
W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 65 – 77, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Hierarchical Model Validation of Symbolic Performance
Models of Scientific Kernels

Sadaf R. Alam and Jeffrey S. Vetter

Oak Ridge National Laboratory
Oak Ridge, TN 37831, U.S.A.

{alamsr, vetter}@ornl.gov

Abstract. Multi-resolution validation of hierarchical performance models of
scientific applications is critical primarily for two reasons. First, the step-by-
step validation determines the correctness of all essential components or phases
in a science simulation. Second, a model that is validated at multiple resolution
levels is the very first step to generate predictive performance models, for not
only existing systems but also for emerging systems and future problem sizes.
We present the design and validation of hierarchical performance models of two
scientific benchmarks using a new technique called the modeling assertions
(MA). Our MA prototype framework generates symbolic performance models
that can be evaluated efficiently by generating the equivalent model
representations in Octave and MATLAB. The multi-resolution modeling and
validation is conducted on two contemporary, massively-parallel systems, XT3
and Blue Gene/L system. The workload distribution and the growth rates
predictions generated by the MA models are confirmed by the experimental
data collected on the MPP platforms. In addition, the physical memory
requirements that are generated by the MA models are verified by the runtime
values on the Blue Gene/L system, which has 512 MBytes and 256 MBytes
physical memory capacity in its two unique execution modes.

1 Introduction

Performance models of scientific applications have been generated using analytical
techniques and measurement-based techniques. Analytical techniques like the one
presented by Almasi et. al. [2] provide detailed information about the application
structure and underlying algorithms but do not capture the computation and workload
characteristics in detail that is essential to carry out performance prediction studies on
a given target architecture. The measurement-based techniques [7, 9], for instance,
techniques based on collecting detailed memory tracing data on target systems
provide detailed system-specific performance characteristics of an application [7].
However, these approaches do not capture the algorithmic and problem resolution
metrics of scientific applications in the performance models. Thus, the applicability is
limited if an underlying algorithm or the target architecture characteristics are
modified. For instance, the prediction error rates can change dramatically if the
memory hierarchy of a target system varies from the architecture on which the

66 S.R. Alam and J.S. Vetter

measurements are taken. A successful performance modeling and prediction effort is
presented by Kerbyson et. al. [5] for a large-scale scientific application and its
kernels; however, this scheme requires an expert understanding of the application and
underlying algorithms as well as detailed information about the features of the target
parallel platform.

We have proposed a portable and extensible approach for developing performance
models of scientific applications called modeling assertions (MA) [1]. Our approach
encapsulates an application’s key input parameters as well as the workload parameters
including the computation and the communication characteristics of the modeled
applications. The MA scheme requires an application developer to describe the
workload requirements of a given block of code using the MA API in form of code
annotations. These code annotations are independent of the target platforms.
Moreover, the MA scheme allows multi-resolution modeling of scientific
applications. In other words, a user can decide which functions are critical to a given
application, and can annotate and subsequently develop detailed performance models
of the key functions. Depending on the runtime accuracy of the model, a user can
develop hierarchical, multi-resolution performance models of selected functions, for
instance, models of critical loop blocks within a time-consuming function. MA
models can capture the control structure of an application. Thus, not only an
aggregated workload metric is generated but also the distribution of a given workload
over an entire execution cycle can be modeled using the MA framework.

In this paper, we present the step-by-step validation of the MA performance
models for two scientific kernels, the NAS parallel, message passing (MPI) CG and
SP benchmarks [3]. The runtime measurement has been conducted on two distributed
memory, teraflop/s scale systems, Cray XT3 [8] and IBM Blue Gene/L [6]. The XT3
systems is based on a 2.4 GHz Opteron processor connected with a high-speed
Hypertransport link. A single processor is capable of delivering 4.8 gigaFLOP/s and
provides up to ~6200 Mbytes/s memory bandwidth. The Blue Gene/L system has a
unique memory hierarchy because of the two modes of execution namely co-
processor mode and the virtual-node mode [6]. The Blue Gene/L system has a small
physical memory per processor, 512 Mbytes and in the virtual-node execution mode,
only half (256 Mbytes) is available to the user processes. The peak performance of a
Blue Gene/L processing core is 1.4 gigaFLOPS/s and its main memory bandwidth is
~3200 Mbytes/s, which is shared between two processors in the virtual-node mode.

