change with time,
this incurs heavy storage costs at the key server. In a dynamic setting, this incurs heavy
communication, synchronization and consistency maintenance costs in addition to the
storage cost. Note that in a dynamic setting, the key server has to maintain up to date
information on KEK(f) and Bf for all files in the system.

3.3 Collusion Resistant Construction

In this section, we present techniques to tolerate malicious collusions between users.
The key problem with our basic construction (Section 3.2) is that the authorization in-
formation given to a user u3 that belongs to both groups g1 and g2 (namely, K(g1)

354 M. Srivatsa and L. Liu

and K(g2)) is simply the union of the authorization information given to a user u1
that belongs to group g1 (namely, K(g1)) and to a user u2 that belongs to group g2
(namely, K(g2)). We propose that when an user u joins a group g, it gets two pieces of
authorization information K(g) and K(u, g). The key K(u, g) binds user u to group g.
However, using randomly chosen values for K(u, g) does not scale with the number of
users, since the group key management service and our key server would have to main-
tain potentially |U | ∗ |G| keys, where |U | is the number of users and |G| is the number
of groups. We propose to mitigate this problem by choosing K(u, g) pseudo-randomly.
We derive K(u, g) as K(u, g) = HMK(u, g), where MK is the master key shared be-
tween the group management service and the key server. For notational simplicity, we
overload u and g to denote the u’s user identifier and g’s group identifier respectively.

Now, we modify the recursive definition of the transformation T described in Sec-
tion 3.2 as follows:

T (x, u,

n∧

i=1

Ai) =
n⋃

i=1

T (xi, u, Ai) such that
n∑

i=1

xi = x

T (x, u,
n∨

i=1

Ai) =
n⋃

i=1

T (x, u, Ai)

T (x, u, gi) = x + Hsalt(K(u, g), i)

Theorem 2. The transformation T described in Section 3.3 is secure and collusion
resistant.

3.4 Key Encryption Keys

We have so far described techniques to securely transform and distribute key encryp-
tion keys. However, a major scalability bottleneck still remains in the system. The key
server needs to know KEK(f) and Bf for all files in the file system. This incurs not
only heavy storage costs, but also incurs heavy communication costs to maintain the
consistency (up to date) of KEK(f) and Bf . In this section, we propose to circum-
vent this problem as follows. We propose to derive KEK(f) as a function of Bf .
Hence, when a user u requests for T (KEK(f), u, Bf), the key server first computes
KEK(f) as a function of Bf . Then, it uses the derived value for KEK(f) to construct
the T (KEK(f), u, Bf) as described in Section 3.3. In the following portions of this
section, we present a technique to derive KEK(f) from Bf . Our technique maintains
the semantic equivalence of monotone Boolean expressions, that is, for any two equiv-
alent but non-identical representations of a monotone Boolean function Bf and B′

f ,
KEK(Bf) = KEK(B′

f).

Preprocessing. Given a monotone Boolean expression Bf we normalize it as follows.
We express Bf in a minimal conjunctive normal form (CNF) as Bf = C1 ∧ C2 · · · ∧
Cn. C1 ∧ C2 · · · ∧ Cn is a minimal expression of Bf if for no 1 ≤ i, j ≤ n and i �= j,
Ci ⇒ Cj . Note that a monotone Boolean expression in its minimal form is unique up
to a permutation on the clauses and permutation of literals within a clause. If not, let us
suppose that Bf = C1 ∧ C2 · · · ∧ Cn = C′

1 ∧ C′
2 · · · ∧ C′

n′ be two distinct minimal

Key Derivation Algorithms for Monotone Access Structures 355

CNF representations of Bf . Then, there exists Ci such that Ci �= C′
j for all 1 ≤ j ≤

n′. Setting all the literals in Ci to false sets the expression Bf to false. Hence, for
C′

1 ∧ C′
2 · · · ∧ C′

n′ to be an equivalent representation, there has to exist C′
j such that

the literals in C′
j is a proper subset of the literals in Ci. Then, setting all the literals in

