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Abstract. A novel approach to feature selection from unlabeled vector
data is presented. It is based on the reconstruction of original data rela-
tionships in an auxiliary space with either weighted or omitted features.
Feature weighting, on one hand, is related to the return forces of fac-
tors in a parametric data similarity measure as response to disturbance
of their optimum values. Feature omission, on the other hand, induc-
ing measurable loss of reconstruction quality, is realized in an iterative
greedy way. The proposed framework allows to apply custom data simi-
larity measures. Here, adaptive Euclidean distance and adaptive Pearson
correlation are considered, the former serving as standard reference, the
latter being usefully for intensity data. Results of the different strategies
are given for chromatography and gene expression data.

Keywords: Feature selection, adaptive similarity measures.

1 Introduction

Recently developed metabolomic and genomic measuring technologies share the
common property to yield in parallel thousands of metabolites and gene expres-
sion values from single probes of a given tissue/plant sample. Tools used for these
purposes are mass spectrometry, chromatography, and micro- and macroarrays.
In high-throughput approaches the number of probe attributes (metabolites,
genes) is usually much higher than the number of probes, which is paradig-
matic of the curse of dimensionality. Thus, it is desirable for analysis to consider
as many experimental probes as data quality allows. Such desire for maximum
information preservation for only few unlabeled data samples excludes the uti-
lization of prototype-based data abstractions like supervised neural gas proposed
for labeled data [2]. Principal component analysis PCA, the classical approach to
factor analysis of unlabeled data, has got different limitations: the analytic focus
is shifted away from the data matrix towards the attribute covariance matrix of
which eigenvalues are computed to rate the importance of the axes of principal
data directions. These axes, however, are linear combinations of the original data
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attributes – this situation requires a complex interpretation of the eigenvector
entries (’loadings’) in order to rate the original data attributes. PCA finally re-
sults in the amount of feature contribution to the overall data variance. Both,
implicit rotation of the data coordinate system and the restriction to variance,
implying the Euclidean data metric for a reasonable interpretation, are circum-
vented in the following approach. In terms of feature subset selection (FSS) the
proposed method will be a filter rather than a wrapper [3]. Custom data simi-
larity measures can be integrated to the framework, and, furthermore, the new
reconstruction-based feature selection does not require class labels, which com-
plements other approaches such as proposed in [5]. For the lack of data samples,
distribution-based separability criteria and expectation maximization methods
for unlabeled data, like FSSEM-TR/ML [1], cannot be properly applied in the
present case. In the proposed solution, no external clustering is required for eval-
uating the changes before and after masking (veiling) subset of features; instead,
a built-in filter criterion is used which optimizes the reconstruction quality of
the veiled data according to the strategy discussed in the following.

2 Unsupervised Feature Selection Based on Maximum
Reconstruction Quality

Feature selection and weighting do both refer to the process of characterizing
the relevance of components in fixed-dimensional data vectors. Unfortunately,
many biological data sets do not possess an absolute reference coordinate system
upon which a proper attribute analysis can be grounded: the organic material
itself and many external influences affect the measurements, and the obtained
data are thus, in a certain degree, situated in empirical domains. For example,
in gene expression data, a theoretical lower bound of zero intensity exists, but
due to background noise this value is never observed in practice. Subsequent
standard operations like the logarithm might further amplify this uncertain do-
main, especially for near zero intensities. The ad hoc definition of absolute data
domains can be avoided by dealing with relationships expressed by the data
similarity matrix. This requires to choose an appropriate similarity measure. In
case of the Euclidean metric, the resulting distance matrix is invariant to data
(baseline) shifts and coordinate rotations. Invariance can be realized already at
data level by using Pearson correlation which is invariant to vector shifting and
scaling. This beneficial property is used as quality criterion for comparing data
similarity matrices. Using the above ingredients, feature ranking for data from
an observation-driven domain is realized by sensitivity analysis, i.e. by analyz-
ing the effect of measure-specific feature veiling on the quality of reconstruction
of the original data relationships. This general approach is sketched in Fig. 1.
It is required that the data similarity measure d is chosen in advance, such
as Euclidean distance or Pearson correlation in the following. If weighting is
considered instead of feature dropping, also a parametric counterpart dλ of d is
necessary.
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Fig. 1. Feature selection by reconstruction quality maximization. Due to symmetry, a
number of n · (n− 1)/2 relationships of data vectors in X is once computed with static
similarity measure d to yield triangular reference matrix D (upper path). Features
are dropped or weighted by the λ-parametrized measure dλ in a k-iterative manner
(lower path): for greedy selection, those features providing highest correlation between
feature-reduced similarity matrix D and reference matrix Dλ are further considered
important; for parallel selection, the average response to random feature perturbation
is calculated.

