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Abstract. We present in this paper a new facial feature localizer. It uses a kind of 
auto-associative neural network trained to localize specific facial features (like 
eyes and mouth corners) in orientation-free faces. One possible extension is pre-
sented where several specialized detectors are trained to deal with each face orien-
tation. To select the best localization hypothesis, we combine radiometric and 
probabilistic information. The method is quite fast and accurate. The mean local-
ization error (estimated on more than 700 test images) is lower than 9%. 

1   Introduction 

Automatic facial feature detection is becoming a very important task in applications 
such as model-based video coding, facial image animation, face recognition, facial 
emotion recognition, visual speech understanding, and intelligent human-computer 
interaction. Many face recognition systems are based on facial features, such as eyes, 
nose and mouth, and their spatial relationship, called the constituted approach [3]. 
Many feature detection methods have been developed in the last decade, but a wide 
majority concentrates on eye detection. The existing methods can be divided into 
several categories. A first classification is based on the acquisition device: active 
infrared-based approaches [13] and passive image-based approaches. Another one 
depends on the processed images: pre-focused images where rough feature regions 
have already been located or cluttered images where face detection is proceeded be-
fore feature detection. A third category is based on the detection algorithm: image-
based approach using one or several low-level detectors to find specific properties 
(such as edge, colour, symmetry…) [7, 10, 11], statistical appearance-based approach 
[12], active appearance models [4], deformable templates [15]… 

We present in this paper a neural-based facial feature localizer able to deal with 
orientation-free face images. As we already developed in our lab a face localizer [1], 
we assume that face has been already roughly localized in a cluttered image. The 
system uses a kind of auto-associative neural network trained to output a feature map, 
which maxima correspond to facial feature position. 

The communication is organized as follows. In section 2, we describe the database 
used in the experiments. Section 3 is devoted to the hybrid auto-associative network 
used to localize facial features. In section 4, we study experimentally this orientation-
free localizer and propose an alternate method where several networks are trained to 
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deal with specific face pose, in order to increase the system accuracy. Concluding 
remarks and future works are discussed in section 6. 

2   Database and Pre-processings 

We collected in our lab a face database. It contains images of 40 people with various 
ages, genders and ethnicities. For each person, we took 36 images (resolution 
100x100 pixels) with several facial orientations, expressions and “accessories” like 
beard or glasses (Fig. 9). In order to increase the number of data, we computed each 
mirroring image. This procedure results in a 2750 example dataset. 

We clicked manually four facial features, respectively left eye (1st feature), right 
eye (2nd feature), left mouth corner (3rd feature) and right mouth corner (4th feature) to 
create one feature map F for each face image. This feature map had the size of the 
face image and its pixels have the following value (where xiT and yiT denote the true 
feature coordinates): 
 

- At the feature location: F(xiT,yiT) = +1 
- Anywhere else: F(i,j) = -1  

 

To normalize input images (Fig. 1), we performed histogram equalization. To nor-
malize feature maps, we convolved these images with a 3x3 gaussian filter, which 
results in smoothing feature maps. Several sub-sampling were tested to reduce the 
data dimension and, thus the number of parameters to be trained. 
 

   
 

Fig. 1. Normalization process: original image (a), sub-sampled input image (b), sub-sampled 
and smoothed feature map (c) 

Facial feature are not randomly organized (except in Picasso’s paintings perhaps). 
So, we can get anthropomorphic information about their spatial organization by ana-
lyzing feature map. Assuming the feature coordinates joint density distribution is 
gaussian, we can evaluate its parameters (means and covariance matrix) by using 
Maximum a Posteriori estimator. Assuming this density is monovariate, this estima-
tion can be done on the whole dataset and leads to orientation-free parameters. To 
take into account the face orientation, we assume that feature density distribution is a 
mixture of gaussians, one for each face orientation. In this latter case, we estimate 
parameters on a given cluster. To perform self-supervised orientation clustering, we 
assumed there existed a unique relationship between 2D facial feature location and 
3D face pose. So, knowing the facial feature localization allowed predicting the face 

(a) (b)    (c)
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orientation. We used a simple K-means algorithm [2] with euclidean distance to get 
the best center of each subset. Then, we estimated parameters for each subset. We 
applied this procedure considering up to six face orientations. As can be seen (Fig. 2), 
the clustering had roughly separated the whole database in subsets, each one corre-
sponding to a certain orientation. 
 

