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Abstract. We present a multiclass classification system for gray value
images through boosting. The feature selection is done using the LPBoost
algorithm which selects suitable features of adequate type. In our exper-
iments we use up to nine different kinds of feature types simultaneously.
Furthermore, a greedy search strategy within the weak learner is used to
find simple geometric relations between selected features from previous
boosting rounds. The final hypothesis can also consist of more than one
geometric model for an object class. Finally, we provide a weight opti-
mization method for combining the learned one-vs-one classifiers for the
multiclass classification. We tested our approach on a publicly available
data set and compared our results to other state-of-the-art approaches,
such as the ”bag of keypoints” method.

1 Introduction

Image recognition and categorization are interesting vision problems. There ex-
ist many approaches for solving specific problems (e.g. for face recognition). The
task becomes more difficult if the goal is to develop an algorithm which is inde-
pendent from the target object class. A state-of-the-art approach to overcome
this problem is to use the ”bag of keypoints” idea (see [5]). This method cal-
culates a feature histogram for every image in the data set. Its main advantage
is, that standard learning algorithms like SVMs [12,19], which need a fixed di-
mensional input vector, can be used to construct a classifier. On the other hand,
feature histograms cannot exploit geometric relationships between the features
contained in an image, although this might be discriminative information.

There exist various methods for incorporating such relationships between
parts using statistical models. Early work in this direction was done by Burl
et al. [2] for the recognition of planar object classes. There, important parts
are selected by previously learned detectors, and afterwards a shape model is
learned from the detector locations. This approach was later improved by using
a soft-detection strategy in [3]. The two problems; detecting features, and build-
ing a shape model from the detection, are solved simultaneously. Furthermore,
unsupervised scale-invariant learning of parts and shape models has been done
in [7], where an entropy-based feature detector from Kadir [13] has been used to
select the important parts from an image.
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Recently, graph-based models called ”k-fans” were introduced [4]. The struc-
ture of the graph, and therefore the representational power of the shape model
is controlled by the parameter k. There exist well defined algorithms to solve
the learning and detection problems for models with k-fan graphs. In general,
methods like [2,3,4,7] force the user to predefine a fixed number of parts consid-
ered for learning. This quantity is usually determined in a second run by trial
and error. In contrast, we show how the correct number of parts as well as the
geometric complexity for the model can be estimated during learning with a
boosting algorithm.

Previous work from Opelt et al. [17,16] and Fussenegger et al. [9] have shown
that image categorization using AdaBoost [8] is a powerful method. Particularly,
they have used AdaBoost to select discriminative features to learn a classifier
against a background class. This work extends their methods in several direc-
tions. First, it is not always clear beforehand which feature types are advisable
for learning a certain class. Therefore, we use nine different feature types simulta-
neously, and leave it up to the learning algorithm to determine the useful types.
To reduce computational efforts we cluster each feature type using k-means.
Secondly, we use LPBoost [1,6] as the learning algorithm which is advantageous
compared to AdaBoost, since LPBoost can handle noisy data well. Our third con-
tribution is a procedure for incorporating geometric relations between features
into the weak learner of the boosting algorithm. Finally, we address the multi-
class classification problem and provide a weight optimization method for one-
vs-one classifiers using Support Vector Machines (SVMs) [12,19]. We conclude
with the evaluation and the results obtained on the Xerox image data set [5],
which is publicly available at ftp://ftp.xrce.xerox.com/pub/ftp-ipc/. There, we
also compare our results with those reported in the literature.

2 Classification of Images Through Boosting

In this Section we will present our method for learning a one-vs-one classifier. We
will describe our feature extraction method as well as our preprocessing steps.
Afterwards, we will give a short overview of the learning algorithm, and introduce
an extension of the weak learner in order to manage geometric relations.

2.1 Feature Extraction

We use the scale invariant Harris-Laplace detector [15] to obtain regions of inter-
est. From every region we extract four different feature types: scale invariant fea-
ture transforms (SIFTs) [14], sub-sampled grayvalues (see [17]), basic moments
and moment invariants [11]. In addition to these descriptors, we use the segmen-
tation method and the features of Fussenegger et al. [9]. For some feature types,
we also normalize illumination by homomorphic filtering (see e.g. [10], Chap.
4.4.3). Furthermore, all features are normalized by whitening. Additionally, we
obtain another feature type by reducing the SIFT-features to their 40 largest
components using PCA, which accounts for their sparseness. Altogether, we use
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Table 1. Feature types with preprocessing steps

φ feature type intensity normal. whitening mφ kφ

1 subsampled grayvalues x 854 376 1 848
2 x x 854 376 1 848
3 basic moments x 852 755 1 846
4 x x 854 376 1 848
5 moment invariants [11] x 854 360 1 848
6 x x 854 313 1 848
7 SIFTS [14] x 809 063 1 798
8 PCA 40 809 063 1 798
9 segments [9] x 690 070 1 661

nine different types of features φ. In a second preprocessing step, we cluster the
different features by k-means using kφ = �2√mφ� centers with a random initial-
ization from the data, where mφ denotes the number of features per type ex-
tracted from the database. Table 1 shows an overview of the calculated features.