C′
j to false sets Bf to false. Hence, for C1 ∧ C2 · · · ∧ Cn to be an equivalent

representation, there has to exist Ci′ (i �= i′) such that the literals in Ci′ is a proper
subset of the literals in C′

j . Hence, the literals in Ci′ is a proper subset of the literals
in Ci, that is, Ci′ ⇒ Ci (i �= i′). This contradicts the fact that C1 ∧ C2 · · · ∧ Cn is
a minimal CNF representation of the monotone Boolean expression Bf . We normalize
the representation of each clause Ci as gi1 ∨ gi2 ∨ · · · ∨ gim such that ij < ij+1 for all
1 ≤ j < m.

Deriving KEK(f). We compute KEK(f) recursively as follows:

KC(Ci)=HMK(i1, i2, · · · , im) where Ci =gi1 ∨gi2 ∨· · ·∨gim and i1<i2< · · · <im

KEK(Bf)=HMK(KC(C1)⊕KC(C2)⊕· · ·⊕KC(Cn)) where Bf =C1∧C2∧· · ·∧Cn

KEK(f)=HMK(KEK(Bf), salt)

Note that MK is a master key used by the key server. The salt value is an auxiliary
attribute associated with the file f . The PRF H is neither commutative nor associative;
hence, we impose an arbitrary total order on groups using their group number. The ⊕
operator is both commutative and associative; hence, the order of the clauses in Bf does
not affect KEK(Bf). Hence, given any two equivalent representations of a monotone
Boolean function Bf = B′

f , our algorithm computes the same key encryption key.

Security Analysis. It is easy to see that a user u who is authorized to access file f can
easily recover KEK(f) from T (KEK(f), u, Bf). Let us suppose that a user u is not
authorized to access file f . The user can present incorrect inputs since, the inputs are
not authenticated by the key server. Recall that the key server accepts three inputs salt,
u and Bf . Let us suppose that a user u sends an incorrect input u′. By the property of
the secure transformation function T (Section 3.3), the user u cannot guess KEK(f)
from T (KEK(f), u′, Bf). Even if the users u and u′ were to collude, we have shown
in Section 3.3 that they can obtain KEK(f) if and only if either u or u′ is indeed
authorized to access the file f . Let us suppose that a user u sends an incorrect input B′

f .
By the description of our key derivation algorithm in this Section, using an incorrect
B′

f results in an incorrect KEK ′(f). Indeed the properties of the PRF H ensures that
the user u cannot guess KEK(f) from KEK ′(f). The same argument also applies if
the user u were to send an incorrect input salt′. Hence, given one or more outputs from
the key server, a user u can construct KEK(f) if and only if the user u is authorized
to access the file f , that is, Bf (Gu) = true.

The key server exports only one interface that accepts the file’s salt, u and Bf as in-
puts and returns a secure transformation of KEK(f), namely, T (KEK(f), u, Bf) as
output. The key server does not have to interact with either the group key management
service to maintain KEK(f) and Bf for all files f or Gu and K(u, g) for all users u
and groups g. This large minimizes the storage costs, communication costs, synchro-
nization and consistency management costs in a dynamic setting and largely improves
the scalability of the key server.

356 M. Srivatsa and L. Liu

Table 2. Parameters

Parameter Default Description
nf 107 number of files
nu 1000 number of users
ng 32 number of groups

nug zipf(1, 10) number of groups per user
nc zipf(2, 4) number of clauses in Bf

nl zipf(2, 4) number of literals per clause
δt 1 time granularity (seconds)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1000 2000 3000 4000 5000

S
to

ra
ge

 O
ve

rh
ea

d
(b

yt
es

)

Number of Users

’key-per-user’
’fsguard’

Fig. 2. Storage Overhead

4 Evaluation

In this section, we present a concrete evaluation of our prototype implementation. We
ran our prototype implementation on eight machines (550 MHz Intel Pentium III Xeon
processor running RedHat Linux 9.0) connected via a high speed 100 Mbps LAN. We
used six machines to operate as the file servers, one machines to operate as the client,
and one machine operates as the key server.