The parametric Euclidean distance dλ
ij = Edλ

ij ∈ [0;∞) is given by

Edλ
ij(x

i, xj) =

√
√
√
√

q
∑

l=1

λl · (xi
l − xj

l )2 . (1)

Canonic feature weighting is obtained by inserting weight factors to the squared
differences – setting λl = 1 for l = 1 . . . q yields the original Euclidean distance. If
just one parameter λl is zero, the others one, this expresses dropping of feature l.

The parametric Pearson correlation dλ
ij = rλij ∈ [−1; 1] is given by

rλij =
∑q

l=1 λ2
l · (xi

l − μxi) · (xj
l − μxj )

√∑q
l=1 λ2

l · (xi
l − μxi)2 ·

√
∑q

l=1 λ2
l · (xj

l − μxj )2
. (2)

Each of the mean-subtracted vector components (xm
l − μxm) has got its proper

relevance factor λl – again, setting λl = 1 for l = 1 . . . q yields the original
Pearson correlation. Note that, in contrast to Euclidean distance, setting λl = 0,
λm = 1,m �= l,m = 1 . . . q is not equivalent to dropping feature l, because it still
contributes to the vector averages μxi and μxj . Instead, the feature’s induced
mean deviation from average is measured.

For feature selection, parameters λl are searched that provide maximum corre-
lation of parametrized data relationships and original data relationships. Trivial
solutions λl = C,C > 0, l = 1 . . . q are avoided by construction.

– For dropping, correlation values r(D,Dλ) are computed for all attributes sep-
arately masked. Those with maximum correlation degradation are considered
especially important. This attribute can be wiped out and the procedure can
be repeated iteratively.

– For weighting, Monte-Carlo sampling around an optimum λ-vector is per-
formed and the average restoring forces are calculated by a gradient ascent
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approach, by analyzing absolute values of gradients pointing into the param-
eter direction of high correlation values r(D,Dλ).

2.1 Feature Dropping

Feature relevance can be systematically probed by excluding single attributes
from data similarity calculation and testing the impact of that operation on
the correlation r(D,Dλ). By feature dropping, as a basic assumption, highly
important features will induce a larger loss of r than less important ones. Thus,
a first approach to relevance rating is the correlation loss resulting from feature
dropping. Such a top-level feature evaluation can be recursively formulated in
a greedy manner. This iterative feature dropping approach stores the index and
then really excludes the currently most relevant feature from further calculations.
It iteratively isolates those attributes that do maximum decorrelate the original
similarity matrix D and the feature-reduced distance matrix Dλ

S :

S(k) = arg min
i

r2(D,Dλ
S(k−1)∪i) , i ∈ (1 . . . T )\S(k − 1) , k = 1 . . . T − 1.

S(k) is the growing set of index pointers to features which have been isolated until
iteration number k; by definition S(0) := {}, and by construction |S(k)| = k.
Dλ

S(k−1)∪i is the similarity matrix that has been calculated by using the data
vectors, thereby skipping the features indexed by the set S(k − 1) ∪ i.

The straightforward greedy algorithm does not require further parameters,
however, two alternative design criteria need further attention. First, Dλ

S(k−1)∪i

is correlated with Dλ, not with Dλ
S(k−1). The reason is that a drift away from

the original data set towards the subsequently reduced data features might occur
otherwise, so Dλ constitutes a fixed reference. Second, features are iteratively
masked out from high relevances to low ones, not the other way round. This
way, much of the relation-explaining attributes are already cleared off in the first
steps, instead of realizing a culmination towards the crucial data attributes by
least-attributes-first exclusion. This is beneficial in large scale applications with
thousands of dimensions, because it allows early stopping when the remaining
absolute correlation r2 drops below a critical near-zero threshold, or in case of
reaching a plateau. These two options – there are certainly many more – and
the different results from the alternative greedy feature selection designs are
circumvented by parallel feature selection as discussed in the next paragraph.

