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Abstract. Automatic eye tracking is a challenging task, with numer-
ous applications in biometrics, security, intelligent human—computer in-
terfaces, and driver’s sleepiness detection systems. Eye localization and
extraction is, therefore, the first step to the solution of such problems.
In this paper, we present a new method, based on neural autoassoci-
ators, to solve the problem of detecting eyes from a facial image. A
subset of the AR Database, collecting individuals both with or without
glasses and with open or closed eyes, has been used for experiments and
benchmarking. Preliminary experimental results are very promising and
demonstrate the efficiency of the proposed eye localization system.

1 Introduction

Human face detection is often the first step in numerous applications, such
as video surveillance, human-computer interface [I], face recognition, and im-
age database management. Moreover, facial feature extraction, especially with
frontal images, has a wide range of usage in automated face modelling, facial ex-
pression recognition, face animation, feature—based face recognition, and driver’s
sleepiness detection [2]. The problem of detecting human eyes has attracted a
considerable interest in computer vision society. Many efforts have been ad-
dressed to capture the essential physical and emotional information from eyes.
In intelligent vehicle systems, eye gaze and the motion of eye pupil provide im-
portant information for fatigue analysis [3]. In face detection and recognition
systems, eyes can provide the richest identity information [4].

Many different approaches are reported in literature to address the problem
of eye detection, based on some observations that could be made on the pecu-
liarities of the “object” to be detected. For instance, since the pupils generally
appear darker w.r.t. the surrounding regions, some algorithms search for local
gray minima [5]. Techniques such as contrast enhancement and intensity thresh-
olding are involved, in order to extract the dark regions. In [6], the eye regions
are located based on an a priori knowledge on the facial feature arrangement
(the hair region has the largest area in the binary image, the eyes are situated
below the eyebrows, etc.). However, such algorithms are highly sensitive to the
thresholding method used, as well as to the lighting conditions, i.e. the gray
level information would be helpful in detecting several eye candidates, but it
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may not be sufficient to filter out different facial features, such as eyebrows,
which also appear as dark patches. Alternatively, an artificial template could
be built, according to the rough shape of the eye and the eyebrow, such that
the correlation coefficient between the template and the eye image can be calcu-
lated [7)8]. Hough transform was also employed [9], which implies a preliminary
robust edge detection procedure. Finally, more recently, attention has been payed
to Gabor wavelets techniques [10], where Gabor wavelet—based linear filters are
used for eye corner detection, and non-linear (Gaussian) filters are used for iris
detection. All the above mentioned methods belong to the class of feature-based
approaches, whereas image—based techniques, like Principal Component Analy-
sis (PCA), have also been applied [II]. Despite these efforts, robust, accurate,
and non—intrusive eye detection and tracking remains largely an unsolved issue.
The challenges result from eye closure, eye occlusion, variability in scale and face
orientation, and different lighting conditions.

In this manuscript, when we refer to the eyes, we are considering not only
the iris, but rather the collection of contours forming the pupil, iris, eyelids, eye-
lashes, eyebrows and the shading around the eye orbit. This general eye region is
a larger and more dominant structure as a whole than its individual subcompo-
nents. Therefore, it is more stable and easier to detect. Although the process of
including the surrounding region improves robustness, it reduces accuracy since
the contours of the eyebrows and eye orbit shading may have a center that does
not coincide with the pupil’s center.

The method proposed consists of three fundamental steps. First, a preprocess-
ing phase, based on the application of the Sobel filters, is carried out on color
images, in order to extract the principal contours [I2]; then observing that the
eyes exhibit strong transitions, because of the iris and the white part of the eye,
the projections of horizontal and vertical transitions are evaluated [13]. Finally,
both the projections are used to train two specialized neural autoassociators.

The paper is organized as follows. In the following section, the feature extraction
method is described, whereas Section Blbriefly sketches some salient properties of
the neural autoassociators used for detecting the eyes. In Section [l preliminary
but promising results are reported, whereas Section [ collects some conclusions.

2 Feature Extraction

The proposed eye detection technique is based on neural autoassociators and
on gradient features extracted from the images. The eyes possess strong hori-
zontal and vertical edges [14], therefore the exploitation of gradient features is
particularly suited to represent the image content.

In order to determine the gradient transitions, both the Sobel operators [12]
are applied to the input image to determine vertical and horizontal edges. Then,
the horizontal and vertical projections are computed summing the rows and the
columus of the filtered image, respectively (see Fig. [I]).

