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Abstract. Multiple classifier systems are a well proven and tested in-
strument for enhancing the recognition accuracy in statistical pattern
recognition problems. However, there has been reported only little work
on combining classifiers in structural pattern recognition. In this paper
we describe a method for embedding strings into real vector spaces based
on prototype selection, in order to gain several vectorial descriptions of
the string data. We present methods for combining multiple classifiers
trained on various vectorial data representations. As base classifiers we
use nearest neighbor methods and support vector machine. In our exper-
iments we demonstrate that this approach can be used to significantly
improve the classification accuracy of string patterns.

1 Introduction

Building multiple classifier systems (MCSs) has been a topic of intensive research
for many years [1,2]. The goal is to outperform the classification accuracy of a set
of individual classifiers by combining them in an appropriate way. That is, one
aims at creating a set of classifiers with a large diversity such that the weakness
and errors of one classifier are compensated by other classifiers. A large number
of methods for producing multiple classifier systems have been proposed and the
success of these methods has been impressively demonstrated [3,4,5,6,7].

However, almost all papers in the field of multiple classifier systems have
concentrated on vectorial pattern representations. Almost no work using struc-
tural data, such as strings or graphs, has been reported in the literature [8,9,10].
Using a structural representation of patterns rather than feature vectors has
some advantages and has been proven to be a powerful means for many appli-
cations [11,12,13,14]. In the current paper we focus on pattern representations
in terms of strings, i.e. sequences of symbols. To perform recognition tasks, one
needs to define a distance measure, which is, in case of strings, usually the edit
distance [15]. String edit distance allows one to implement nearest neighbor clas-
sifiers. Consequently, building multiple classifier systems is normally restricted
to the creation of an ensemble of k-nearest-neighbor classifiers (kNN).

In this paper, we present a multiple classifier approach applicable to string
patterns. The key idea is to use the transformation method proposed in [16,17]
for embedding strings into dissimilarity spaces by means of prototype selection.
This method has also been used in [18]. It is a general approach that is suitable
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to make the whole spectrum of classifiers known from statistical pattern recogni-
tion available to string representations. It has been shown that the classification
accuracy of strings can be significantly increased by applying such an embed-
ding and by classifying the vectorial data gained from this procedure. In this
paper we go one step further. As each concrete transformation from the string
to the vectorial domain depends on various parameters, it is straightforward to
generate several such embeddings by varying these parameters. Then the vecto-
rial representations obtained from different embeddings are utilized to build a
classifier ensemble.

This paper is organized as follows. Section 2 gives an overview of the embed-
ding mechanism of strings into vector spaces. In Section 3, the architecture of
our multiple classifier systems is described, including the creation of the classifier
ensembles. Experimental results of the method, applied to handwritten digits,
are discussed in Section 4. Finally, in Section 5 some conclusions are drawn.

2 From the String Domain to the Vector Space

Let A be a finite alphabet of symbols and A∗ be the set of all strings over A.
Furthermore, let ε denote the empty symbol. A string can be modified by edit
operations: The replacement of a symbol a ∈ A by b ∈ A is called a substitution,
and if a = ε or b = ε we term it an insertion or deletion, respectively. In order to
measure the dissimilarity of strings, a cost c is assigned to each edit operation.
Given a sequence S = e1, . . . , en of edit operations, its cost is defined as c(S) =∑n

i=1 c(ei). Considering two strings x, y ∈ A∗ and all sequences of edit operations
that transform x into y, the edit distance, d(x, y), of x and y is the sequence with
minimum cost. The edit distance can be computed by dynamic programming in
O(nm) time and space, where n and m are the lengths of the two strings under
consideration [15].