2.2 LPBoost

We use a boosting approach since those algorithms are able to select important
features from a large feature set. Instead of the common AdaBoost, we use LP-
Boost as the learning algorithm. One reason is that LPBoost has a well defined
stopping criterion; learning is stopped if no further weak hypothesis will improve
the value of the objective function for the current combination of weak hypothe-
ses. Furthermore, AdaBoost is a hard margin classifier and therefore might overfit
noisy data, whereas LPBoost is a soft margin classifier and handles noisy data
well. The linear optimization problem in its primal formulation is:

maxρ,a,ξ ρ − D
∑m

n=1 ξi

s.t. yi

∑T
t=1 αtht(xn) + ξi ≥ ρ i = 1, . . . ,m

∑T
t=1 αt = 1 αt ≥ 0

ξi ≥ 0 i = 1, . . . ,m

(1)

and its dual is given by:

minβ,w β
s.t.

∑m
i=1 yiwiht(xi) ≤ β t = 1, . . . , T∑m
i=1 wi = 1 0 ≤ wi ≤ D

(2)

Thus, the final decision function is simply:

f(xi) = sign

(
T∑

t=1

αtht(xi)

)

∈ {+1,−1} (3)

Note that the parameter D must be chosen carefully depending on the data set.
An interpretation of the parameter and additional information can be found in
Bennett et al. [1], Demiriz et al. [6] and Rätsch et al. [18].
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2.3 Weak Learner

The weak learner is called in every boosting round and selects a hypothesis h∗

from the hypothesis space H which fulfills equation

max
h∈H

(
m∑

i=1

h(xi)yiwi

)

=
m∑

i=1

h∗(xi)yiwi. (4)

We implemented three different weak learners. The first and simplest one selects
a reference feature of type φ with an optimal threshold according to the current
boosting weights wt. The second and third weak learners search for geometric
relations between distinctive features. Note computational complexity is twofold
when building geometric relations based on relative position of the features and
their number.

Since a full search over all possible geometric directions is a computationally
time consuming process, we use rather simple geometric relations. More pre-
cisely, our geometric primitives use four geometric directions (up, down, left,
right) relating up to three reference features. If an object category requires a
geometric relation consisting of more than three features, our search algorithms
build hierarchies of such geometric primitives modeled as trees. These relations
are denoted as ’relations A’ throughout this paper. Furthermore, we build more
complex geometric relations to distinguish between more directions, i.e. we divide
our primitives into eight sections and denote those as ’relations B’. Note that
our geometric relations are invariant to translation and scale but not to rotation.

To speed up computation, our weak learners use a greedy search strategy to
find geometric relations [Fig. 1]. In particular, we combine the previous hypothe-
ses only with the selected hypothesis h∗ that has just one reference feature (see
Fig. 1, Step 2a). This is reasonable due to (4). There might exist a better feature
for a combined hypothesis hand, but it would require a search through all features
for every previous hypothesis to determine it. Nevertheless, we tested this search

1. Select a hypothesis h∗ using equation (4) and current boosting weights wt.
2. For all previously generated hypotheses hp, p = 1, . . . , t − 1 do:

(a) Create a hypothesis with a logical AND using the current simple weak
hypothesis → hand = h∗ AND hp.

(b) The hypothesis hand is used for the geometric relations search. The two
sub hypotheses from hand are applied on every image yielding two point
sets. We seek a common geometric relation between these sets, yielding a
geometric hypothesis hgeom.

3. The weak hypothesis finder compares the performance of the simple weak
hypothesis h∗ and the geometric hypothesis hgeom and outputs the hypothesis
with the best performance.

Fig. 1. Greedy search strategy for the weak learner
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strategy on a subset of the data. We create an optimal hypothesis hand for every
previous hypothesis hp by selecting an additional hypothesis hopt with a refer-
ence feature, such that the hypothesis hand achieves the least possible weighted
error. Since this approach gives comparable results at higher computational cost,
we use the faster greedy strategy proposed [Fig. 1].