In [13], a thresholding technique is proposed to analyze the projections and to
localize the eyes. Unfortunately, this method can fail when the image presents
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filter

Fig.1. The image is processed using the Sobel operators, then the horizontal and
vertical projections are extracted

sharp gradient transitions, for instance, for open mouth faces or in presence of
glasses. To overcome such problems, the method proposed in this paper employs
two neural autoassociators (one for each projection). For the sake of simplicity,
the procedure will be described w.r.t. the horizontal projections, since, as a
matter of fact, the vertical projections are managed in the same way.

The horizontal projections are scanned from the top to the bottom of the
input image, using a moving window. Initially, the window position corresponds
to the top of the image and then it moves down pixel by pixel. For each win-
dow position, a vector of integer features, that collects both the window position
and the values of the projections that lie behind the window, is created. There-
fore, each input vector is an n + 2 array of integers, x = (a,b,x1,xa,...,T,),
where n is the window dimension in rows, a and b represent the indexes of the
rows that delimit the window, and each z; counts the number of white pixels
in the i—th row inside the window. In order to train the neural autoassociator,
a target, that assesses if the window position corresponds to the eye area or
to a part of it, is associated to each feature vector. A target equal to 1 corre-
sponds to a feature vector that represents a part of the eye area, while a value
equal to 0 is associated to the feature vectors that do not belong to the eye
area, i.e. if the window intersects the eye area but it is not completely included,
then the associated target is posed to 0. Obviously, the window width must be
smaller than the eye area, in order to have a set of vectors corresponding to
such area. Moreover, the target association is performed knowing the position
of the eyes in the training images (the associated ground—truth information is
needed).

In order to train the neural autoassociators, a set of training images must
be chosen. For each image, two sets of feature vectors, corresponding to hori-
zontal and vertical projections, are extracted and the relative targets are asso-
ciated. Thus, the autoassociator which deals with the horizontal projections is
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specialized to locate the vertical position of the eyes, while the other one per-
forms the horizontal localization.
An eye localization system can exploit the trained autoassociators as follows:

— The system is fed with an input image, on which the Sobel operators are
applied to compute the gradient transitions, and hence to determine the
horizontal and vertical projections;

— Using the moving window technique, two sets of feature vectors are extracted,
considering both the horizontal and the vertical projections;

— Each neural autoassociator processes its set of feature vectors and predicts,
for each vector, if the associated window position corresponds to a part of
the eye area;

— Finally, adjacent window positions predicted as eye locations are merged
together to determine the bounding boxes that correspond to the eyes.

The localization system is able to determine the correct position of the eyes if
the input and the training images meet the following constraints. First, we need
to process facial images, depicted in foreground. Then, persons must appear in
a frontal view and only a small inclination of each face is allowed. Finally, each
image must possess an uniform background. Nevertheless, the last constraint
can be overcome by integrating the system with a preprocessing module for face
localization. In fact, face localization allows to reduce the noise represented by
the background. Many methods proposed in the past exploit skin—color filters
to localize faces. As a matter of fact, the human skin colors range in a relative
small region, independently of the particular color space chosen to represent the
images [I5]. Unfortunately, the performances of skin—color filters deeply depend
on the light conditions and on the ethnic group of the depicted persons. In
order to overcome such limitations, appearance-based methods, able to infer
face models using machine learning techniques, are preferable [T6/17].

3 Eye Detection Using Autoassociators

Autoassociators are a special kind of neural networks which, by learning to repro-
duce a given set of patterns, grasp the underlying concept that is useful for pattern
classification. The number of inputs and outputs in autoassociators corresponds
to the dimension of the input space, whereas a smaller number of units forms
the hidden layer. Each autoassociator is trained to reconstruct an input x at the
output t, and its parameters are optimized to minimize the Euclidean distance
|[x — t||2. To achieve an accurate reconstruction, the autoassociator is implicitly
forced to discover an appropriate nonlinear mapping of the original input space
into a smaller space that captures the properties of the underlying distribution.
Autoassociators are generally used as one—class learning machines. In other
words, each network corresponds to a particular category and, during training,
it receives only the samples within the category. An important consequence is
that the network will learn to accurately reproduce positive samples (those in the
corresponding class), producing a prototype for that class. Thus, autoassociators
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provide an alternative approach to concept learning. In particular, the higher
the reproduction quality for an input pattern, the more likely it belongs to the
category for which the autoassociator is constructed. Moreover, the specialization
of each autoassociator to a particular class may be reinforced by training each
network also on negative examples and forcing the prototype to be as far as
possible from patterns outside the proper class.

