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Abstract. Multi-resolution validation of hierarchical performance models of 
scientific applications is critical primarily for two reasons. First, the step-by-
step validation determines the correctness of all essential components or phases 
in a science simulation. Second, a model that is validated at multiple resolution 
levels is the very first step to generate predictive performance models, for not 
only existing systems but also for emerging systems and future problem sizes. 
We present the design and validation of hierarchical performance models of two 
scientific benchmarks using a new technique called the modeling assertions 
(MA). Our MA prototype framework generates symbolic performance models 
that can be evaluated efficiently by generating the equivalent model 
representations in Octave and MATLAB. The multi-resolution modeling and 
validation is conducted on two contemporary, massively-parallel systems, XT3 
and Blue Gene/L system. The workload distribution and the growth rates 
predictions generated by the MA models are confirmed by the experimental 
data collected on the MPP platforms. In addition, the physical memory 
requirements that are generated by the MA models are verified by the runtime 
values on the Blue Gene/L system, which has 512 MBytes and 256 MBytes 
physical memory capacity in its two unique execution modes. 

1   Introduction  

Performance models of scientific applications have been generated using analytical 
techniques and measurement-based techniques. Analytical techniques like the one 
presented by Almasi et. al. [2] provide detailed information about the application 
structure and underlying algorithms but do not capture the computation and workload 
characteristics in detail that is essential to carry out performance prediction studies on 
a given target architecture. The measurement-based techniques [7, 9], for instance, 
techniques based on collecting detailed memory tracing data on target systems 
provide detailed system-specific performance characteristics of an application [7]. 
However, these approaches do not capture the algorithmic and problem resolution 
metrics of scientific applications in the performance models. Thus, the applicability is 
limited if an underlying algorithm or the target architecture characteristics are 
modified. For instance, the prediction error rates can change dramatically if the 
memory hierarchy of a target system varies from the architecture on which the 
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measurements are taken. A successful performance modeling and prediction effort is 
presented by Kerbyson et. al. [5] for a large-scale scientific application and its 
kernels; however, this scheme requires an expert understanding of the application and 
underlying algorithms as well as detailed information about the features of the target 
parallel platform. 

We have proposed a portable and extensible approach for developing performance 
models of scientific applications called modeling assertions (MA) [1]. Our approach 
encapsulates an application’s key input parameters as well as the workload parameters 
including the computation and the communication characteristics of the modeled 
applications.  The MA scheme requires an application developer to describe the 
workload requirements of a given block of code using the MA API in form of code 
annotations. These code annotations are independent of the target platforms. 
Moreover, the MA scheme allows multi-resolution modeling of scientific 
applications. In other words, a user can decide which functions are critical to a given 
application, and can annotate and subsequently develop detailed performance models 
of the key functions. Depending on the runtime accuracy of the model, a user can 
develop hierarchical, multi-resolution performance models of selected functions, for 
instance, models of critical loop blocks within a time-consuming function. MA 
models can capture the control structure of an application. Thus, not only an 
aggregated workload metric is generated but also the distribution of a given workload 
over an entire execution cycle can be modeled using the MA framework. 

In this paper, we present the step-by-step validation of the MA performance 
models for two scientific kernels, the NAS parallel, message passing (MPI) CG and 
SP benchmarks [3]. The runtime measurement has been conducted on two distributed 
memory, teraflop/s scale systems, Cray XT3 [8] and IBM Blue Gene/L [6]. The XT3 
systems is based on a 2.4 GHz Opteron processor connected with a high-speed 
Hypertransport link. A single processor is capable of delivering 4.8 gigaFLOP/s and 
provides up to ~6200 Mbytes/s memory bandwidth.  The Blue Gene/L system has a 
unique memory hierarchy because of the two modes of execution namely co-
processor mode and the virtual-node mode [6]. The Blue Gene/L system has a small 
physical memory per processor, 512 Mbytes and in the virtual-node execution mode, 
only half (256 Mbytes) is available to the user processes.  The peak performance of a 
Blue Gene/L processing core is 1.4 gigaFLOPS/s  and its main memory bandwidth is 
~3200 Mbytes/s, which is shared between two processors in the virtual-node mode.  