We compare our approach with two other approaches: key-per-user and key-per-file
approach (see Section 3.1). We evaluate the performance of our proposal using four per-
formance metrics: number of keys per user, storage cost at SSP, communication cost for
various file system operations (file access, file’s access control expression update, user’s
group membership update), and computation cost for various file system operations (file
access, file’s access control expression update, user’s group membership update). We
perform trace driven evaluations using the SPECsfs workload generator [1] of our ap-
proach to study the scalability of the key server and the performance overhead of our
approach on a cryptographic file system. We used a synthetic file system with 10 mil-
lion files, 1000 users, and 32 user groups. We assume that the group popularity follows
a Zipf distribution [24], that is, the number of users that are a member of group i (1 ≤ i
≤ 32) is proportional to 1

i . We assume that the number of clauses in any monotone Bf

follows a Zipf distribution between 2 to 4 and the number of literals per clause follows
a Zipf distribution between 2 to 4. Table 2 summarizes our main file system parameters.

4.1 Storage, Computation and Communication Costs

Number of Keys per User. In our first experiment, we measure the average number of
keys maintained by a user using the three approaches. As the number of keys per user
increases, so does the cost of managing those keys. Also, requiring a user to maintain
a large number of keys increases the risk of one more keys being lost or accidentally
leaked to an adversary. The key-per-user approach requires the user to store only one
key. Our approach requires the user to store one key per group; we found that the aver-
age number of keys per user was 3.78.

The key-per-file approach requires the user to store one key per file that it is permitted
to access. The average number of keys per user in this case is about 4.2 ∗ 105. [20][22]
propose techniques to cluster files (termed file groups) based on their similarity. One can
cluster files based on their access control expression Bf : all files in a cluster have identi-
cal (equivalent) Bf . We found that amongst 10 million files, there were 1.3∗105 unique

Key Derivation Algorithms for Monotone Access Structures 357

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25

C
om

m
 C

os
t (

by
te

s)

|Bf|

’key-per-user’
’fsguard’

Fig. 3. Communication Cost:
File Access

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000

C
om

m
 C

os
t (

by
te

s)

Number of Users

’key-per-user’
’fsguard’

Fig. 4. Communication Cost:
File Access Control Expres-
sion Update

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40 45 50

C
om

m
 C

os
t (

x1
03 b

yt
es

)

Number of Files (x106)

’key-per-user’
’fsguard’

Fig. 5. Communication Cost:
User Group Membership Up-
date

monotones Bf : hence, we had 1.3 ∗ 105 file clusters with 1-337 files per cluster. We
found that even with the clustering mechanism, the number of keys per user was about
2.3 ∗ 104. Because of the practical infeasibility of the key-per-file approach, the rest of
our experiments focus exclusively on the key-per-user approach and our proposal.

Storage Cost as SSP. In our second experiment, we study the storage overhead at the
SSP for storing additional file attributes. The key-per-user approach requires that we
store EK(u)(K(f)) per file block for all users u that is permitted to access the file f .
Our approach stores only attribute EKEK(f)(K(f)) (16 Bytes). Under the default set-
tings described in Table 2, we found that the average number of users that can access
a file was 45.7. Hence, each file block (8 KB) stored on the SSP the key-per-user ap-
proach incurs about 45.7 * 16 Bytes = 731.2 Bytes overhead (8.9%), while our approach
(fsguard) incurs only a 16 Byte overhead (0.2%). As the number of users increase,
the size of attributes stored with a file increases. Figure 2 shows the average size of a
file’s attribute as the number of users varies. Observe that as the numbers of users be-
come 5000, the attribute size is about 4 KB. Using 8 KB file blocks, at least 50% of the
storage space on the SSP would be expended on storing file attributes.

Communication Cost. In our third experiment, we measure the communication cost
for three important operations: file access (read/write), update on a file’s access control
expression, and update on a user’s group memberships.