We developed workload models for the two NAS MPI benchmarks, one each for
the floating-point computation, memory operations, memory capacity and sizes and
patterns of MPI operations [1]. The model predictions are validated with the runtime
data by altering the key input parameter values and by running a fix size application
in strong-scaling mode. The MA models capture the workload distribution that is
represented as a function of key input parameters. These workload requirements are
validated with the runtime performance data measured on two parallel systems. In
addition to workload requirements, the MA models of the two NAS benchmarks can
generate the growth rates for the workload distribution as a function of input
parameters. The growth rates and sensitivity studies are also validated with the
runtime data.

The outline of the paper is as follows: section 2 presents the design of the MA
models using the MA framework. A brief description of NAS CG and SP models of

 Hierarchical Model Validation of Symbolic Performance Models 67

computation and communication is presented in section 3. The step-by-step process of
model validation at multiple-resolutions is provided in section 4. Section 4 also
presents the validation results for the MA models that show the workload growth rate
as a function of input parameters. Section 5 gives a summary of the MA approach and
future research directions.

2 The MA Framework

In order to evaluate our approach of developing symbolic models with MA, we have
designed a prototype framework [1]. This framework has two main components: an
API and a post-processing toolset. Figure 1 shows the components of the MA
framework. The MA API is used to annotate the source code. As the application
executes, the runtime system captures important information in trace files. These trace
files are then post-processed to validate, analyze, and construct models. The post-
processing toolset is a collection of tools or Java classes. The post-processor currently
has three main classes: model validation, control-flow model creation and symbolic
model generation classes. The symbolic model shown in the Figure 1 is generated for
the MPI send volume. This symbolic model can be evaluated and is compatible with
MATLAB [10] and Octave [11].

The MA API provides a set of functions to annotate a given FORTRAN or C code
with MPI message-passing communication library. For example, ma_loop_start, a
MA API function, can be used to mark the start of a loop. Upon execution, the code
instrumented with MA API functions generates trace files. For parallel applications,
one trace file is generated for each MPI task. The trace files contain traces for ma_xxx
calls and MPI communication events. Most MA calls require a pair of
ma_xxx_start and a ma_xxx_end calls. The ma_xxx_end traces are primarily used
to validate the modeling assertions against the runtime values. The assertions for
hardware counter values, ma_flop_start/stop, invoke the PAPI hardware counter API
[4]. The ma_mpi_xxx assertions on the other hand are validated by implementing
MPI wrapper functions (PMPI) and by comparing ma_mpi_xxx traces to PMPI_xxx
traces. Additional functions are provided in the MA API to control the tracing
volume, for example, the size of the trace files, by enabling and disabling the tracing
at compile time and also at runtime. At runtime, the MA runtime system (MARS)
tracks and captures the actual instantiated values as they execute in the application.
MARS creates an internal control flow representation of the calls to the MA library as
they are executed. It also captures both the symbolic values and the actual values of
the expressions. Multiple calls to the same routines with similar parameters maps onto
the same call graph, therefore, the data volume is manageable.

The validation of an MA performance model is a two-stage process. When a model
is initially being created, validation plays an important role in guiding the resolution
of the model at various phases in the application. Later, the same model and
validation technique can be used to validate against historical data and across the
parameter space.

68 S.R. Alam and J.S. Vetter

Post-processing toolset

Source code

annotation

Control flow Model validation

Symbolic model

main ()
{ loop (NAME = conj_loop) (COUNT = niter)
 { loop (NAME = norm_loop) (COUNT = l2npcols)
 { mpi_irecv (NAME = nrecv) (SIZE = dp*2);

ma_subroutine_start/end

ma_loop_start/end

ma_flop_start/stop

ma_heap/stack_memory

ma_mpi_xxxx

ma_set/unset_tracing
Runtime system

generate trace

files

send = niter*(l2npcols*(dp*2)+l2npcols*(dp)+
cgitmax*(l2npcols*(dp*na/num_proc_cols)+dp*na/
num_proc_cols+l2npcols*(dp)+l2npcols*(dp))+l2n
pcols*(dp*na/num_proc_cols)+dp*na/num_proc_col
s+l2npcols*(dp))

Classes of API calls

currently implemented

and tested

MA API in C

(for Fortran &

C applications

With MPI)

Fig. 1. Design components of the Modeling Assertion (MA) framework: The MA API, which is
written in C and the extensible, post-processing toolset classes in Java. The MA API is
available for C and FORTRAN code.

