
Fast Training of Linear Programming
Support Vector Machines

Using Decomposition Techniques

Yusuke Torii1 and Shigeo Abe2

1 Kobe University, Rokkodai, Nada, Kobe, Japan
057t238n@stu.kobe-u.ac.jp

2 Kobe University, Rokkodai, Nada, Kobe, Japan
abe@kobe-u.ac.jp

Abstract. Decomposition techniques are used to speed up training sup-
port vector machines but for linear programming support vector ma-
chines (LP-SVMs) direct implementation of decomposition techniques
leads to infinite loops. To solve this problem and to further speed up
training, in this paper, we propose an improved decomposition tech-
niques for training LP-SVMs. If an infinite loop is detected, we include
in the next working set all the data in the working sets that form the
infinite loop. To further accelerate training, we improve a working set se-
lection strategy: at each iteration step, we check the number of violations
of complementarity conditions and constraints. If the number of viola-
tions increases, we conclude that the important data are removed from
the working set and restore the data into the working set. The computer
experiments demonstrate that training by the proposed decomposition
technique with improved working set selection is drastically faster than
that without using the decomposition technique. Furthermore, it is al-
ways faster than that without improving the working set selection for all
the cases tested.

1 Introduction

Decomposition techniques [1] are widely used to speed up training of support
vector machines (SVMs) [2,3] for large size problems. Stable convergence to solu-
tions by decomposition techniques is verified both by computer experiments and
theoretical analysis [4,5]. In [5], the sequential minimum optimization technique,
which uses a decomposition technique with a working set size of two, is shown
to converge asymptotically if the most violating variables are selected.

But for a linear programming support vector machine (LP-SVM), in which
the quadratic objective function in an SVM is replaced with a linear function [6],
direct implementation of decomposition techniques sometimes leads to infinite
loops. But this phenomenon has not been discussed so far.

In this paper, we propose decomposition techniques for training an LP-SVM
that resolve infinite loops and speed up training by improved working set selec-
tion. In training an LP-SVM by decomposition techniques, first, we select the
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initial working set randomly, and optimize the subproblem. Using the primal
and dual solutions, we check if each of the training data satisfies the comple-
mentarity conditions and the constraints. And if all the training data satisfy the
complementarity conditions and the constraints, we finish training.

But if there exist training data that do not satisfy the complementarity condi-
tions or the constraints, we select the working set again. In selecting the working
set, we detect the variables, in the fixed set, that do not satisfy complementarity
conditions, and move them to the working set. And we detect the data, in the
working set, that is not support vectors of the subproblem, and move them to the
fixed set. Then, we optimize the new subproblem and iterate the algorithm until
all the training data satisfy the complementarity conditions and the constraints.

The above training method sometimes leads to infinite loops, in which the
same sequence of working sets repeatedly appears. To resolve infinite loops, if
an infinite loop is detected, we include in the new working set all the data that are
in the working sets that form the infinite loop. This working set strategy works
to resolve infinite loops but according to our experiments, many iteration steps
are spent before the solution goes into an infinite loop. Thus, to further speed
up training, we propose an improved working set selection strategy. Namely, at
each iteration step, we check the number of violations of the complementarity
conditions and constraints. If the number of violations increases at some step,
we conclude that important data were removed at the previous step of working
set selection and add those data to the next working set.

The structure of this paper is as follows. In Section 2, we summarize the
architecture of LP-SVMs, and in Section 3, we discuss the proposed method.
In Section 4, we show the simulation results using benchmark data sets and in
Section 5, we describe the conclusions.

2 Linear Programming Support Vector Machines

Let m-dimensional training inputs xi (i = 1, ...,M) belong to Class 1 or 2 and
the associated labels be yi = 1 for Class 1 and −1 for Class 2, where M is the
number of training inputs. In the normal SVMs [7], we determine the decision
function by

D(x) = wT g(x) + b, (1)

where w is an l-dimensional vector, b is a scalar, and g(x) is the mapping
function that maps m-dimensional vector x into the l-dimensional feature space.
The optimal separating hyperplane can be obtained by solving the following
quadratic programming problem:

Minimize Q(w, ξ) =
1
2
‖w‖2 + C

M∑

i=1

ξi (2)

subject to yi(wtg(xi) + b) ≥ 1 − ξi for i = 1, ...,M, (3)
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where C is the margin parameter that determines the tradeoff between the max-
imization of the margin and minimization of the classification error, and ξi is
the nonnegative slack variable for xi.