We developed workload models for the two NAS MPI benchmarks, one each for 
the floating-point computation, memory operations, memory capacity and sizes and 
patterns of MPI operations [1]. The model predictions are validated with the runtime 
data by altering the key input parameter values and by running a fix size application 
in strong-scaling mode. The MA models capture the workload distribution that is 
represented as a function of key input parameters. These workload requirements are 
validated with the runtime performance data measured on two parallel systems. In 
addition to workload requirements, the MA models of the two NAS benchmarks can 
generate the growth rates for the workload distribution as a function of input 
parameters. The growth rates and sensitivity studies are also validated with the 
runtime data. 

The outline of the paper is as follows: section 2 presents the design of the MA 
models using the MA framework. A brief description of NAS CG and SP models of 
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computation and communication is presented in section 3. The step-by-step process of 
model validation at multiple-resolutions is provided in section 4. Section 4 also 
presents the validation results for the MA models that show the workload growth rate 
as a function of input parameters. Section 5 gives a summary of the MA approach and 
future research directions. 

2   The MA Framework 

In order to evaluate our approach of developing symbolic models with MA, we have 
designed a prototype framework [1]. This framework has two main components: an 
API and a post-processing toolset. Figure 1 shows the components of the MA 
framework. The MA API is used to annotate the source code. As the application 
executes, the runtime system captures important information in trace files. These trace 
files are then post-processed to validate, analyze, and construct models. The post-
processing toolset is a collection of tools or Java classes. The post-processor currently 
has three main classes: model validation, control-flow model creation and symbolic 
model generation classes. The symbolic model shown in the Figure 1 is generated for 
the MPI send volume. This symbolic model can be evaluated and is compatible with 
MATLAB [10] and Octave [11].  

The MA API provides a set of functions to annotate a given FORTRAN or C code 
with MPI message-passing communication library. For example, ma_loop_start, a 
MA API function, can be used to mark the start of a loop. Upon execution, the code 
instrumented with MA API functions generates trace files. For parallel applications, 
one trace file is generated for each MPI task. The trace files contain traces for ma_xxx 
calls and MPI communication events. Most MA calls require a pair of 
ma_xxx_start and a ma_xxx_end calls. The ma_xxx_end traces are primarily used 
to validate the modeling assertions against the runtime values. The assertions for 
hardware counter values, ma_flop_start/stop, invoke the PAPI hardware counter API 
[4]. The ma_mpi_xxx assertions on the other hand are validated by implementing 
MPI wrapper functions (PMPI) and by comparing ma_mpi_xxx traces to PMPI_xxx 
traces. Additional functions are provided in the MA API to control the tracing 
volume, for example, the size of the trace files, by enabling and disabling the tracing 
at compile time and also at runtime. At runtime, the MA runtime system (MARS) 
tracks and captures the actual instantiated values as they execute in the application. 
MARS creates an internal control flow representation of the calls to the MA library as 
they are executed. It also captures both the symbolic values and the actual values of 
the expressions. Multiple calls to the same routines with similar parameters maps onto 
the same call graph, therefore, the data volume is manageable. 

The validation of an MA performance model is a two-stage process. When a model 
is initially being created, validation plays an important role in guiding the resolution 
of the model at various phases in the application. Later, the same model and 
validation technique can be used to validate against historical data and across the 
parameter space. 
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Fig. 1. Design components of the Modeling Assertion (MA) framework: The MA API, which is 
written in C and the extensible, post-processing toolset classes in Java. The MA API is 
available for C and FORTRAN code. 

3   Evaluation of Symbolic Models 

NAS CG computes an approximation to the smallest eigenvalue of a large, sparse, 
symmetric positive definite matrix, which is characteristic of unstructured grid 
computations. The main subroutine is conj_grad, which is being a called niter 
time. The first step was to identify the key input parameters, na, nonzer, niter and 
nprocs (number of MPI tasks); the MA symbolic models for floating-point, load-
store, physical memory and communication volume requirements are generated in 
terms of these four input parameters.  