2.2 Feature Weighting

In the following approach, gradients are calculated for rating the data features.
Decent perturbations are induced to the parameters λl of the adaptive similar-
ity measure dλ, close to the optimum values. The higher, on average, the return
forces (gradients) of the disturbed parameters, the more important are the corre-
sponding attributes for restoring maximum correlation r(D,Dλ). The proposed
method uses several paradigms from artificial neural networks: the perturba-
tion and pattern presentation processes are stochastic, a principle of correlation-
maximization is pursued, and parametric similarity measures are optimized – or
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are at least rated – using gradient dynamic. For the derivatives, an approach is
chosen which has been proposed earlier for efficient multi-dimensional scaling [4].
In order to prevent saturation at boundaries of the correlation domain [−1; 1],
the widely used Fisher z′-transform with its derivative is utilized:

z′(r) =
1
2
· log

(
a + r

a − r

)

⇒ ∂z′(r)
∂r

=
a

a2 − r2
.

In Fisher’s original formulation a is set to 1, but here it is kept variable a =
1 + ε in order to avoid infinitely large values in case of perfect correlation. For
example, a = (1 +

√
401)/20 ≈ 1.05 limits the transformed derivative domain to

[−10; 20/(1+
√

401)]. Desired gradients for λl with negative correlation transform
result from application of the chain rule to the nested stress function formulation:

s = −z′ ◦ r ◦ dλ ◦ λ ⇒ ∂s
∂λl

= −
n∑

i=1

j �=i
∑

j=1...n

∂z′(r)
∂r

· ∂r

∂dλ
ij

· ∂dλ
ij

∂λl
. (3)

Using the abbreviations r(D,Dλ) = H /
√

W · U with

H =
∑n

l=1

∑n
m=1 (dlm − μD) · (dλ

lm − μDλ) ,
W =

∑n
l=1

∑n
m=1 (dlm − μD)2 ,

U =
∑n

l=1

∑n
m=1 (dλ

lm − μDλ)2 ,

the derivative of the z′-transformed Pearson correlation is calculated by

∂z′(r)
∂r

· ∂r

∂dλ
ij

=
a · ((dλ

ij − μDλ) · H − (dij − μD) · U ) · √W

(H − a · √U · W )2 · √U
. (4)

The term W needs to be calculated only once, even the mean of the static
similarity matrix can be initially removed dlm ← (dlm − μD) in order to save
computing operations. Eqn. 3 is evaluated for all features and the absolute values
are averaged over a sufficient number of small random perturbations. For better
comparison, these averaged gradient responses are rescaled to an upper limit of
one representing the most sensitive feature.

Eqn. 4 is generic enough to plug in any differentiable parametric similar-
ity measure. Two interesting choices are the parametric Euclidean distance for
data comparisons and an adaptive version of the Pearson correlation that plays
an important role in biopattern processing. These measures require derivatives
∂Edλ

ij/∂λl and ∂rλij/∂λl as rightmost factors in equation 3, respectively.

Parametric Euclidean. The derivative of the parametric Euclidean is easily
obtained as:

∂Edλ
ij

∂λl
=

∂

∂λl

√
√
√
√

q
∑

m=1

λm · (xi
m − xj

m)2 =
(xi

l − xj
l )

2

√
∑q

m=1 λm · (xi
m − xj

m)2
= (xi

l−xj
l )

2/Edλ
ij .
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Parametric Pearson Correlation. For deriving the λ-weighted correlation
rλij , a focus on component l will be a convenient abbreviation. Similar to the
previous matrix correlations, the notation rλij = Hl/

√
Wl · Ul of the correlation

term is considered using

Hl = λ2
l · (xi

l − μxi) · (xj
l − μxj ) +

∑q
u�=l

u=1
λ2

u · (xi
u − μxi) · (xj

u − μxj ) ,

Wl = λ2
l · (xi

l − μxi)2 +
∑q

u�=l

u=1
λ2

u · (xi
u − μxi)2 ,

Ul = λ2
l · (xj

l − μxj )2 +
∑q

u�=l

u=1
λ2

u · (xj
u − μxj )2 .