3 Evaluation of Symbolic Models

NAS CG computes an approximation to the smallest eigenvalue of a large, sparse,
symmetric positive definite matrix, which is characteristic of unstructured grid
computations. The main subroutine is conj_grad, which is being a called niter
time. The first step was to identify the key input parameters, na, nonzer, niter and
nprocs (number of MPI tasks); the MA symbolic models for floating-point, load-
store, physical memory and communication volume requirements are generated in
terms of these four input parameters.

The NAS parallel benchmarks provide different problem sizes or classes where
class S is the smallest problem size. The MA model for SP is represented in terms of
one input parameter, problem_size. In addition, the number of MPI tasks
determines some derived parameters like the log2 of MPI tasks in CG and the square-
root of number of processors in the SP benchmark to simplify model representations.
Both CG and SP benchmarks follow a Single Program Multiple Data (SPMD)
programming paradigm. Hence, the workload and memory mapping and distribution
per processor not only depend on the key input parameters but also on the number of
MPI tasks.

Upon termination of a runtime experiment, MA outputs a control flow model
representation, an intermediate file and symbolic models for number of floating-point,
load-store and communication operations. The control flow model representation is
similar to the actual code annotations; that is, it is a high level, visual flow of the
annotated parts of the application. The intermediate representation serves as an input
to develop symbolic models for user-defined characteristics or relative quantities like
memory byte-to-flop ratio. For instance, a user can create models for load/store-to-
flop ratios using the intermediate representation. The symbolic models generated by
the MA framework are compatible with Matlab and Octave script format. Figure 2
shows symbolic model representation for SP communication operations. Only three

 Hierarchical Model Validation of Symbolic Performance Models 69

ncells = sqrt (no_nodes)
elems = problem_size / ncells
dp = sizeof (double)
niter * (elems ˆ 2 * (ncells - 1) * 10 * dp
+ elems ˆ 2 * (ncells - 1) * 10 * dp
+ . . .
+ ncells * (22 * (elems - 1) ˆ 2 * dp)
+ ncells * (10 * (elems - 1) ˆ 2 * dp)
+ . . .

Fig. 2. A MATLAB/Octave compatible symbolic model generated by the MA framework

input parameters are required to evaluate this model, no_nodes (number of MPI
tasks), niter (number of time step iterations) and problem_size (application
input parameter). Our target is to be able to generate symbolic models that represent
the architecture independent requirements of an application and that can be evaluated
efficiently by existing mathematical software frameworks.

One of the aims of creating the models of scientific applications is to be able to
predict the application requirements for the future problem configurations. We used
our MA models to understand the sensitivity of floating-point operations, memory
requirements per processor, and message volume to applications’ input parameters.
We begin experiments with a validated problem instance, Class C, for both the NAS
CG and SP benchmarks, and scale the input parameters linearly. Note that the MA
framework has a post-processing toolset that allows validation of MA model
annotations with the runtime values. For instance, the PAPI_FP_OPS (number of
floating-point operations) data was compared with the ma_flop runtime value. The
validated problem instances, Class C, have na=150000, nonzer=15, for CG Class C
benchmark with 128 MPI tasks. We increase the value of na linearly and generate the
floating-point and load-store operation count using the MA symbolic models of the
NAS CG benchmark. Figure 3 shows that the floating-point and load-store cost in the
CG experiments increase linearly with the na parameter value.

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

3.E+07

2E+05 3E+05 5E+05 6E+05 8E+05 9E+05 1E+06 1E+06 1E+06 2E+06
na

FP Operations

LS Operations

Fig. 3. Sensitivity of the number of Floating-point (FP) and load-store (LS) operations per
processor in a 128 processor experiment by increasing the array size parameter: na

70 S.R. Alam and J.S. Vetter

0.E+00

2.E+07

4.E+07

6.E+07

8.E+07

1.E+08

1.E+08

1.E+08

2.E+08

2.E+08

15 30 45 60 75 90 105 120 135 150
nonzer

FP Operations

LS Operations

Fig. 4. Sensitivity of FP and LS by increasing the number of non-zero elements parameter:
nonzer

Similarly, we generated the growth rates for the floating-point and load-store
operation cost for the other input parameter, nonzer. Results in Figure 4 show that
the floating-point and load-store operation cost in CG is relatively more sensitive to
the increase in the number of nonzer elements in the array than the array size: na.