File Access (read/write). A file access in the key-per-user approach does not involve
any interaction between the user and the key server. The user fetches the file block and
EK(u)(K(f)) from the SSP and performs read/write operations on the block. On the
other hand, file access in our approach requires the user to interact with the key server if
the file encryption key K(f) is not available in the user’s local key cache. Observe that
the communication cost between the user and the key server is O(|Bf |), where |Bf |
denotes the number of literals in the monotone expression Bf . For example, |(g1 ∨ g2)
∧ (g1 ∨ g3)| = 4. Figure 3 shows the communication cost between the user and the key
server for different values of |Bf |. Observe that even for complex (large) monotones,
the communication cost is about a few hundred bytes.

File Access Control Expression Update. Let Bf and B′
f denote the old the new ac-

cess control expression for file f . In the key-per-user approach, the key server has to
determine the set of users U and U ′ whose group membership satisfies the expression

358 M. Srivatsa and L. Liu

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

C
om

p
C

os
t (

m
ic

ro
se

co
nd

s)

|Bf|

’key-per-user’
’fsguard’

Fig. 6. Computation Cost:
File Access

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000

C
om

p
C

os
t (

x1
03 m

ic
ro

se
co

nd
s)

Number of Users

’key-per-user’
’fsguard’

Fig. 7. Computation Cost:
File Access Control Expres-
sion Update

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

C
om

m
 C

os
t (

x1
06 m

ic
ro

se
co

nd
s)

Number of Files (x106)

’key-per-user’
’fsguard’

Fig. 8. Computation Cost:
User Group Membership
Update

Bf and B′
f respectively. For all u ∈ U ′ − U , the key server has to add EK(u)(K(f))

to the file f ’s attribute. For all u ∈ U − U ′, the key server has to remove EK(u)(K(f))
from the file f ’s attribute. On the next write operation on file f , the key server needs to
update K(f) to a new key K ′(f) and consequently add EK(u)(K ′(f)) for all u ∈ U ′

as attributes of file f . Note that the old attributes EK(u)(K(f)) for all u ∈ U can be
deleted by the SSP. Using our approach, an update to the file’s access control expres-
sion does not incur any communication cost. Recall that the interface exported by the
key server operates on Bf rather than f itself. Figure 4 shows the communication cost
between the key server and the SSP as nu, the number of users vary. Observe that as
the number of users increase, the communication cost on the key server increases. This
largely limits the scalability of the key server with the number of users in the file sys-
tem. Observe from Figures 3 and 4 that an update on a file’s access control expression
costs about 1000 times the cost of a file access incurred by our approach.

User Group Membership Update. Let us suppose that a user u’s group membership
changed from G to G′. In the key-per-user approach, the key server has to determine
the set of files F and F ′ whose access control expression is satisfied by group mem-
bership G and G′ respectively. For all files f ∈ F ′ − F , the key server has to add
EK(u)(K(f)) to the file f ’s attribute. For all files f ∈ F − F ′, the key server has to
remove EK(u)(K(f)) from the file f ’s attribute. On the next write operation on any file
f ∈ F −F ′, the key server needs to update K(f) to a new key K ′(f). Consequently the
key server has to add EK(u′)(K ′(f)) as an attribute for the file f for all users u′ that can
access file f . Using our approach, an addition to a user’s group membership requires an
interaction with the group key management service. Revocation of a group membership
does not require any communication using our algorithm in [26]. Figure 5 shows the
communication cost as nf , the number of files vary. Using the key-per-user approach,
the communication cost incurred in updating one user’s group membership grows lin-
early with the number of files in the system and is of the order of several megabytes.
This largely limits the scalability of the key server with the number of files in the sys-
tem. Observe from Figures 3 and 5 that an update on a user’s group membership costs
about million times the cost of a file access incurred by our approach.