With these isolated subterms, the derivative of interest is

∂rλ
ij

∂λl
=

λl ·
(

2(xi
l − μxi)(xj

l − μxj ) · WlUl − Hl ·
(

Ul · (xi
l − μxi)2 + Wl · (xj

l − μxj )2
))

(Wl · Ul)
3
2

.

Parameters of the feature weighting approach are the gradient delimiter which
has been set to a = 1.01, the perturbation interval, and the number of iterations
for calculating the average response gradients. The interval for random pertur-
bations has been determined by studies on several data sets, including the ones
presented in the application section. It has turned out that in case of both para-
metric Euclidean and Pearson similarity measures, parameters uniformly chosen
λl ∈ [0.75; 1.25] produce stable results. A number of k = 1000 iterations is cho-
sen. Stability has been additionally tested by letting the parameters iteratively
adapt according to stochastic descent on s using the calculated gradients: after
noise induction, the parameters quickly return to constant values λi ≈ λj ,∀i, j.

3 Applications

The presented methods are applied to three data sets of interest: to benchmark
data related to absorbance spectra from Infratec Tecator food analyzer, publicly
available from statlib data collection at http://lib.stat.cmu.edu/datasets/tecator,
(215 samples, 100 dimensions [frequency channels]); to chromatography data
from the in-house tomato germplasm database focusing on chemical compound
detection at a wavelength of 280nm (19 samples, 3000 dimensions [retention time
points]); and to gene expression data from macroarray hybridization experiments
of developing endosperm barley tissue at 0–26 days after flowering sampled in
steps of two days (two series, 14 samples each, 11786 dimensions [genes]).

Tecator Benchmark Spectral Data. The first data set has been included
for illustration and reference purposes. It contains 215 food samples analyzed
in a near infrared frequency range of 850–1050nm measured with the Tecator
Infratec Food and Feed Analyzer. The 100-dimensional spectra, originally used
for predicting high and low fat content, are smoothly shaped, as shown for 10
examples in the top left panel of Fig. 2. Looking at the other panels of Fig. 2,
several observations are made.
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Fig. 2. Feature selection for Tecator data set. Top row: left panel displays 10 samples
from 100-dimensional spectra; right panel channel variances for entire data set con-
taining 215 samples. Subsequent rows: top-level feature sensitivity measuring the loss
of squared correlation with original similarity matrix, r2(D,Dλ

l ), caused by dropping
feature l (low correlation indicates high feature sensitivity); loss of squared correlation
and corresponding feature rank caused by iterative dropping of the currently most
sensitive feature (multiple application of top-level analysis with recursively reduced
feature set); feature weighting based on gradients that point towards optimum state
after random parameter perturbations of the adaptive similarity measure (graphs of
ten independent runs are overlaid showing high reproducibility). Left column refers to
adaptive Pearson correlation, right column to parametric Euclidean distance for the
three investigated methods.

Most importantly, pairs of plots in the left column – corresponding to Pearson
correlation similarity – and in the right column – displaying results for Euclidean
distance – are rather different. Thus, as expected, the choice of data similarity
measure has crucial influence on the highly rated features.

Row two for top level loss contains plots of the loss of correlation r2(D,Dλ
l )

after deletion of attribute l. Both plots exhibit a common minimum around
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feature l = 41, pointing out these attributes as highly sensitive for both similarity
measures. However, for other attributes just ratings are computed. It is pointed
out that, due to data redundancy and the high number of 100 dimensions, the
maximum correlation loss for many dropped features is still very close to one.