 
 

Fig. 2. Facial feature position for five clusters: left-sided (a), frontal down (b), right-sided (c), 
frontal up (d), frontal (e) 

3   Hybrid Diabolos Networks 

The Diabolos network is an auto-associative neural network. It is a completely con-
nected two-layered perceptron. The input and output layers have the same side as the 
desired output is equal to the input. So, the network is trained to reconstruct an output 
identical to its input. It implements a specialized compression (quite similar to non-
linear principal component analysis) as its hidden layer has much less units than input 
or output does. This network was successfully used for compression [5], handwritten 
character recognition [14], and face detection [1, 8]. In this latter application, the 
network is used to modelize the “face-class” and trained to reconstruct face images. 
So a non-face image should be badly compressed and the reconstruction error would 
be higher than for a face image. Here, we do not want to reconstruct a specific pattern 
class (the “face-class” for example) but to localize specific features within these pat-
terns (eyes and/or mouth corners in the face case). In other words, we want to associ-
ate an image of face (input) with a facial feature map (output). So, we used as desired 
output, the normalized images containing the feature positions described in §2.  
 

                     
 

Fig. 3. Training process: input image (a) feeds the network. The mean squared error ε between 
network output(b) and feature map (c) is used as the cost function. 

(a) (b) (c)     (d)     (e)

(a) (b) (c) 

ε
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Fig. 4. Decision process: network produces the output image (a) where local maxima are de-
tected (b) and back-projected onto the original image(c) 

The network is trained using the back-propagation algorithm with adaptive mo-
mentum. The cost function is the mean squared error between network output and 
desired output (Fig. 3). Training parameters (number of epochs, hidden layer size) are 
tuned by exhaustive research. Once trained, the network is able to localize facial fea-
ture on unknown test images. The feature positions can directly be inferred by simply 
searching the maxima in the output image and back-projected onto the original image 
(Fig. 4). Let (xiD,yiD) be the coordinates of these detected features. 

4   Experimental Results 

To evaluate the localization accuracy, we compute for each image the normalized 
error i.e the mean euclidean distance d between the detected feature position and the 
true feature position normalized with respect to the inter-ocular distance. 

4.1   Orientation-Free Localizer 

First, we trained a single neural network to localize facial feature on the whole data-
base and perform orientation-free localization. We divided the whole dataset into two 
sets: training set (three fourth) and test (one fourth). Several experiments were made 
with different training and test sets. 

In the first experiment, we tested the localizer sensitivity to feature number and po-
sition. We dispatched the same people in both training and test sets with slightly dif-
ferent orientations. Then, we trained several localizers. The first one (SFL) consisted 
of four single feature localizers; each one specialized on one facial feature. The sec-
ond (DFL) used two double feature localizers and each localizer dealed with a couple 
of features. Finally, (QFL) was a quadruple feature localizer (Fig. 3 & 4). Table 1 
summarizes results in term of mean normalized error. These results are very interest-
ing: the mean normalized error decreases as the number of feature to localize in-
creases. This was quite predictable as the localizer associates a facial feature map 
with a face image. The more structured the feature map is, the more reliable the asso-
ciation will be. Note that when training an under-dimensioned QFL localizer (with a 
small number of hidden cells), this always outputs the same map that is the mean 
feature map whatever the input image is. Owing to these conclusions, we decided to 
make a thorough study on the QFL localizer. We can summarize its localization re-
sults on the test set (Fig 5.a) as follows: 35% of the images have a normalized error 

(a) (b) (c)
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lower than 0.05 (5%), 85% of the images have a normalized error lower than 0.1 
(10%) and the mean normalized error is 0.096. We can validate localization hypothe-
sis by computing the log-likelihood of the detected features coordinates (xiD,yiD). We 
tuned a threshold on the training set to reject up to 10% of the poorest localization. 
This decreases the mean normalized error to 0.065. 