Within every boosting iteration, the weak learner either builds a simple or
geometric hypothesis. During the incremental construction of the geometric hy-
potheses, various geometric sub hypotheses are generated. If such a sub hypothe-
sis is useful with respect to the training set, LPBoost incorporates it into the final
decision function by assigning a positive weight αt to it; otherwise αt will be set
to zero. Hence, the final classifier can contain more than one geometric hypoth-
esis per object. In consequence we do not have to flip input images to guarantee
that the objects always face the same way (e.g. motorbikes, airplanes), but rather
to ensure that there are sufficient examples for all the important orientations in
the data set.

3 Multiclass Image Classification

Within our experiments for multiclass classification, we noticed low performance
using one-vs-all and hierarchic classifiers. Considering the object categories of
this database, it is likely that the extracted features are shared within differ-
ent classes. Actually, Csurka et al. [5] do achieve good results learning feature
histograms with a one-vs-all strategy. Nevertheless, feature histograms cannot
exploit geometric relationships between the features contained in an image, al-
though this might be discriminative information. Hence, we chose a one-vs-one
strategy and combine our individual classifiers by a voting scheme.

Simple voting methods like majority voting using hard labels, not only ignore
available information about the different degrees of confidence in the different
classifiers, but also the classifier’s confidence in its own prediction. Hence, a
weighted voting scheme incorporating such information seems more reasonable.

An appropriate way to measure a classifier’s confidence in its prediction is the
signed distance

δ(xi) =
T∑

t=1

αtht(xi), (5)

with δ(xi) ∈ [−1, 1], of a data point xi to the decision boundary. In this case,
a great magnitude of δ(xi) reflects high confidence in a prediction. Thus, for an
r-class problem upon m images xi (i = 1, ...,m), we denote the predictions of
the r · (r − 1) different classifiers by

ci = (δ1,2(xi), δ2,1(xi), ..., δr−1,r(xi), δr,r−1(xi))
T

∈ [−1, 1]r·(r−1) (6)

Addressing the overall confidence in each classifier w.r.t. a certain class l, we try
to find optimal weights wl ∈ IR1×r·(r−1) with l = 1, ..., r and some b ∈ IRr such
that the overall vote
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l = arg max
l′

wl′ · ci + bl′ (7)

corresponds to the true class.
Hence, we formulate the following quadratic problem which gives a linear

SVM:
min ‖ (w1, ...,wr) ‖2 + C · ∑

i

ξi

s.t. wl · ci + bl ≥ 1 − ξi, l = class(xi)
−wl · ci − bl ≥ 1 − ξi, ∀l : l 
= class(xi)

ξi ≥ 0 i = 1, . . . ,m,
l = 1, . . . , r

(8)

where, similar to (1), the amount of slackness over all predictions ci is controlled
by the parameter C.

4 Evaluation and Results

For our experiments we used the Xerox database consisting of 1774 real-world
images from seven different categories. The categories are faces (790), build-
ings (150), trees (150), cars (201), phones (216), bikes (125) and books (142).
The numbers in brackets indicate the number of images per category.

Table 2. Accuracy upon 10-fold cross-validation

voting geometry parameter mean (std)

majority voting none – 64.25 (3.21)
majority voting relations A – 74.78 (2.92)
majority voting relations B – 75.08 (2.51)
[5] – – 85 n/a
SVM none C = 0.2583 90.60 (2.06)
SVM relations A C = 0.7622 90.90 (2.16)
SVM relations B C = 0.1666 91.28 (2.28)

Due to time restrictions we used a 50-50-split of the data in order to opti-
mize the parameters of the learning algorithms, i.e. D for LPBoost, and C for
the SVM. In every case, we apply a simple iterative search using nested inter-
vals to obtain reliable estimates. Thus we are able to select the value yielding
the lowest test error on the corresponding 50-50 split of the data. Finally, we
fix those parameters, and conduct a stratified 10-fold cross-validation on the
database [Tab. 2 - 3]. Note each one-vs-one classifier is learned over a reduced
training and test set, including only the instances of the class combination. Fix-
ing those hypotheses, we calculate their predictions over the instances from all
classes and perform the weighted voting scheme proposed. For the SVM, we use
SVMlight [12]1, where we also tried nonlinear kernels but omit their use on since
those kernels performed poorer than the linear one.
1 Available at http://svmlight.joachims.org/
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Table 3. (top) Confusion matrix upon 10-fold cross validation using SVM and the
more complex geometry ‘relations B’. The true classes are denoted in the top row.
(bottom) Histogram of the feature types φ selected by each one-vs-one classifier upon
the 50-50-split for the non-geometric case. Thus, a column denotes different background
classes. - lower-right: overall selection upon the 50-50-split for the non-geometric case.