In this paper we use two autoassociators, one for each set of projections, with
sigmoid hidden neurons and linear output units. In [I8], such architectures are
proved to realize a sort of clustering in the input space. Moreover, an end—of—
learning condition was stated, assessing that, at the end of the learning process,
an equality relation holds between the output correlation matrix X4,X5 and the
input/output correlation matrix X4Xg, with Xy and X3 collecting (by row)
all the training examples and the related outputs, respectively. From the geo-
metrical point of view, such an equality may be interpreted as a loss of energy
spent in the association process, which is higher when the autoassociator is not
able to perfectly reproduce the presented target at the output (i.e. the hidden
compressed representation is not sufficient to hold all the information needed to
reconstruct the pattern).

The standard Backpropagation algorithm, with adaptive learning rate, was
used for training, based on two different error functions related to patterns be-
longing or not to the class represented by the autoassociator. In fact, for positive
patterns the quadratic error is minimized, whereas the error function for negative
examples is based on the inverse distance:

B, =) [[Xa(t) — Xo(t)][%,

teC

o 1
En =)  Iam=XamTe
tgC

where e, which can be chosen proportional to the machine precision, was in-
troduced for guaranteeing numerical stability. The connection weights are then

After training with
positive examples
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Neural autoassociator architecture

Fig. 2. Changes on the error surface due to training with positive or positive/negative
patterns
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updated based on the joint contributions of £, and E,,. The effects of the intro-
duction of negative examples in the training set consist in focusing the autoas-
sociator on the class is devoted to represent, so that it creates a prototype for
that class which is as far as possible from examples belonging to other classes
(see Fig. ). Finally, an ad hoc threshold must be chosen to establish whether
each pattern belongs or not to a particular class, i.e. is properly represented by
the prototype produced by the corresponding autoassociator. Such a threshold
could assume different values for different classes, due to the distribution of the
input patterns, and is generally computed via a trial-and—error procedure.

4 Experimental Results

In order to evaluate the effectiveness of the proposed technique, some experi-
ments were carried out using a subset of the AR Database [19]. This dataset
collects 4000 color images corresponding to 126 individuals (70 men and 56
women). The images represent frontal view faces with different facial expres-
sions, illumination conditions, and occlusions, obtained with sunglasses or scarfs
(see Figure B)).

Fig. 3. Samples of images from the AR database

Our subset collects 210 images randomly chosen from the original database
(faces occluded by sunglasses were excluded). The images were subsequently di-
vided into two sets that collect the same number of images: the training and the
test sets. Each image was represented as described in Section 2l The reported
results are referred to a window width equal to 10 rows/columns of pixels, for
horizontal and vertical projections. However, the performances of the system
are not particularly affected by this parameter when the window dimension is
smaller than the average eye width (height). For each image, 566 vectors repre-
sent the horizontal projections, and 758 vectors describe the vertical projections.
The percentage of negative examples (vectors extracted using a window position
that corresponds to the eye location) is equal, on average, to 2.47% and to
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Table 1. Equal error rates obtained by the localization system, varying the number of
hidden units. The classification thresholds are reported in brackets.

Architecture|Horizontal projections|Vertical projections
6 hidden 90.02% (0.135) 91.04 (0.68) %
7 hidden 90.85% (0.21) 91.84% (0.73)
8 hidden 90.05% (0.115) 88.23% (0.735)

Table 2. Effects of the classification threshold choice. The results were obtained using
a neural autoassociator with 7 hidden units.

Horizontal projections
Classification|Non eye area|Eye area| Global

threshold Accuracy |Accuracy|Accuracy
0.2 90.54% 91.22% | 90.55%
0.15 88.91% 94.62% | 89.05%
0.1 86.42% 97.48% | 86.7%

Vertical projections
Classification|Non eye area| Eye area| Global

threshold Accuracy |Accuracy|Accuracy
0.65 90.32% 92.32% | 90.55%
0.6 89.15% 93.84% | 89.7%
0.55 87.93% 94.99% | 88.75%

11.61% considering the horizontal and vertical projections, respectively. Several
training runs were performed to determine the best autoassociator architectures.
The obtained results are summarized in the following tables. Table [l reports the
equal error rates of the neural autoassociators, varying the number of hidden
units. The equal error rate is defined as the accuracy of the system when the
number of errors in the two classes is equal. Practically, the sensitivity of the
system can be chosen varying the classification threshold. When decreasing the
classification thresholds, the neural autoassociators increase their ability to lo-
calize the eyes. In Table 2] the accuracy rates obtained varying the classification
thresholds are reported, showing that the decrease of such parameters does not
drastically deteriorate the performances of the whole system, whereas the per-
centage of negative examples correctly autoassociated (i.e. the percentage of eye
localizations) grows significantly. In fact, in eye detection systems, a high recall
is generally preferable w.r.t. a high precision and, thus, the choice of a threshold
smaller than that able to obtain the equal error rate should be advisable.