By replacing the L2-norm ‖w‖2
2 = w2

1 +w2
2 + · · ·+w2

l in the objective function
(2) with an L1-norm ‖w‖1 = |w1|+ |w2|+ · · ·+ |wl|, the SVM becomes as follows:

Minimize Q(w, ξ) =
l∑

i=1

|wi| + C
M∑

i=1

ξi (4)

subject to yi(wtg(xi) + b) ≥ 1 − ξi for i = 1, ...,M. (5)

By this formulation, for the linear kernel, i.e., g(x) = x, we can solve the problem
by linear programming. However, for the kernels other than linear kernels, we
need to treat the feature space explicitly.

To apply linear programming to the feature space, we define the decision
function in the dual form as follows [8]:

D(x) =
M∑

i=1

αiH(x,xi) + b, (6)

where αi and b take on real values. Thus, we need not use label numbers. And
H(x,x′) is a kernel function that is given by

H(x,x′) = g(x)T g(x′). (7)

The kernels that are used in our study are as follows:

– polynomial kernels: H(x,x′) = (xT x′ + 1)d, where d is a positive integer,
– RBF kernels: H(x,x′) = exp(−γ||x−x′||2), where γ is a positive parameter.

Then we consider solving the following linear programming problem:

Minimize Q(α, ξ) =
M∑

i=1

(|αi| + Cξi) (8)

subject to yj

(
M∑

i=1

αiH(xj ,xi) + b

)
≥ 1 − ξj for j = 1, . . . , M, (9)

where α = (α1, . . . , αM )T and ξ = (ξ1, . . . , ξM )T . Letting αi = α+
i − α−

i and
b = b+ − b−, where α+

i ≥ 0, α−
i ≥ 0, b+ ≥ 0, b− ≥ 0, we can solve (8) and

(9) for α, b, and ξ by linear programming. Furthermore, we introduce the slack
variables ui (i = 1, . . . , M) into (9). Then (8) and (9) become as follows:

Minimize Q(α+,α−, ξ) =
M∑

i=1

(α+
i + α−

i + Cξi) (10)

subject to

yj

(
M∑

i=1

(α+
i − α−

i )H(xj ,xi) + b+ − b−
)

+ ξj = 1 + uj for j = 1, . . . , M. (11)
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And the decision function (6) becomes

D(x) =
M∑

i=1

(α+
i − α−

i )H(x,xi) + b+ − b−. (12)

But we must notice that since w =
∑M

i=1 αi g(xi), minimization of the sum
of |αi| does not lead to maximization of the margin measured in the L1 norm.

Let (10) and (11) be a primal problem. Then the dual problem is given as
follows:

Maximize
M∑

i=1

zi, (13)

subject to
M∑

i=1

yiH(xi,xj)zi + v+
j = 1 for j = 1, . . . , M, (14)

M∑

i=1

yiH(xi,xj)zi = v−
j − 1 for j = 1, . . . , M, (15)

M∑

i=1

yizi = 0, (16)

zj +wj = C for j = 1, . . . , M, (17)

where zi ≥ 0 (i = 1, . . . , M) are dual variables, and v+
i ≥ 0, v−

i ≥ 0, wi ≥ 0 (i =
1, . . . , M) are slack variables.

By this formulation, in the primal problem, the number of variables is 4M +2
and the number of equality constrains is M . In the dual problem, the number of
variables is 4M and the number of equality constrains is 3M +1. Thus for a large
number of training data, training becomes slow even by linear programming.
Therefore, we need to use decomposition techniques.

We can solve above primal problem (10) and (11) or dual problem (13)–(17)
by linear programming. If we optimize a linear programming problem by the
simplex method, we need only to solve the primal or dual problem. If we solve
one, the other is also solved [10,11]. Therefore, in this paper, we solve only the
primal problem.