The NAS SP benchmark has a single application parameter, problem_size,
which we have used to represent the workload requirements (floating-point, load-
store, memory and communication) in the MA symbolic models. Figure 5 shows the
increase in the floating-point and load-store operation count by increasing the
problem_size linearly. Note that like CG, the initial set of experiments (Class S, W,
A, B, C and D) are validated on the target MPP platforms. Figure 5 shows that the
floating-point operation cost increases at a very high rate by increasing the
problem_size.

Using the MA models, we can not only generate the aggregated workload
requirements shown earlier, but also get an insight into the scaling behavior of the

0.E+00

2.E+09

4.E+09

6.E+09

8.E+09

1.E+10

1.E+10

1.E+10

2.E+10

162 324 486 648 810 972 1134 1296 1458 1620
problem_size

FP Operations
Average memory
Messages Sent (bytes)

Fig. 5. Sensitivity of workload requirements with respect to the SP input parameter:
problem_size

 Hierarchical Model Validation of Symbolic Performance Models 71

workload requirements within an application as a function of the problem_size
parameter. Figure 6 shows contribution of different functions in total floating-point
operation count in SP time step iterations. The results shown in Figure 6 are generated
for a fix number of MPI tasks and by increasing the problem_size parameter
linearly. The floating-point workload requirements generated by the MA model show
that the z_solve is the most expensive function for runs with large number of
processors. The cost of x_solve and y_solve are identical and consistent.
Moreover, based on the MA model results shown in Figure 6, we can safely ignore
cost of txinvr and add functions in the further analysis.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

162 324 486 648 810 972 1134 1296 1458 1620

problem_size

copy_faces txinvr x_solve
y_solve z_solve add

Fig. 6. Impact of individual functions on the overall increase in the number of floating-point
operations by increasing the input parameter problem_size on 1024 processors

4 Multi-resolution Validation of MA Models

The model verification output enables us to identify the most floating-point intensive
loop block of the code in the CG benchmark. This loop block is shown in Figure 7,
which is called twice during a conjugate gradient calculation in the CG benchmark.
The symbolic floating point operation cost of the loop is approximately
2*na/(num_proc_cols*nonzer*ceiling(nonzer/nprows)).

Using the MA models, we generated the scaling of the floating-point operation cost
of the loop block in Figure 7 with the other loop blocks within a conjugate gradient

 do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1
 sum = sum + a(k)*p(colidx(k))
 enddo
 w(j) = sum
 enddo

Fig. 7. The partition submatrix-vector multiply

72 S.R. Alam and J.S. Vetter

iteration. The model predictions are shown in Figure 8. The total cost of two
invocations of the submatrix vector multiply operation contributes to a large fraction
of the total floating-point operation cost. l1 is the first loop block in the CG timestep
iteration and l2 is the second. Figure 8 shows that the workload is not evenly
distributed among the different loop blocks (or phases of calculations), and the
submatrix vector multiply loop can be serious bottleneck. Furthermore, as we scale
the problem to a large number of processors, we begin to identify loop that are either
the Amdahl’s proportions of the serial code or their loop count is directly propotional
to the number of MPI tasks in the system. We found that the loop count of loop
number 3 and 8 depend on the number of MPI tasks (log2(log2(MPI_Tasks)), while
loop 1 and 8 scale at a slower rate than loop 2 and 7 (submatrix vector multiply loop),
since the cost of loop 2 and 7 is divided twice by the scaling parameters as compared
to 1 and 8, which is divided once by the scaling parameter. Another interesting feature
is the scaling pattern, which is not linear because of the mapping and distribution of
workload depends on ceiling(log2(MPI_tasks)).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 16 32 64 128 256 512

Number of Processors

%
 o

f t
o

ta
l f

lo
at

in
g

-p
o

in
t o

p
er

at
io

n
s

l11

l10

l9

l8

l7

l6

l5

l4

l3

l2

l1

Fig. 8. Distribution of floating-point operation cost within a time step iteration in the NAS CG
benchmark. Default na and nonzer parameter values for the Class C problem instance are
used for the experiments. l1 is the first loop block and l2 is the second loop block in the
conjugate gradient iterations. l2 and l7 perform calculations shown in Figure 7.