With the notation introduced above, a transformation of a string pattern
into a vector representation can be defined. The transformation is based on a
set of selected strings, the prototypes. A string is transformed into a vector by
calculating its edit distances to all prototypes, where each resulting distance
represents one vector component. More formally, let X ⊂ A∗ denote a set of
string patterns over the alphabet A, and P = {p1, . . . pn} ⊂ X a set of selected
prototypes. For a given string x ∈ X a vectorial description of x is defined by
the transformation tPn :

tPn : X → R
n with tPn (x) = (d(x, p1), . . . , d(x, pn)) (1)

As a consequence, the number of prototypes, n, defines the dimensionality of the
vector space, R

n.
Obviously, the characteristics of the transformation depend on the size of P

as well as on the patterns selected as prototypes. An algorithm that selects the
prototypes pi (i = 1, . . . , n) out of X is called prototype selection strategy s.
With s(X ) = P we denote the procedure of building P out of X by applying s.
Examples of different selection strategies, such as the border prototype selector,
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the center prototype selector, the spanning prototype selector and the k-medians
prototype selector, have been discussed in [16,18].

In order to make available classifiers from statistical pattern recognition to
string classification by means of the transformation procedure introduced above,
the transformation tPn is applied to each element of a given dataset. After the
transformation is accomplished and the whole dataset is embedded into a vector
space, one can train any classifier suitable for vector spaces. Experiments with
the kNN classifier and the support vector machine have been described in [18].

3 Multiple Embedding MCS

The idea underlying the construction of our multiple classifier system is to apply
different prototype selection strategies. Each individual selection strategy yields
a different embedding of the original string data, i.e. a different set of vectors.
For each such set of vectors, an individual classifier is constructed. Eventually
these individual classifiers are combined in a multiple classifier system.

3.1 Triple Embedding MCS

The prototype selection strategies used in this work are the following.

Spanning Prototype Selector (s-ps) [18]. This is a method that selects
prototypes, such that they are evenly distributed over the given set of strings.
The procedure is the following. The first prototype selected is the set median
string, an approximation of the generalized median string [19]. The next pro-
totypes are iteratively determined by selecting the string with largest sum
of the edit distances to the previously selected prototypes.

Random k-Medians Prototype Selector (rkm-ps). This strategy has
been applied in [18], where it is referred to as k-median prototype selector. It
performs a k-medians clustering and defines the resulting cluster centers to
be the prototypes. An important point is that the initial cluster centers are
chosen randomly. Thus, the algorithm is non-deterministic.

Spanning k-Medians Prototype Selector (skm-ps). This method is a de-
terministic variant of the rkm-ps. The initial cluster centers are not chosen
randomly, but as specified by the s-ps method. That is, the prototype selec-
tion according to the s-ps method is improved with respect of the k-medians
algorithm’s clustering properties.

One of the base classifiers applied in this work is the kNN classifier (with
Minkowski metric). By applying any of the three strategies s-ps, rkm-ps and
skm-ps we can transform a dataset of string patterns into a vector space. For-
mally, we denote a set of string patterns by X = {x1, . . . , xN} and sets of pro-
totypes by Ps-ps , Prkm-ps, Pskm-ps ∈ X , where the indices indicate the selection
strategy used for their construction. We use parameters nkNNs-ps , nkNNrkm-ps and
nkNNskm-ps to refer to the number of prototypes, and define the following three
transformation functions:
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Fig. 1. Example classification of a handwritten digit with the triple embedding MCS
and the kNN classifier as base classifier (TE-MCS, kNN )

tPs-ps
nkNNs-ps

: X → R
nkNNs-ps

t
Prkm-ps
nkNNrkm-ps

: X → R
nkNNrkm-ps

t
Pskm-ps
nkNNskm-ps

: X → R
nkNNskm-ps

(2)

By applying the transformations (2) to the whole dataset X we get three vecto-
rial representations of X , denoted by XkNNs-ps , XkNNrkm-ps and XkNNskm-ps , respec-
tively. For each of these three sets a specific classifier of the k-nearest-neighbor type,
denoted by CkNNs-ps , CkNNrkm-ps and CkNNskm-ps , is constructed. When classifying
a pattern xi ∈ X , each classifier produces a class prediction. Given an unknown
input pattern xi, the combination of the three classifiers’ outputs results in the fi-
nal prediction of the system, ckNN(xi).We call this setup triple embedding MCS for
the kNN classifier (TE-MCS, kNN). Fig. 1 gives an illustration of this setup with
an example of a handwritten digit “2” to be recognized.