Row three, showing plots of rank and loss for iterative feature dropping, gives
support to the top-ranked features around index 41 of high importance for cor-
relation reconstruction. The loss described by the dotted lines has much higher
variability in case of Pearson similarity than in case of Euclidean distance. Sub-
sequent feature ranking is obtained by assigning their ascending sorting indices.
These ranks have been divided by the number of dimensions in order to obtain a
mapping into the value range of squared correlation. As a consequence of greedy
feature selection, large-scale discontinuities appear in the resulting graphs.

Row four with response plots contains smooth non-ranked attribute weights
obtained by gradient calculations. Three important properties are observed.
First, indices around 41 for Pearson similarity are remarkably insensitive in
contrast to the results from the other two approaches. Second, the results of
ten independent runs of the gradient method display very high reproducibil-
ity. Third, the graphs for Euclidean distance in the bottom right panel are
strikingly similar to the simple variance plot in the top right panel – the av-
erage squared correlation between the ten response graphs with the variance
is r2(variance,Euclidean response) = 0.991. This is a key observation. On one
hand, this meets the expectation of the role of variance for Euclidean distance
as a natural measure of data variability – although the presented approach mea-
sures, inversely, the sensitivity of the parametric Euclidean distance. On the
other hand, this essential solution for the Euclidean distance induces high confi-
dence in analog results for non-Euclidean case, like those given for the adaptive
Pearson similarity. This approach can thus be regarded as generalization of the
concept of variance to other types of parametric data similarity measures.

To conclude, quite different feature evaluations are obtained for the different ap-
proaches. This points out that feature dropping is structurally different from para-
metric measure perturbation. The case of correlation measure shows insensitivity
to attribute scalingwhere entire feature dropping produces the highest loss, around
index 41. However, in case of masked or weighted Euclidean distance, the special
importance of that feature set around index 41 is common sense for all methods.

Tomato Peel Chromatograms for Chemical Compound Analysis. High
performance liquid chromatography (HPLC) allows recording of high resolution
spectra related to compound-specific absorbance rates. Especially the group of
health protective flavonoids is of great interest for the evaluation of food crops.
Here, a collection of tomato plants is studied at a wavelength of 280nm to capture
the chemical constituents within the fruit peel. A measuring duration of 50min
considered with a sampling of 1Hz, producing values for 3000 retention times per
fruit. Biological attention is put on 19 of these chromatograms to find intervals
of retention times with characteristic variability in absorption. The integrated
values in those intervals are proportional to the abundance of the corresponding
chemical compounds. For precise further calculations, the chromatogram have
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Fig. 3. Feature selection for tomato data set.Top left: one exemplary chromatogram from
the data set used for feature rating. Bottom left: iterative correlation loss for feature drop-
ping with Pearson similarity. Right: gradient responses for adaptive Euclidean distance
(top) and parametric Pearson correlation (bottom). For comparison, two important sub-
stances representative for all chromatograms are encircled: chlorogenic acid and rutin.

been baseline-corrected and their peaks have been aligned by the correlation
optimized warping method.

Fig. 3 contains results for different feature rating methods applied to the
tomato peel chromatograms. The original chromatograms look very peaky if
plotted with a condense time axis like in the top right panel; by zooming onto
the time axis, however, smoother details become visible. A reason for not using
adaptive Euclidean response is shown in the top right panel: two time intervals
can be identified, [10; 20] and [25; 35], which intermediately drift to higher rele-
vance values just because of a higher overall variability in these domains. A very
good correspondence of Euclidean response and variance is supported by a high
squared correlation value of r2(log variance, log Euclidean response) = 0.976.

The strongly oscillating plot for feature variance is complemented by the Pear-
son correlation response, as shown in the lower left panel. A straight baseline
is identified at a value of about -8, and the peaks provide much clear candi-
dates of interesting retention times. For the present high-dimensional data set
with few data points, iterative feature dropping for Pearson similarity yields
very similar results, as given in the bottom left panel of Fig. 3. As a matter
of fact, correlation-based chromatogram comparison usually has more biologi-
cal impact than in Euclidean manner. This is already supported at the level
of chromatogram peak alignment where correlation-optimized warping yields
most accepted curve alignments. The Pearson correlation response in the lower
left panel points out retention times that are in high agreement with biological
knowledge. Moreover, the clear baseline can be used to define a threshold above
which time intervals might be automatically integrated for further analysis.