By solving (10) and (11), we obtain the primal and dual solutions. If these
solutions are optimal, they satisfy the following complementarity conditions:

α+
i v+

i = 0 for i = 1, . . . , M, (18)
α−

i v−
i = 0 for i = 1, . . . , M, (19)

ξiwi = 0 for i = 1, . . . , M, (20)
uizi = 0 for i = 1, . . . , M. (21)

The training data xi that satisfy

αi = α+
i − α−

i = 0, (22)
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ξi = 0, (23)
zi = 0, (24)

do not affect the solution even if they are removed. Namely, the training data
xi that do not satisfy (22)–(24) are support vectors.

3 Proposed Method

In this section, we discuss the decomposition technique for the LP-SVM. If we
directly implement the strategy for working set selection developed for normal
SVMs [1], the solution often goes into an infinite loop. Even if it does not, the
convergence is usually slow. To overcome these, in Subsection 3.1, we discuss a
strategy for working set selection to avoid infinite loops, and in Subsection 3.2,
we further refine the working set selection to speed up training.

3.1 Decomposition Techniques for LP-SVMs

In decomposition techniques for an LP-SVM, we iterate optimizing subproblems
that are smaller than the original optimization problem (10) and (11). Namely,
we decompose the index set T = {1, . . . , M} into two sets W and F , where W is
a working set and F is a fixed set. Here, W ∪ F = {1, . . . , M} and W ∩ F = φ.
Then we decompose α+ = {α+

i |i = 1, . . . , M} into α+
W = {α+

i |i ∈ W} and α+
F =

{α+
i |i ∈ F}. Likewise, we decompose the remaining variables, i.e., decompose α−

into α−
W and α−

F , ξ into ξW and ξF , u into uW and uF , v+ into v+
W and v+

F ,
v− into v−

W and v−
F , w into wW and wF , and z into zW and zF .

And we define the following subproblem. Fixing α+
F and α−

F ,

minimize Q(α+
W ,α−

W , ξW ) =
∑

i∈W

(α+
i + α−

i + Cξi) (25)

subject to

yj

(
∑

i∈W

(α+
i − α−

i )H(xi,xj) + b+ − b− +
∑

i∈F

(α+
i − α−

i )H(xi,xj)

)
+ ξj

= 1 + uj for j ∈ W. (26)

Solving (25) and (26), we obtain α+
W , α−

W , ξW , uW , v+
W , v−

W , wW , and zW .
These vectors constitute the optimal solution for the subproblem associated with
the working set W . But the optimal solution for the subproblem may not be
optimal for the entire problem (10) and (11). To check if the obtained solution is
optimal for the entire problem, we need to determine the values for the variables
in the fixed set.

First, we obtain primal variables α+
F , α−

F , ξF , and uF . Fixing α+
F = 0 and

α+
F = 0, we obtain ξF and uF by the following constraints

yj

⎛

⎝
∑

i∈W,F

(α+
i − α−

i )H(xi,xj) + b+ − b−

⎞

⎠ + ξj = 1 + uj for j ∈ F. (27)
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Here, (27) is a subset of (11). Using the decision function (12), the constraints
(27) become

yjD(xj) + ξj = 1 + uj for j ∈ F. (28)

Then we obtain ξF and uF as follows:

1. If yjD(xj) > 1, ξj = 0. Therefore, from (28), uj = yjD(xj) − 1.
2. If yjD(xj) ≤ 1, ξj = 1 − yjD(xj). Therefore from (28), uj = 0

Secondly, we obtain the dual variables v+
F , v−

F , wF , and zF . Fixing zF = 0, we
obtain v+

F , v−
F , and wF by the following constraints:

v+
j = 1 −

M∑

i=1

yiH(xi,xj)zi for j ∈ F, (29)

v−
j = 1 +

M∑

i=1

yiH(xi,xj)zi for j ∈ F, (30)

wj = C for j ∈ F . (31)