We can now analogously build a triple embedding MCS using as base classifier a
support vector machine (SVM) with radial basis function as kernel function. The
SVM [20,21] is a classifier for statistical data that makes use of a kernel function
to transform vector data into higher-dimensional feature spaces. The key idea is to
find a separating hyperplane in the feature space with a maximal margin between
the classes. This is an optimization problem usually solved by quadratic program-
ming. For this classifier type we define the transformation functions:

tPs-ps
nSVM-Rs-ps

: X → R
nSVM-Rs-ps

t
Prkm-ps
nSVM-Rrkm-ps

: X → R
nSVM-Rrkm-ps

t
Pskm-ps
nSVM-Rrkm-ps

: X → R
nSVM-Rrkm-ps

(3)
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We get another three embeddings into vector spaces XSVM-Rs-ps , XSVM-Rrkm-ps

and XSVM-Rskm-ps . Using these embeddings, an ensemble of three SVM classi-
fiers with radial basis function, CSVM-Rs-ps , CSVM-Rrkm-ps and CSVM-Rskm-ps , are
trained. This ensemble yields output cSVM-R(xi) for an input pattern xi ∈ X .
We call this setup triple embedding MCS for the SVM with radial basis function
(TE-MCS, SVM-R).

The third setup of that type is the support vector machine with linear kernel
function as base classifier. We define the transformations:

tPs-ps
nSVM-Ls-ps

: X → R
nSVM-Ls-ps

t
Prkm-ps
nSVM-Lrkm-ps

: X → R
nSVM-Lrkm-ps

t
Pskm-ps
nSVM-Lskm-ps

: X → R
nSVM-Lskm-ps

(4)

and denote the transformed datasets by XSVM-Ls-ps , XSVM-Lrkm-ps and
XSVM-Lskm-ps . The classifiers to be trained are called CSVM-Ls-ps , CSVM-Lrkm-ps

and CSVM-Lskm-ps , and the resulting class prediction for a string xi ∈ X is ab-
breviated with cSVM-L(xi). This MCS is referred to as triple embedding MCS for
the SVM with linear kernel function (TE-MCS, SVM-L).

3.2 Hierarchical Multiple Embedding MCS

In the previous section, three MCSs have been presented that use different string
embeddings to generate ensembles. However, the classifier ensembles are always
of the same type. Now, we want to make use of the possibility of applying dif-
ferent classifier types, i.e. we define an MCS that aggregates the kNN, the SVM
with radial basis function, and the SVM with linear kernel function. The idea is
to build a hierarchical system that consists of the three triple embedding MCS
described in Section 3.1. In order to do so we simply combine the class predic-
tions, ckNN(xi), cSVM-R(xi) and cSVM-L(xi), of the three TE-MCS. Obviously, this
MCS uses a total of nine different embeddings into vector spaces. Let’s call this
setup hierarchical multiple embedding MCS (HME-MCS). Fig. 2 illustrates the
recognition of a string pattern using an HME-MCS.

4 Experimental Results

In this section we provide experimental results for the triple embedding MCSs
and the hierarchical multiple embedding MCS introduced in Section 3. For our
experiments we use the Pendigits database described in [22] (original, unnormal-
ized version). The original version consists of 10,992 instances of handwritten
digits labeled with one of the ten class names “0” to “9”, where 7,494 digits are
used for training and 3,498 for testing (see Fig. 3). Each digit is originally given
as a sequence of two-dimensional points. Certainly, in case of handwritten digits
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Fig. 2. Example classification of a handwritten digit with the hierarchical multiple
embedding MCS (HME-MCS )

it might also be useful to directly extract features instead of extracting a suitable
string representation. However, as we want to demonstrate the feasibility and
the possible power of our multiple classifier approach, the Pendigits dataset can
be regarded as an exemplary representative for any set of string patterns.