→ faces buildings trees cars phones bikes books

faces 98.9873 0.6667 1.3333 8.4762 2.6455 0 0.7143
bldgs 0 70.6667 8.0000 0 0 2.8431 8.9286
trees 0 10.0000 87.3333 0 0 0.8333 1.4286
cars 0.5063 0 0.6667 84.0952 9.4180 0 0
phones 0.5063 0 0 7.4286 87.9365 0 0
bikes 0 2.6667 2.6667 0 0 94.6569 2.1429
books 0 16.0000 0 0 0 1.6667 86.7857
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Furthermore, we analyzed the actual feature selection by the total weight
assigned by LPBoost to the weak hypotheses of a certain feature type φ (3).
Using the optimal parameters for the 50-50-split, it turned out that most one-vs-
one classifiers select segments along with SIFTs (PCA40) for the non-geometric
(basic) case [Tab. 3]. As shown in Table 3, we observed a strong correlation
between the test error of a one-vs-one classifier and the number of different fea-
ture types within it’s final hypothesis. If two categories are hard to classify, the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Fig. 2. Example images with voting location of selected weak hypotheses are taken
from various one-vs-one classifiers. [Fig. 2(a) - 2(f)] are used for learning buildings
against trees. Only the most important hypothesis and its matching feature locations
are drawn. [Fig. 2(a) - 2(c)] show correctly classified examples, [Fig. 2(d) - 2(f)] show
misclassified examples. [Fig. 2(g) - 2(i)] show three correct classified images using a
geometric hypothesis learned from buildings vs books. [Fig. 2(j) - 2(m)] show examples
for the geometric hypothesis for the class of faces and a simple hypothesis for phones.
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learning algorithm will use more different feature types. This demonstrates the
intrinsic flexibility of our method when dealing with difficult class combinations.

Figure 2 shows exemplary images along with weak hypotheses, used by the
corresponding one-vs-one classifiers. All of them were taken from a single fold
during cross-validation. In case of buildings vs. trees, our method selects only
one simple SIFT (PCA40) feature for classification. The weak hypothesis is trig-
gered particularly at window corners [Fig. 2(a) - 2(c)]. Figures 2(d) - 2(e) show
false detections of that classifier. Both images belong to the class of trees since
those are in the foreground. Although the buildings are in the background, our
classifier detects the window corners, visible through and around the tree, and is
still able to predict the building. On the other way around, Figure 2(f) gets mis-
classified as tree because there are no such corners visible. These examples show
the difficulties in building an unambiguous database, and confirm the quality of
our classifiers.

In that line of argument, one would expect that such a simple feature would
be insufficient to distinguish buildings from books, since window corners are
similar to those of books. Indeed, the weak hypothesis of highest weight is a
geometric relation between two features. One feature represents a window corner
and the other triggers on green fields. The second best weak hypothesis uses
three features, and votes in the case where there is a hedgerow in front of a
building [Fig. 2(g) - 2(i)]. This is reasonable considering that the class book only
contains books on bookshelves or desktops, but no plants. Figures 2(j) and 2(k)
belong to the class faces. The geometric hypothesis selected votes on triangle
configurations of an ear, the hair line and the collar. Figures 2(l) and 2(m) show
a weak hypothesis for the class of phones.

5 Conclusions and Outlook

In this paper we use a new method for learning geometric relations between
features for image categorization through boosting. Our algorithm selects the
important feature types, estimates the need of geometric models and learns such
models if necessary. A final hypothesis can consist of several geometric hypothe-
ses, that solves the multi-modal appearance problem of objects. We do not have
to flip images, such that the target object always faces the same direction. We
address the multiclass classification problem with a method for combining one-
vs-one classifiers.

We found that learning without geometry already gives good performance, and
that slight improvements are achieved by moving from simple to more complex
geometric relations. An evaluation of the geometric hypotheses reveals that it is
hard to find a relation with more than three features. Simple hypotheses using
a single feature and pairwise relations dominate the final solution, which might
be due to the rather small cardinality of some classes.

In the future, the framework may be extended with a detector stage. Also
other types of geometric primitives within the weak learner are possible and
should be tried out.
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