The NAS parallel benchmarks provide different problem sizes or classes where 
class S is the smallest problem size. The MA model for SP is represented in terms of 
one input parameter, problem_size. In addition, the number of MPI tasks 
determines some derived parameters like the log2 of MPI tasks in CG and the square-
root of number of processors in the SP benchmark to simplify model representations. 
Both CG and SP benchmarks follow a Single Program Multiple Data (SPMD) 
programming paradigm. Hence, the workload and memory mapping and distribution 
per processor not only depend on the key input parameters but also on the number of 
MPI tasks. 

Upon termination of a runtime experiment, MA outputs a control flow model 
representation, an intermediate file and symbolic models for number of floating-point, 
load-store and communication operations. The control flow model representation is 
similar to the actual code annotations; that is, it is a high level, visual flow of the 
annotated parts of the application. The intermediate representation serves as an input 
to develop symbolic models for user-defined characteristics or relative quantities like 
memory byte-to-flop ratio. For instance, a user can create models for load/store-to-
flop ratios using the intermediate representation. The symbolic models generated by 
the MA framework are compatible with Matlab and Octave script format. Figure 2 
shows symbolic model representation for SP communication operations. Only three  
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ncells = sqrt (no_nodes) 
elems = problem_size / ncells 
dp = sizeof (double) 
niter * (elems ˆ 2 * (ncells - 1) * 10 * dp 
+ elems ˆ 2 * (ncells - 1) * 10 * dp 
+ . . .  
+ ncells * (22 * (elems - 1) ˆ 2 * dp) 
+ ncells * (10 * (elems - 1) ˆ 2 * dp) 
+ . . . 

Fig. 2. A MATLAB/Octave compatible symbolic model generated by the MA framework 

input parameters are required to evaluate this model, no_nodes (number of MPI 
tasks), niter (number of time step iterations) and problem_size (application 
input parameter). Our target is to be able to generate symbolic models that represent 
the architecture independent requirements of an application and that can be evaluated 
efficiently by existing mathematical software frameworks. 

One of the aims of creating the models of scientific applications is to be able to 
predict the application requirements for the future problem configurations. We used 
our MA models to understand the sensitivity of floating-point operations, memory 
requirements per processor, and message volume to applications’ input parameters. 
We begin experiments with a validated problem instance, Class C, for both the NAS 
CG and SP benchmarks, and scale the input parameters linearly. Note that the MA 
framework has a post-processing toolset that allows validation of MA model 
annotations with the runtime values. For instance, the PAPI_FP_OPS (number of 
floating-point operations) data was compared with the ma_flop runtime value. The 
validated problem instances, Class C, have na=150000, nonzer=15, for CG Class C 
benchmark with 128 MPI tasks. We increase the value of na linearly and generate the 
floating-point and load-store operation count using the MA symbolic models of the 
NAS CG benchmark. Figure 3 shows that the floating-point and load-store cost in the 
CG experiments increase linearly with the na parameter value. 
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Fig. 3. Sensitivity of the number of Floating-point (FP) and load-store (LS) operations per 
processor in a 128 processor experiment by increasing the array size parameter: na 
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Fig. 4. Sensitivity of FP and LS by increasing the number of non-zero elements parameter: 
nonzer 

Similarly, we generated the growth rates for the floating-point and load-store 
operation cost for the other input parameter, nonzer. Results in Figure 4 show that 
the floating-point and load-store operation cost in CG is relatively more sensitive to 
the increase in the number of nonzer elements in the array than the array size: na.  

The NAS SP benchmark has a single application parameter, problem_size, 
which we have used to represent the workload requirements (floating-point, load-
store, memory and communication) in the MA symbolic models. Figure 5 shows the 
increase in the floating-point and load-store operation count by increasing the 
problem_size linearly. Note that like CG, the initial set of experiments (Class S, W, 
A, B, C and D) are validated on the target MPP platforms. Figure 5 shows that the 
floating-point operation cost increases at a very high rate by increasing the 
problem_size. 