To obtain a suitable string representation, each digit curve is approximated
by a sequence of vector segments of fixed length l, such that each start and end
point lies on the original curve. An optimal value of l is determined on a valida-
tion set (see below) by performing a k-nearest-neighbor classification with the
edit distance as a distance measure. Given the sequence of vector segments as
a string representation, the substitution costs are defined as the absolute value
of the vector difference to the power of qv, where qv is an arbitrary positive real
number. As deletion and insertion costs we take the arithmetic mean of the ex-
tremal values (0 and (2l)qv ) of the substitution costs, which is 2qv−1lqv . This cost
function is referred to as vector cost function. Another way of defining a string
representation is to consider the sequence of angles between pairs of successive
vector segments. The costs assigned to the edit operations are constantly set
to 0 ≤ qa ≤ π

2 in case of angle insertions and deletions, and for substitutions
the costs are given by the absolute difference between the angles. We call this
cost function angle cost function. Notice that also the values of the cost function
parameters qv and qa are optimized on the validation set.

Our experimental evaluation consist of six independent runs, where three of
them use a vector-based string representation, and the other three use an angle-
based one. We use three different splits into training, test and validation set.
The first split, referred to as pen1, follows the original division into training and
test set, where one fifth of the training set is used for validation. The second
and third split, pen2 and pen3, are further setups, where the size of each set is
approximately the same, but different partitions have been used. The validation
set is used for the purpose of optimizing the following parameters:
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Fig. 3. Example patterns of the Pendigits dataset with the class labels
“1”, “2” and “3”

– String representation parameters qv, qa, and l. To find appropriate
values of these parameters we perform a k-nearest-neighbor classification
in the string domain and use the edit distance with either the angle cost
function or the vector cost function. Once these parameters are optimized,
they are kept unchanged for the rest of the experiment.

– Dimensionality parameters ncs , where c ∈ {kNN, SVM-R, SVM-L} and
s ∈ {s-ps, rkm-ps, skm-ps}. They determine the dimensionality of the vector
spaces. Practically, we transform the validation set to various vector spaces
with the dimensions 50, 100, 150, 200, 300, 400, 500, 800, 1000. In case of
the angle cost function, also the values 1500 and 2000 are evaluated. The
optimized values are determined by the classifier in the vector space. Once
optimal values are found, the transformations tPs

ncs
are applied, i.e. the whole

dataset, including the elements of the training and test set, are embedded
into vector spaces.

– Classifier parameters for the kNN classifier and the support vector ma-
chines. For each vectorial representation Xcs a classifier Ccs is trained on the
validation set. For example, in case of the kNN this includes the number of
nearest neighbors k and a Minkowski metric parameter.

– Combination rule. Normally, in a multiple classifier system, each partici-
pating classifier casts one vote, that is, each one chooses the most plausible
class. Afterwards these votes have to be combined. There has been much of
research on combining decision results in past years [23]. In this work, the
classifiers’ results are combined by the following three methods.

The plurality voting method decides for the class which reaches the most
votes among the involved classifiers [24]. It is a simple voting mechanism that
only counts the occurrence of each class label output by a classifier. A similar
voting method is the runoff voting where the voting process is performed in
two steps [25]. First, each classifier votes for its most plausible class. The
two candidates with the highest number of votes get another chance, and
each classifier can vote for one of those two in a second round. The one with
the most votes among the two wins the voting. A method different from the
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Table 1. Recognition rates for the triple embedding MCSs and the hierarchical multiple
embedding MCS using the angle cost function, where sequences of angles are used for
the string representation. The labels pen1, pen2 and pen3 denote three different splits
of the data into training, test and validation set.

pen1 pen2 pen3
kNN string domain 88.56 92.48 92.71
TE-MCS with kNN 90.62 92.96 91.86
TE-MCS with SVM-R 94.77 96.24 95.59
TE-MCS with SVM-L 93.85 95.23 95.33
HME-MCS 94.68 96.48 95.86

Table 2. Recognition rates for the triple embedding MCSs and the hierarchical multiple
embedding MCS using the vector cost function, where sequences of vectors are used for
the string representation. The labels pen1, pen2 and pen3 refer to the same splits of
the data into training, test and validation set as in Tab. 1.

pen1 pen2 pen3
kNN string domain 97.48 99.33 99.33
TE-MCS with kNN 97.57 99.36 99.01
TE-MCS with SVM-R 98.20 99.55 99.55
TE-MCS with SVM-L 97.74 99.60 99.33
HME-MCS 98.31 99.68 99.57

two methods mentioned above is the Borda count [26,27]. It belongs to the
category of ranking methods, and is based on a complete preference ranking
from all classifiers over all classes. For each class the mean rank is computed.
Then the top ranked class is declared the winner of the voting.