Computation Cost. In our fourth experiment, we measure the computation cost for
three important operations: file access (read/write), update on a file’s access control ex-
pression, and update on a user’s group memberships. The computation cost is divided

Key Derivation Algorithms for Monotone Access Structures 359

between the key server and the user. We computation cost is expressed in seconds as
measured using a 550 MHz Intel Pentium III Xeon processor running RedHat Linux
9.0. Figures 6, 7 and 8 shows the computation cost at the client and the key server for
the three operations listed above. Similar to the communication cost, our approach in-
curs computation cost only for file read/write operations. Further, this computation cost
is incurred only if the file’s key is not available in the user’s cache. The key-per-user
approach imposes heavy computation cost when a file’s access control expression is
updated or when a user’s group membership is updated. An update on a file’s access
control expression costs about 1000 times the cost of a file access incurred by our ap-
proach; an update on a user’s group membership costs about million times the cost of a
file access incurred by our approach.

5 Related Work

Advances in the networking technologies have triggered several networking services
such as: ‘software as a service’ also referred to as the application service provider (ASP)
model [14], ‘database as a service’ (DAS) [11] that permits organizations to outsource
their DBMS requirements, and ‘storage as service’ (SAS) model. The SAS model inher-
its all the advantages of the ASP model, indeed even more, given that a large number
of organizations have their own storage systems. This model allows organizations to
leverage hardware and software solutions provided by the service providers, without
having to develop them on their own, thereby freeing them to concentrate on their core
businesses. However, implementing flexible access control mechanisms and protecting
the confidentiality from a storage service provider (SSP) has been a critical problem in
the SAS model.

Cryptographic file systems like CFS [4], TCFS [7], CryptFS [29], NCryptFS [28],
Farsite [2], StegFS [19], cryptographic disk driver [9] and cooperative file system [8]
permit the file data to be kept confidential from the SSP. These file systems were de-
signed with the goal of data confidentiality, while balancing scalability, performance
and convenience. However, these systems were not designed with the goal of support-
ing flexible access control policies.

Cryptographic access control [12] make it possible for one to rely exclusively on
cryptography to ensure confidentiality and integrity of data stored in the system. Data
are encrypted as the applications store them on a server, which means that the storage
system only manages encrypted data. Read/Write access to the physical storage device
is granted to all principals (only those who know the key are able to decrypt the data).
Cryptographic access control has been deployed to maintain secrecy in group key man-
agement protocols [27][5][6][23]. However, the access control policies that could be
specified using cryptographic access control mechanisms were naive and inflexible. In
this paper we have proposed techniques to implement monotone structure based access
control policies in a cryptographic file system.

6 Conclusion

In this paper we have presented − secure, efficient and scalable mechanisms to enforce
discretionary access control using monotone access structures on a cryptographic file

360 M. Srivatsa and L. Liu

system. We have presented key derivation algorithms that guarantee that a user who is
authorized to access a file, can efficiently derive the file’s encryption key; while, it is
computationally infeasible for a user to guess the encryption keys associated with the
files that she is not authorized to access. We have also presented concrete algorithms to
support dynamic access control updates & revocations. We have also presented a pro-
totype implementation of our proposal on a distributed file system. A cost based eval-
uation of our system showed that our approach incurs lower key management, storage,
communication and computation cost when compared to the key-per-user and key-per-
file approach. A trace driven evaluation of our prototype showed that our algorithms
meet the security requirements while preserving the performance and scalability of the
file system.

Acknowledgements. This research is partially supported by NSF CNS CCR, NSF ITR,
DoE SciDAC, CERCS Research Grant, IBM Faculty Award, IBM SUR grant, and HP
Equipment Grant.

References

1. SPEC SFS (system file server) benchmark. http://www.spec.org/osg/sfs97r1.
2. A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.

Lorch, M. Theimer, and R. P. Wattenhofer. Farsite: Federated, available and reliable storage
for an incompletely trusted environment. In Proceedings of the 5th International Symposium
on OSDI, 2002.

3. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In Proceed-
ings of CRYPTO, 1988.