Table 1. Mean normalized error of the single (SFL), double (DFL) and quadruple (QFL) fea-
ture localizers on the test set 

Localizer Mean normalized error 
SFL 0.163 
DFL 0.133 
QFL 0.096 

In the second experiment, we tested the QFL localizer sensitivity to identity. We 
dispatched different people in the training and test sets and trained a quadruple feature 
localizer. Compared to the first experiment, localization results (Fig. 5.b) are quite 
disappointing though predictable. Mean normalized errors on the training set are 
nearly the same for both experiments while they are very different on the test set 
showing that identity influences greatly the localizer accuracy. Only 15% of the im-
ages have a normalized error lower than 0.05 (5%), 60% of the images have a normal-
ized error lower than 0.1 (10%) and the mean normalized error is 0.138.  
 

  
 

Fig. 5. Ratio of face images versus normalized error on training (dotted) and test (solid) data-
bases. Sensitivity analysis: face orientation (a) and identity (b). 

4.2   Multiple Localizer 

Training. To improve the localizer accuracy, we decided to use several localizers; 
each one specialized on a given orientation. The clustering procedure described in §2 
could separate the initial dataset into several subsets corresponding to a given face 
pose. Given N the number of considered orientations, the corresponding multiple 
localizer consists in N networks. So, for an input image, we have now N output im-
ages and N localization hypothesis corresponding to the four local maxima of each 
output image (Fig. 6). To compare the accuracy of the multiple localizers, we 

(a) (b)
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compute the normalized error for each hypothesis and apply the WTA (Winner Takes 
All) criterion to select the best one. We have considered up to N=6 orientations. As 
can be seen (Fig. 7) the mean normalized error decreases continuously on both train-
ing and test sets when N increases. Such results are quite logical: as the number of 
specialized networks increases, the range of face orientations each network has to deal 
with decreases. The association process between face image and feature map becomes 
easier and the normalized error decreases. 
 

 
 

Fig. 6. Multiple localizers: Input image (a), target image (b), output image for the five networks 
and localization hypothesis (c to g) 

 

Fig. 7. Mean normalized error on the training (dotted) and test (solid) sets versus number of 
orientations considered 

Decision. Latter result gave us a lower bound for localization error as it was produced 
by using the true feature position. As this information is not available, we have to find 
other criteria to select the best hypothesis.  

Visual inspection of the networks output drives us to define a radiometric criterion 
(RC). As can be seen (Fig. 6), the best hypothesis corresponds to an output image O 
closed to the feature map, in terms of pixel intensities. This is an advantage of multi-
ple auto-associative networks. As they are trained to localize features for a specific 
face pose, they perform well on this given orientation and poorly on the others leading 
to “noisy” outputs. So we define an “ideal” output image I as follows: 
 

- At each maximum position: I(xiD,yiD) = O(xiD,yiD) 
- Anywhere else: I(i,j) = median(O) 

 

(a) (b) (c) (d) (e) (f) (g) 
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Then, we compute the distance between the ideal output I and the real output O. We 
get a set of N distances Dj for the N output maps and use the WTA criterion to select 
the best one. 

Another probabilistic criterion (PC) is obvious: the log-likelihood of each hypothe-
sis. Given the coordinates (xiD,yiD) of the detected features and the coordinate joint 
probability distribution for each face orientation, we can compute a set of N likeli-
hoods Lj for the N hypothesis and use the WTA criterion to select the best one. As for 
the orientation-free localizer, we can reject a poor hypothesis while considering its 
likelihood (PCR criterion). 