Here, (29)–(31) are obtained from (14), (15), and (17). We must notice that
when we obtain v+

j , v−
j (j ∈ F ) from (29) and (30), they may take negative

values.
In this way, we obtain α+

F , α−
F , ξF , uF , v+

F , v−
F , wF , and zF . Next, we check

if each of the variables satisfies the complementarity conditions (18)–(21) and
the constraints. But after solving the subproblem whose variables constitute
the working set, the variables satisfy both the complementarity conditions and
the constraints because they are the optimal solution of the subproblem. Thus
we need to check only the variables in the fixed set. As is apparent from the
foregoing discussions, the variables in the fixed set satisfy the constraints (27),
(29)–(31), but v+

j , v−
j (j ∈ F ) may take negative values. This is the violation

of the constraints v+
j ≥ 0 and v−

j ≥ 0. Furthermore, variables in the fixed set
may violate the complementarity conditions (18)–(21). Therefore, we detect the
variables that do not satisfy the complementarity conditions or the constraints
in the fixed set. If they exist, we add them to the working set. Meanwhile, in the
working set, we detect the data that are not support vectors of the subproblem,
i.e., the data that satisfy (22)–(24). And we move the data that are not support
vectors of the subproblem from the working set to the fixed set. And we iterate
training until all the training data satisfy the complementarity conditions and
the constraints.

We also finish training in the case where the value of the objective function
changes little from the previous iteration, i.e., |Qk − Qk−1| < ε, where Qk is
the value of the objective function at the kth iteration and ε is a small positive
parameter.

The above mentioned working set selection strategy, however, often leads to
an infinite loop. In the infinite loop, the same working set is selected repeatedly.
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The detail of the infinite loop is as follows. Let the working set sequence be

· · · , Wk, Wk+1, · · · , Wk+t, Wk+t+1, Wk+t+2, · · · ,Wk+2t+1, · · · ,

where Wk is the working set at the kth iteration. If

Wk = Wk+t+1, Wk+1 = Wk+t+2, · · · ,Wk+t = Wk+2t+1,

the same sequence of working sets is repeated infinitely. Namely, an infinite loop
occurs. Infinite loops occur because some data that are removed at some iteration
step violate the complementarity conditions or constraints in the subsequent step
and move back to the working set. Thus the simplest way to avoid an infinite
loop is as follows. If we find an infinite loop at the (k + 2t + 1)th iteration, we
set Wk+2t+2 = Wk ∪ Wk+1 ∪ · · · ∪ Wk+t.

According to the above discussion, a procedure for training an LP-SVM using
the decomposition techniques that avoids infinite loops is as follows.

Step 1
We initialize α+ = 0, α− = 0, z = 0, and k = 1, where k is the iteration
number.

Step 2
We set q points from the training data set to W1, where q is a positive integer
and W1 is an initial working set.

Step 3
We optimize the subproblem for the working set Wk.

Step 4
We obtain variables in the fixed set by (28)–(31).

Step 5
We check if each of the training data in the fixed set satisfies the comple-
mentarity conditions (18)–(21) and the constraints v+

i ≥ 0, v−
i ≥ 0 (i =

1, . . . , M). If there exist training data that violate the complementarity con-
ditions or the constraints, we go to Step 6. If all the training data satisfy
the complementarity conditions and the constraints or |Qk − Qk−1| < ε, we
finish training.

Step 6
We check if the infinite loop exists. If it exists, we add all the data in the
working sets that form the infinite loop to the next working set Wk+1. And
we add 1 to k and go to Step 3. Otherwise we go to Step 7.

Step 7
In the fixed set, we detect the variables that violate the complementarity
conditions or the constraints, and move at most q points to the working set
Wk+1. In the working set, we detect the data that are not support vectors
of the subproblem, and move them to the fixed set. And we add 1 to k and
go to Step 3.
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3.2 Improving Working Set Selection

The decomposition technique for an LP-SVM discussed in Subsection 3.1 can
resolve infinite loops. But according to our experiments, usually an infinite loop
appears after long iteration steps. Therefore, if an infinite loop appears, training
is usually very slow. In this subsection, we discuss how to accelerate training by
improving the working set selection strategy.

The data that are support vectors of the entire problem are very important
because if all of these data are in the working set, the optimal solution for the
subproblem is the optimal solution for all the training data. In selecting a working
set, it often occurs that these important data, i.e., support vectors of the entire
problem, go out of the working set. But in many cases, these important data
return back to the working set in the subsequent iteration step. In particular,
when an infinite loop occurs, these important data repeatedly go out of and
return back to the working set.