The validation set is used to determine the best voting strategy among
these three methods. The method with highest performance on the validation
set is then selected to classify the test set.

The training set is used to select the set of prototypes P from, i.e. the set of
prototypes P is always a subset of the training set. And of course, it is also
used for the training of the classifiers. In case of the kNN classifier, the nearest
neighbors are selected from the whole training set, while for the SVM the support
vectors are chosen from the training set.

The final results are produced on the test set. In Tab. 1 the results on the
test set for the string representation with angle cost function are listed. Tab. 2
shows the results for the case of vector cost function. The first row shows the
recognition results achieved with a kNN classifier in the original string domain,
with optimized cost function parameters qv, qa and l. These three classification
results shown in the first row are used as reference values for the classification
in the vector domain and are meant to be outperformed by the multiple clas-
sifier systems presented in this paper. In rows 2 to 4, the results of the triple
embedding MCSs with the base classifiers kNN, SVM-R, and SVM-L are listed.
The results for the hierarchical multiple embedding MCS can be found in row 5.
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Recognition rates printed in bold face refer to a statistically significant improve-
ment compared to the string classification (row 1) at a significance level of 0.95.
Note that the evaluation of each single classifier used for our multiple classifier
systems has been presented in [18], where also the detailed classification results
can be found.

The first point to notice is that 15 out of 18 experiments for the triple embed-
ding MCS clearly outperform the classification in the string domain. There are
only two setups, all based on the pen3 split, where the the kNN classifier in the
string domain performs better.

All HME-MCS have statistically significant better recognition rates than the
string domain classification. And in 5 of 6 cases, they outperform all three TE-
MCS from which they are built. Only in the pen1 setup with angle cost functions,
the recognition rate of the HME-MCS is slightly below the TE-MCS with the
SVM-R base classifier. In all the other cases, the experiments with the HME-
MCS provide the best results. In contrast to the TE-MCSs the HME-MCS
consists of fundamentally different classifiers. Whereas the TE-MCS are based on
an ensemble of the same classifier type, the HME-MCS provides a combination of
kNN and support vector machine classification. We conclude that the embedding
of string patterns into vector spaces using prototype selection allows one to
build classifiers of essential diversity. By combining their results the traditional
nearest-neighbor string classification can be significantly improved.

In [28], several MCS approaches have been tested on the same data. The
methods bagging, boosting, random subspace, random tree B, random forest-lg,
random forest-1 and random forest-2 were investigated by applying a 10-fold
cross-validation. The ensembles were built using nine sets, the remaining set
was used for testing, and the Borda count method applied for combination. The
best result, 99.30, was achieved with the random subspace method. However,
due to differences in the test procedure one has to be careful comparing these
numbers to the results in Tab. 1 and 2. Yet we can state that two of three HME-
MCS tests and five of nine TE-MCS tests with vector cost function outnumber
the 99.30% correct recognition rate of the random subspaces method reported
in [28].

5 Conclusions

In the present paper we propose a method for creating multiple classifier systems
for string patterns. We apply a transformation procedure to embed strings into
real vector spaces based on prototype selection. By selecting and applying three
different selection strategies we gain vectorial representations for the string data.
Given various vector space embeddings, kNN classifiers with Minkowski metric
and SVM classifiers with radial basis function and linear kernel function are
trained and combined. In a number of experiments we show that especially the
combination of different classifier types leads to significantly better classifica-
tion results than a nearest neighbor classification in the original string domain.
This shows that our method can be an effective means to improve string clas-
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sification. In the future, we would like to investigate further combinations of
various selection strategies which might allow us to even improve the current
methodology.
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