4. M. Blaze. A cryptographic file system for unix. In Proceedings of ACM CCS, 1993.
5. R. Canetti, J. Garay, G. Itkis, and D. Micciancio. Multicast security: A taxonomy and some

efficient constructions. In Proceedings of the IEEE INFOCOM, Vol. 2, 708-716, 1999.
6. R. Canetti, T. Malkin, and K. Nissim. Efficient communication-storage tradeoffs for multi-

cast encryption. In Advances in Cryptology - EUROCRYPT. J. Stem, Ed. Lecture Notes in
Computer Science, vol. 1599, Springer Verlag, pp: 459-474, 1999.

7. G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano. The design and implementation of
transparent cryptographic file system for unix. In Proceedings of Annual USENIX Technical
Conference, 2001.

8. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage
with CFS. In Proceedings of the 18th ACM SOSP, October 2001.

9. R. Dowdeswell and J. Ioannidis. The cryptographic disk driver. In Proceedings of Annual
USENIX Technical Conference, 2003.

10. FIPS. Data encryption standard (DES). http://www.itl.nist.gov/fipspubs/fip46-2.htm.
11. H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database as a service. In Proceedings of

18th IEEE ICDE, 2002.
12. A. Harrington and C. Jensen. Cryptographic access control in a distributed file system. In

Proceedings of the 8th ACM SACMAT, 2003.
13. HP. Data center services. http://h20219.www2.hp.com/services/cache/114078-0-0-225-

121.aspx.
14. IBM. Application service provider business model. http://www.redbooks.ibm.com/abstracts/

sg246053.html.

Key Derivation Algorithms for Monotone Access Structures 361

15. IBM. IBM datacenter scalable offering. http://www-03.ibm.com/servers/eserver/xseries/
windows/datacenter/scalable.html.

16. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authentica-
tion. http://www.faqs.org/rfcs/rfc2104.html.

17. B. Lampson. Protection. In Proceedings of the 5th Princeton Symposium on Information
Sceinces and Systems, pp: 437-443, 1971.

18. Mathpages. Generating monotone boolean functions. http://www.mathpages.com/home/
kmath094.htm.

19. A. D. McDonald and M. G. Kuhn. Stegfs: A steganographic file system for linux. In Infor-
mation Hiding, pp: 462-477, 1999.

20. S. Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings of ACM
SIGCOMM, 1997.

21. NIST. AES: Advanced encryption standard. http://csrc.nist.gov/CryptoToolkit/aes/.
22. L. Opyrchal and A. Prakash. Secure distribution of events in content-based publish subscribe

system. In Proceedings of the 10th USENIX Security Symposium, 2001.
23. A. Perrig, D. Song, and J. D. Tygar. ELK: A new protocol for efficient large group key

distribution. In Proceedings of IEEE Symposium on Security and Privacy, 2001.
24. C. roadknight, I. Marshall, and D. Vearer. File popularity characterization. In Proceedings

of the 2nd Workshop on Internet Server Performance, 1999.
25. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control models. In

IEEE Computer, Vol. 29, No. 2, 1996.
26. M. Srivatsa and L. Liu. Key derivation algorithms for monotone access structures in large

file systems. Technical report, College of Computing, Georgia Tech, 2006.
27. C. K. Wong, M. G. Gouda, and S. S. Lam. Secure group communications using key graphs.

In IEEE/ACM Transactions on Networking: 8, 1(Feb), 16-30, 2000.
28. C. P. Wright, M. C. Martino, and E. Zadok. Ncryptfs: A secure and convinient cryptographic

file system. In Proceedings of Annual USENIX Technical Conference, 2003.
29. E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A stackable vnode level encryption file

system. Technical Report CUCS-021-98, Columbia University, 1998.

	Introduction
	Preliminaries
	SAS Model
	Monotone Access Structures

	User Groups
	Overview
	Basic Construction
	Collusion Resistant Construction
	Key Encryption Keys

	Evaluation
	Storage, Computation and Communication Costs

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