Let Vk be the number of data that violate the complementarity conditions
or the constraints at the kth iteration. In general, Vk is large in early stage
of training. And as training proceeds while selecting the working set, Vk gets
smaller and smaller until it reaches 0, at which step we finish training. But if we
observe the value of Vk during training, it sometimes increases. This is attributed
to the fact that important data for training go out of the working set.

Therefore, when Vk increases, i.e., Vk ≥ Vk−1, we can conclude that the data
that were in Wk−1 went out of Wk−1 at the (k − 1)th iteration and violate the
complementarity conditions or the constraints after training using Wk. That is,
these data try to go back to the working set soon after they go away since these
data are important for training. Therefore, our new strategy is to return back
these data to the working set Wk+1. Here, we must notice that for Vk ≥ Vk−1

we do not remove any data from Wk. We only return back data into the working
set. This is because if we remove the data from Wk, important data may be
removed.

By implementing this process, we can stop important data from going in and
out of the working set. Thus, it leads to accelerating training. A procedure for
training an LP-SVM using the improved decomposition technique is as follows.

Step 1
We initialize α+ = 0, α− = 0, z = 0, and k = 1, where k is the iteration
number.

Step 2
We set q points from the training data set to W1, where q is a positive integer
and W1 is an initial working set.

Step 3
We optimize the subproblem for the working set Wk.

Step 4
We obtain variables in the fixed set by (28)–(31).

Step 5
We check if each of the training data in the fixed set satisfies the comple-
mentarity conditions (18)–(21) and the constraints v+

i ≥ 0, v−
i ≥ 0 (i =
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1, . . . , M). If there exist training data that violate the complementarity con-
ditions or the constraints, we go to Step 6. If all the training data satisfy
the complementarity conditions and the constraints or |Qk − Qk−1| < ε, we
finish training.

Step 6
We check if we are in the infinite loop. If so, we add all the data in the
working sets that form the infinite loop to the next working set Wk+1. And
we add 1 to k and go to Step 3. Otherwise we go to Step 7.

Step 7
If Vk < Vk−1, we go to Step 8. Otherwise, we detect the data that were
in Wk−1 but went out of Wk−1 at the (k − 1)th iteration and violate the
complementarity conditions or the constraints at the kth iteration. If there
exist such data, we add these data to the working set Wk+1. And we add 1
to k and go to Step 3. But if no such data exist, we go to Step 8.

Step 8
In the fixed set, we detect the variables that violate the complementarity
conditions or the constraints, and move at most q points to the working set
Wk+1. From the working set, we detect the data that are not support vectors
of the subproblem and move them to the fixed set. And we add 1 to k and
go to Step 3.

4 Simulation Experiments

In this section, we show two experimental results. In the first experiment, we
show the effectiveness of the improved decomposition techniques discussed in
Subsection 3.2 over training without decomposition. In the second experiment,
we compare the improved decomposition technique with the original decompo-
sition technique discussed in Subsection 3.1.

Linear programming can be solved either by the simplex method or the primal-
dual interior-point method. But in our experiments, we use the “lp.c” [9], which
is a program for the simplex method.

The data sets used to evaluate the performance are multiclass data sets: the
numeral data for license plate recognition [12], the blood cell data [13], the
thyroid data [14], and hiragana data [15,16]. Table 1 shows the numbers of
inputs, classes, training data, and test data of the benchmark data sets. We use
one-against-all support vector machines [7]. Therefore, all the training data are
used for training.

Table 1. Benchmark data specification

Data Inputs Classes Trn. Test

Numeral 12 10 810 820
Blood cell 13 12 3097 3100
Thyroid 21 3 3772 3428
Hiragana-50 50 39 4610 4610
Hiragana-13 13 38 8375 8356
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4.1 Effect of the Decomposition Techniques

We evaluate the speedup by using the improved decomposition technique.
Figure 1 shows the training time for the change of q, namely the number of

data added to the working set, using the blood cell data. We use polynomial
kernels with d = 3 and fix the margin parameter C = 1000. From the figure, it
is seen that training is accelerated most when q is around 100.