Using the MA models, we can not only generate the aggregated workload 
requirements shown earlier, but also get an insight into the scaling behavior of the  
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Fig. 5. Sensitivity of workload requirements with respect to the SP input parameter: 
problem_size 
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workload requirements within an application as a function of the problem_size 
parameter.  Figure 6 shows contribution of different functions in total floating-point 
operation count in SP time step iterations. The results shown in Figure 6 are generated 
for a fix number of MPI tasks and by increasing the problem_size parameter 
linearly. The floating-point workload requirements generated by the MA model show 
that the z_solve is the most expensive function for runs with large number of 
processors. The cost of x_solve and y_solve are identical and consistent. 
Moreover, based on the MA model results shown in Figure 6, we can safely ignore 
cost of txinvr and add functions in the further analysis.  
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Fig. 6. Impact of individual functions on the overall increase in the number of floating-point 
operations by increasing the input parameter problem_size on 1024 processors 

4   Multi-resolution Validation of MA Models 

The model verification output enables us to identify the most floating-point intensive 
loop block of the code in the CG benchmark. This loop block is shown in Figure 7, 
which is called twice during a conjugate gradient calculation in the CG benchmark. 
The symbolic floating point operation cost of the loop is approximately 
2*na/(num_proc_cols*nonzer*ceiling(nonzer/nprows)). 

Using the MA models, we generated the scaling of the floating-point operation cost 
of the loop block in Figure 7 with the other loop blocks within a conjugate gradient  
 

         do j=1,lastrow-firstrow+1 
            sum = 0.d0 
            do k=rowstr(j),rowstr(j+1)-1 
               sum = sum + a(k)*p(colidx(k)) 
            enddo 
            w(j) = sum 
         enddo 

Fig. 7. The partition submatrix-vector multiply 
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iteration. The model predictions are shown in Figure 8. The total cost of two 
invocations of the submatrix vector multiply operation contributes to a large fraction 
of the total floating-point operation cost. l1 is the first loop block in the CG timestep 
iteration and l2 is the second. Figure 8 shows that the workload is not evenly 
distributed among the different loop blocks (or phases of calculations), and the 
submatrix vector multiply loop can be serious bottleneck. Furthermore, as we scale 
the problem to a large number of processors, we begin to identify loop that are either 
the Amdahl’s proportions of the serial code or their loop count is directly propotional 
to the number of MPI tasks in the system. We found that the loop count of loop 
number 3 and 8 depend on the number of MPI tasks (log2(log2(MPI_Tasks)), while 
loop 1 and 8 scale at a slower rate than loop 2 and 7 (submatrix vector multiply loop), 
since the cost of loop 2 and 7 is divided twice by the scaling parameters as compared 
to 1 and 8, which is divided once by the scaling parameter. Another interesting feature 
is the scaling pattern, which is not linear because of the mapping and distribution of 
workload depends on ceiling(log2(MPI_tasks)). 
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Fig. 8. Distribution of floating-point operation cost within a time step iteration in the NAS CG 
benchmark. Default na and nonzer parameter values for the Class C problem instance are 
used for the experiments. l1 is the first loop block and l2 is the second loop block in the 
conjugate gradient iterations. l2 and l7 perform calculations shown in Figure 7.  

We collected the runtime data for the loops blocks in CG time step iterations on 
XT3 and Blue Gene/L processors to validate our workload distribution and scaling 
patterns. Figure 9 shows the percentage of runtime spent in individual loop blocks. 
Comparing it with the workload distribution in Figure 8, we observe not only a 
similar workload distribution but also a similar scaling pattern. Note that the message 
passing communication times are not included in these runtime measurements. We 
collected data for the Class D CG benchmark on the XT3 system, which also validate 
the floating-point message count distribution and scaling characteristics that are 
generated by the symbolic MA models.  
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Fig. 9. Percentage of total runtime spent in individual loop blocks in a CG iteration. These 
runtime are measured in the co-processor mode. Default na and nonzer parameter values for 
the Class C problem instance are used for the experiments. 