5 Conclusions

In this paper, an eye localization system is proposed, based on autoassociators,
which are trained on horizontal and vertical projections obtained by color images
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after the application of the Sobel operators. The preliminary experimentation,
carried out on a subset of the AR Database, shows very promising results, al-
lowing a best global accuracy of 91.84% for vertical projections, with a recall
on the negative examples (i.e. those identifying the eye area) of 95%, whereas
90.85% and 97.48% are the best accuracy and recall for horizontal localization,
respectively. It is a matter of future work varying the dimension of the window
used for scanning the images, both horizontally and vertically, and trying to
collect more informative features (like the area and/or an approximation of the
shape of the projections) into the vectors used to train the autoassociators.

References

1.

2.

10.

11.

12.
13.

14.

15.

16.

D. Ward and D. McKay, “Fast hands—free writing by gaze direction,” Nature,
vol. 418, no. 6900, p. 838, 2002.

M. Eriksson and N. Papanikotopoulos, “Eye tracking for detection of driver fa-
tigue,” in Proceedings of IEEE Int. Conf. on Intelligent Transportation Systems,
pp. 314-319, IEEE, 1997.

. Q. Ji and X. Yang, “Real-time eye, gaze, and face pose tracking for monitoring

driver vigilance,” Real-Time Imaging, vol. 8, no. 5, pp. 357-377, 2002.

R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection in color images,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5,
pp. 696-706, 2002.

M. Rizon and T. Kawaguchi, “Automatic eye detection using intensity and edge
information,” in Proceedings IEEE TENCON, vol. 2, pp. 415-420, IEEE, 2000.

L. Zhang and P. Lenders, “Knowledge—based eye detection for human face recogni-
tion,” in Proceedings of the 4" Int. Conf. on Knowledge—based Intelligent Systems
& Allied Technologies, pp. 117-120, IEEE, 2000.

M. Betke and W. Mullay, “Preliminary investigation of real-time monitoring of
a driver in city traffic,” in Proceedings of IEEE Intelligent Vehicles Symposium,
IEEE, 2000.

S. A. Suandi, S. Enokida, and T. Ejima, “An extended template matching tech-
nique for tracking eyes and mouth in real-time,” in Proceedings of Visualization,
Imaging and Image Processing, pp. 586-591, 2003.

T. Kawaguchi, D. Hidaka, and M. Rizon, “Detection of eyes from human faces by
Hough transform and separability filter,” in Proceedings of Int. Conf. on Image
Processing, pp. 49-52, 2000.

S. Sirohey and A. Rosenfeld, “Eye detection in a face image using linear and
nonlinear filters,” Pattern Recognition, vol. 34, pp. 1367-1391, 2001.

M. Turk and A. Pentland, “Face recognition using eigenfaces,” in Proceedings IEEE
Int. Conf. on Computer Vision and Pattern Recognition, pp. 586-591, IEEE, 1991.
R. Gonzalez and R. Woods, Digital Image Processing. Addison Wesley, 1992.

X. Deng, C.-H. Chang, and E. Brandle, “A new method for eye extraction from
facial image,” in Proceedings of IEEE DELTA, IEEE, 2004.

D. Maio and D. Maltoni, “Real-time face location on gray—scale static images,”
Pattern Recognition, vol. 33, pp. 1525—-1539, 2000.

J. Yang, W. Lu, and A. Waibel, “Skin—color modeling and adaptation,” in Pro-
ceedings of ACCV’98, vol. 2, pp. 687694, 1998.

M. Bianchini, M. Maggini, L. Sarti, and F. Scarselli, “Recursive neural networks
learn to localize faces,” Pattern Recognition Letters, vol. 26, pp. 1885-1895, 2005.



252

17.

18.

19.

M. Bianchini and L. Sarti

A. Carleson, C. Cumby, J. Rosen, and D. Roth, “The SNoW learning architecture,”
Tech. Rep. UIUCDCS-R-99-2101, University of Illinois at Urbana—Campaign
Computer Science Department, 1999.

M. Bianchini, P. Frasconi, and M. Gori, “Learning in multilayered networks used
as autoassociators,” IEEE Transactions on Neural Networks, vol. 6, no. 2, pp. 512—
515, 1995.

A. Martinez and R. Benavente, “The AR face database,” Tech. Rep. 24, CVC
Technical Report, 1998.



	Introduction
	Feature Extraction
	Eye Detection Using Autoassociators
	Experimental Results
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