Table 2 shows the optimum value of q and the speedup by the improved decom-
position techniques. “Dec.,” “No-Dec.,” and “Speedup” denote that the decom-
position technique is used, not used, and the speedup obtained by the improved
decomposition technique. From the table, it is seen that we can speed up training
drastically by the improved decomposition technique for all the data sets.
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Fig. 1. Training time for the change of q

Table 2. Optimum value of q and the
speedup by the improved decomposition
techniques

Data Term Dec. No-Dec.

Numeral Optimum q 30 –
Rate[%] 99.51 99.51
Time[s] 1.2 361
Speedup 301 1

Blood cell Optimum q 110 –
Rate[%] 92.58 92.58
Time[s] 536 45840
Speedup 86 1

Thyroid Optimum q 90 –
Rate[%] 97.17 97.17
Time[s] 840 58887
Speedup 70 1

4.2 Comparison Between Original and Improved Decomposition
Techniques

In Table 3, we list performance comparison of the original and improved decom-
position techniques. We use polynomial kernels with d = 3 and RBF kernels
with γ = 1. The value of C is 10 and 10000. We set q as 80 for all the cases.
From the table, it is seen that the improved decomposition techniques is faster
than the original decomposition techniques for all the cases.

Figures 2 and 3 show the numbers of violations of complementarity conditions
and constraints for the original and improved methods, respectively. The results
are obtained for Class 1 against others using the numeral data with polynomial
kernels with d = 3 and C = 1000. In Fig. 2, the numbers of violations fluctuate
very much and the convergence is very slow. As explained previously, this is
because the important data are removed from the working set. But in Fig. 3,
the fluctuation is quickly subdued because important data are restored when the
number of violations increases.
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Table 3. Comparison between original and improved decomposition techniques

Original Improved
Data Parameter Rate[%] Time[s] Rate[%] Time[s] Speedup

Numeral d3, C10 89.39(92.47) 15.5 99.51(100) 1.8 8.6
d3, C10000 99.51(100) 13.9 99.51(100) 1.8 7.6
γ1, C10 99.63(100) 6.2 99.63(100) 1.8 3.4
γ1, C10000 99.63(100) 2.1 99.63(100) 2.0 1.1

Blood cell d3, C10 91.77(95.12) 344 91.77(95.12) 268 1.3
d3, C10000 92.19(99.19) 6481 92.23(99.19) 1180 5.5
γ1, C10 91.00(93.00) 300 91.00(93.00) 219 1.4
γ1, C10000 91.90(99.13) 8760 91.87(99.16) 1136 7.7

Thyroid d3, C10 95.74(96.77) 5498 95.74(96.77) 4294 1.3
d3, C10000 97.20(99.47) 3204 97.20(99.47) 749 4.3
γ1, C10 95.01(95.55) 3202 95.01(95.55) 2365 1.4
γ1, C10000 97.43(99.50) 8891 97.43(99.50) 1323 6.7

Hiragana-50 d3, C10 98.61(100) 21031 98.59(100) 748 28.1
d3, C10000 92.75(94.36) 20467 98.59(100) 764 26.8
γ1, C10 98.24(100) 537 98.24(100) 261 2.1
γ1, C10000 98.24(100) 463 98.24(100) 249 1.9

Hiragana-13 d3, C10 99.10(99.87) 10612 99.88(99.15) 927 11.4
d3, C10000 95.75(96.73) 26179 98.96(100) 976 26.8
γ1, C10 98.86(99.16) 2713 98.84(99.15) 743 3.7
γ1, C10000 92.29(100) 22555 99.28(100) 917 24.6
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Fig. 2. The number of violations dur-
ing training for the original method
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ing training for the improved method

5 Conclusions

In this paper, we formulated the decomposition technique for the LP-SVM
and proposed resolving the infinite loop that occurs during training. Further-
more, we proposed an improved working set selection strategy to speed up
training.
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In the decomposition techniques for LP-SVMs, we select the working set using
the complementarity conditions, but unlike the original SVMs this often leads
to an infinite loop. When an infinite loop is detected, we resolve the infinite
loop by adding all the data in the infinite loop to the working set. And to speed
up training, we check if the number of the violating data is increased. If so, we
prohibit the important data from going out of the working set.

Using the benchmark data sets, we showed that we can speed up training by
the decomposition techniques and that the improved decomposition technique
can train an LP-SVM faster than the original decomposition technique.
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