On Blue Gene/L we collected data in the two execution modes to investigate the 
effect of reduced memory bandwidth. The memory bandwidth in the virtual node 
mode is shared by two Blue Gene/L processors, while in the co-processor mode, a 
single compute processor accesses the main memory during the computation. In the 
co-processor mode, the other processor, the communication processors, is typically 
associated with MPI communication data movement. We did not observe a significant 
increase in runtime in the virtual-node mode experiments on the Blue Gene/L system 
as shown in Figure 10. Although the runtime increases for the most time-consuming 
loops, we conclude that the memory traffic is not a major issue in the most time-
consuming block of the code. We expect the memory bandwidth to be an issue when 
workload sizes per processor are increased significantly. 
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Fig. 10. Percentage increase in the runtime values in the virtual-node mode experiments 
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Figure 3 and 4 demonstrated that the CG workload is more sensitive to the 
nonzer parameter. In order to validate our MA performance model predictions, we 
ran the experiments by doubling the nonzer parameter. On Blue Gene/L, we ran the 
experiments both in the virtual node mode and in the co-processor mode. First, we 
validate the MA model for the physical memory requirements. Our model predicts 
that the sizes of all large arrays depend on the nonzer value, therefore, the overall 
memory requirement will double. The runtime measurements confirm that a minimum 
of 8 Blue Gene/L processors in co-processor mode and 16 processors in the virtual 
node mode are needed to run the Class C benchmark with nonzer=30. Second, the 
MA models of floating-point operation and load-store operation count predicted that 
only the cost of the submatrix vector multiply loop depend on the nonzer parameter 
value. According to the MA model predictions, by doubling the value of nonzer 
(Class C problem instance), the floating-point and the load-store operation cost 
increases by ~300%. The runtime data in Figure 11 confirm the cost distribution and 
scaling by doubling the nonzer parameter as predicted by the MA model. We also 
validated our MA model for up to five times increase in the nonzer value with the 
runtime data.  
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Fig. 11. Percentage increase in runtime of individual loop blocks by doubling the nonzer 
parameter 

In addition to the hierarchical validation of the CG model, we validated the 
sensitivity of the problem_size parameter for the NAS SP model. We identified 
that the floating-point operation cost increases by increasing the problem_size 
parameter and that the z_solve calculations are the most expensive calculations in 
the SP application simulation in terms of the floating-point operation cost. Figure 12 
shows the breakdown of floating-point cost distribution within the key calculation 
phases as generated by the MA model. 
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Fig. 12. Distribution of the floating-point operation cost in different code blocks in the z_solve 
method of the NAS SP benchmark. These distributions are generated by the MA models. 

We conducted fine-grain measurements on the z_solve operation and collected 
runtime data on the XT3 and Blue Gene/L processors. Figure 13 shows the runtime 
data collected on the Blue Gene/L processor for different phases of calculation in the 
z_solve operation. The distribution of the runtime cost in the z_solve function 
confirm the workload distribution and scaling pattern that was generated by the MA 
model for the NAS SP benchmark (Figure 12). 
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Fig. 13. The distribution of the runtime cost measured on the Blue Gene/L processor for the 
Class C problem instance of the NAS Parallel benchmark 
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In Figure 5, we showed that the floating-point and load-store operation cost 
increase at an exponential rate by increasing the problem_size parameter in the 
SP benchmark. In order to confirm the growth rate prediction generated by the MA 
models, we ran experiments by doubling the problem_size parameter value for 
NAS SP Class C experiments on the Blue Gene/L system. Results in Figure 14 
confirm that the runtime cost for a large number of loop blocks increases rapidly (up 
to 10 times) by doubling the problem_size parameter. 
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Fig. 14. Percentage increase in runtime by doubling the problem_size parameter in NAS SP 
Class C experiments on the Blue Gene/L system 

5   Conclusions and Future Work 

We present the multi-resolution validation of symbolic performance models of 
parallel scientific kernels using a technique called Modeling Assertions (MA). We 
have shown that our modeling scheme provides an insight into the workload 
distribution and scaling characteristic of scientific codes by comparing model 
predictions with the runtime data collected on contemporary massively-parallel 
systems. Furthermore, we validate the growth rates predictions generated by the MA 
models of two scientific benchmarks by increasing key input parameters of the 
scientific simulations. Development of hierarchical MA symbolic models is a first 
step toward developing precise prediction model on target architectures and future 
problem configurations. We are extending the MA API and the framework that will 
enable code and algorithm developers to augment MA annotations with performance 
attributes, for instance, the memory access patterns and data-level parallelism for a 
given loop block. We also plan to introduce a set of modeling attributes that can 
represent the unique performance enhancing features of emerging architectures.  
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