Barley Endosperm Gene Expression Data. Discovery of sequential
processes involved in tissue differentiation are available from gene expression
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data. The search for key identity genes specific for observed tissue differentiation
is a valuable desire. Micro- and macroarray technology allows parallel recording
of the abundance of thousands of gene expression intensities. The identification of
key regulators from such a usually long list of expression values is a particularly
challenging task. Here, log-normalized expression values for 11786 genes from
in-house macroarray hybridization experiments are analyzed. Two independent
series of experiments are available concerning the development of endosperm
barley tissue at 0–26 days after flowering, sampled in steps of two days.

Analytic focus has been put on correlation-based feature identification. This
overcomes limitations of Euclidean distance approaches that emphasize genes
which are mainly related to high variance. Two lists of top-rated 25 genes out
of 11786 are computed, one by feature dropping and the other by response

days after flowering [daf]
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Fig. 4. Temporal gene regulation of top 25 genes in endosperm barley tissue. Upper
panel: results from feature dropping. Bottom panel: results from gradient response
analysis. Both panels are related to the Pearson similarity measure. Gene profiles have
been ordered by a combination of one-dimensional self-organizing map and functional
annotation. Shades of gray denote normalized gene expression intensities according to
the reference bar. Text columns contain Blast description, Blast score, and functional
category of genes.
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gradients. Thereby, the two independent series of gene expression experiments
are processed separately, their gene ranks are summed up, and the highest 25
sums of ranks are considered top candidate genes. Rank summation has been
regarded as a valid operation after confirming that the squared correlation of
the ranks of all genes is greater than 0.9. In order to compare results of feature
dropping and response gradients, the temporal gene regulation profiles associated
with the top-rated genes are plotted in Fig. 4.

In summary, feature evaluation based on Pearson correlation yields quite dif-
ferent results for feature dropping and gradient response analysis. The group of
genes obtained by feature dropping (upper panel) exhibits common patterns of
strong up-regulation. Among the top-rated 25 genes detected by feature drop-
ping, most of them are found to be endosperm-specific and exclusively detected
in triticeae species. In other words, the feature of up-regulation is considered im-
portant for characterizing the data set, which is a reasonable finding for the tem-
porally related experiments. Nonetheless, this very prominent regulation charac-
teristic could be captured by standard clustering techniques. Qualitatively new
patterns are revealed by gradient response analysis (lower panel). Intermediate
regulations are shown in addition to the group of moderately up-regulated genes
(Fig. 4, lower panel). Thus, again, variability alone does not take too much in-
fluence on gene selection. Interestingly, most detected genes that are expressed
during late endosperm development are connected to protein synthesis initiation
processes. These are considered to have an important functional role during the
peak of product accumulation.

4 Conclusions

A new approach to unsupervised feature selection has been proposed. Its ba-
sic principle is the detection of features that maximum decorrelate original and
feature-masked data relationships. These features are supposed to be most crit-
ical for faithful relationship reconstruction. The considered data relationships
are defined by appropriate data similarity measures, such as the presented Eu-
clidean distance and Pearson correlation. Sensitivity is obtained as response to
feature dropping or as gradient-based reaction to small perturbations in para-
metric formulations of the utilized similarity measure. Both ways measure cor-
relation loss, but, by construction, they are structurally different. As has been
demonstrated in the experiments, gradient-based response analysis can be re-
garded as for measure-specific counterpart of variance. This canonic interpreta-
tion, its computational advantage over greedy feature dropping, and the parallel
feature probing makes response analysis the preferred feature selection method.
Whichever technology is chosen, reasonable automatic feature rating essentially
helps to pre-structure the data, to get different views and to formulate hypothe-
ses about the data sets, like for the three examined high-dimensional data sets.
In unsupervised scenarios the data-driven, method-intrinsic dynamic fully de-
termines the outcome; therefore, since unsupervised methods optimize different
goals, objective quality criteria are missing in comparisons, and the results must
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be judged by a combination of subjectiveness and additional knowledge. In fu-
ture studies, further potential of the proposed methods will be assessed in close
cooperation with biological experts and their additional background knowledge.
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