Finally, in order to get the best of these radiometric and probabilistic information, we 
can combine the two criteria. We normalized the distance vector D = { D1, …, DN} and 
the likelihood vector L = {L1, …, LN} on [0;1] and use the sum rule [9] to combine 
them. Note that we experimented several normalization processes and combination 
operators (weighted sum, neural combination …) leading to quite similar results. 

Table 2. Mean normalized error of the multiple localizer using radiometric (RC) criterion, 
probabilistic (PC) criterion and their combination on the test set 

 

Criterion  
Mean normalized error 

       N=3                 N=5    
RC 0.088 0.089 
PC 0.121 0.146 

PCR 0.055 0.058 
Combination  0.091 0.082 

 
 

 

Fig. 8. Normalized localization error on the test set: orientation-free localizer (dotted) and 
multiple localizer combining five specialized networks (solid) 

Table 2 summarizes the results for the two criteria and their combination, focusing 
on two multiple localizers respectively combining three and five specialized net-
works. The RC criterion outperforms slightly the orientation-free localizer (mean 
normalized error: 0.096). We can explain the poor results of the PC criterion by re-
minding the main drawback of auto-associative networks. As these latter are special-
ized on a specific face pose, they always produce an output that is close to the mean 
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Line 1:           

Line 2:           

Line 3:           

Line 4:           

Line 5 :           

Line 6:           

Line 7:           
 
 

Fig. 9. Localization results on some test images. The normalized error is indicated bellow. 

 
 

(a) (b) (c) (d)

0.05 0.04 0.04 0.00 

0.09 0.05 0.05 0.05

0.00 0.04 0.06 0.04 

0.00 0.05 0.03 0.1 

0.00 0.03 0.04 0.04 

0.04 0.09 0.00 0.06 

0.13 0.08 1.40 0.31 
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feature map of this face pose. This leads to high likelihood value whatever be the face 
image. Meanwhile, the PCR criterion is quite accurate. The information combination 
outperforms the orientation-free localizer. The higher accuracy happens when using 
five specialized networks. We can summarize the multiple localizer results on the test 
set (Fig. 8) as follows: 50% of the images have a normalized error lower than 0.05 
(5%), 90% of the images have a normalized error lower than 0.1 (10%) and the mean 
normalized error is 0.082. Finally, we present some localization results on test images 
(Fig. 9): frontal faces (1st line), left-sided and right-sided faces (2nd line), up-sided and 
down-sided faces (3rd line) and tilted faces (4th line). Localizer sensitivities to glasses 
(5th line), scale (6th line) and partial occlusions (7th line) are shown. The association 
procedure makes the system less sensitive to partial occlusions and noise: e.g. if one 
feature is not visible, its position is inferred by the positions of other visible features. 
Two localization errors are presented (7th line). Note that, in both cases, an accurate 
localization hypothesis was found but the combination method failed to select it. 

5   Conclusions and Future Works 

We have presented a novel algorithm for the detection of facial features in a pre-
focused face image. It is based on a particular neural network trained to associate a 
feature map with a face image. We studied thoroughly the single, orientation-free 
localizer and show that its accuracy increases with the number of features to detect. 
We proposed an alternate method where several specialized networks were trained to 
deal with specific face pose. The best localization hypothesis is then selected by com-
bining radiometric and probabilistic information. This multiple localizer is more accu-
rate than the orientation-free localizer: the mean normalized error decreases from 
9.6% to 8.2%. Note that the whole system is quite fast: more than 14 images/second 
(on a Pentium IV 2.8 Ghz with MathLab). 

Training the system on a larger dataset will validate all these results and should in-
crease the localization accuracy in two ways. First, we hope it will reduce the sensi-
tivity to identity. Secondly, it will increase the generalization ability in the multiple 
networks case and, by the way, the whole accuracy. To deal with such generalization 
problems, classical methods like bootstrapping and shared weight networks [6] are 
under study.  

We have to evaluate the accuracy of the complete localizer, by cascading the face 
localizer [1], with the facial feature localizer. Finally, the cascade should be extended 
to perform coarse-to-fine localization and deal with finer facial feature (like eye cor-
ners or iris for example). 
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