We collected the runtime data for the loops blocks in CG time step iterations on
XT3 and Blue Gene/L processors to validate our workload distribution and scaling
patterns. Figure 9 shows the percentage of runtime spent in individual loop blocks.
Comparing it with the workload distribution in Figure 8, we observe not only a
similar workload distribution but also a similar scaling pattern. Note that the message
passing communication times are not included in these runtime measurements. We
collected data for the Class D CG benchmark on the XT3 system, which also validate
the floating-point message count distribution and scaling characteristics that are
generated by the symbolic MA models.

 Hierarchical Model Validation of Symbolic Performance Models 73

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 16 32 64 128 256 512
Number of processors

%
 o

f t
o

ta
l r

u
n

tim
e

l11

l10

l9

l8

l7

l6

l5

l4

l3

l2

l1

1

Fig. 9. Percentage of total runtime spent in individual loop blocks in a CG iteration. These
runtime are measured in the co-processor mode. Default na and nonzer parameter values for
the Class C problem instance are used for the experiments.

On Blue Gene/L we collected data in the two execution modes to investigate the
effect of reduced memory bandwidth. The memory bandwidth in the virtual node
mode is shared by two Blue Gene/L processors, while in the co-processor mode, a
single compute processor accesses the main memory during the computation. In the
co-processor mode, the other processor, the communication processors, is typically
associated with MPI communication data movement. We did not observe a significant
increase in runtime in the virtual-node mode experiments on the Blue Gene/L system
as shown in Figure 10. Although the runtime increases for the most time-consuming
loops, we conclude that the memory traffic is not a major issue in the most time-
consuming block of the code. We expect the memory bandwidth to be an issue when
workload sizes per processor are increased significantly.

32 64

12
8

25
6

51
2

l1
l3

l5
l7

l9
l11

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

Runtime
(Virtual node/co-

processor
mode)

Number of
processors

Loop blocks

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

Fig. 10. Percentage increase in the runtime values in the virtual-node mode experiments

74 S.R. Alam and J.S. Vetter

Figure 3 and 4 demonstrated that the CG workload is more sensitive to the
nonzer parameter. In order to validate our MA performance model predictions, we
ran the experiments by doubling the nonzer parameter. On Blue Gene/L, we ran the
experiments both in the virtual node mode and in the co-processor mode. First, we
validate the MA model for the physical memory requirements. Our model predicts
that the sizes of all large arrays depend on the nonzer value, therefore, the overall
memory requirement will double. The runtime measurements confirm that a minimum
of 8 Blue Gene/L processors in co-processor mode and 16 processors in the virtual
node mode are needed to run the Class C benchmark with nonzer=30. Second, the
MA models of floating-point operation and load-store operation count predicted that
only the cost of the submatrix vector multiply loop depend on the nonzer parameter
value. According to the MA model predictions, by doubling the value of nonzer
(Class C problem instance), the floating-point and the load-store operation cost
increases by ~300%. The runtime data in Figure 11 confirm the cost distribution and
scaling by doubling the nonzer parameter as predicted by the MA model. We also
validated our MA model for up to five times increase in the nonzer value with the
runtime data.

16 32 64

12
8

25
6

51
2

l1
l3

l5
l7

l9
l11

-50%

0%

50%

100%

150%

200%

250%

300%

% increase in
runtime

Number of processors

Loop blocks

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

Fig. 11. Percentage increase in runtime of individual loop blocks by doubling the nonzer
parameter

In addition to the hierarchical validation of the CG model, we validated the
sensitivity of the problem_size parameter for the NAS SP model. We identified
that the floating-point operation cost increases by increasing the problem_size
parameter and that the z_solve calculations are the most expensive calculations in
the SP application simulation in terms of the floating-point operation cost. Figure 12
shows the breakdown of floating-point cost distribution within the key calculation
phases as generated by the MA model.

 Hierarchical Model Validation of Symbolic Performance Models 75

0%

20%

40%

60%

80%

100%

16 36 64 100 196 256

Number of processors

%
 o

f f
lo

at
in

g
-p

o
in

t o
p

er
at

io
n

s
in

 z
_s

o
lv

e

l16

l15

l14

l13

l12

l11

l10

l9

l8

l7

l6

l5

l4

l3

l2

l1

Fig. 12. Distribution of the floating-point operation cost in different code blocks in the z_solve
method of the NAS SP benchmark. These distributions are generated by the MA models.

We conducted fine-grain measurements on the z_solve operation and collected
runtime data on the XT3 and Blue Gene/L processors. Figure 13 shows the runtime
data collected on the Blue Gene/L processor for different phases of calculation in the
z_solve operation. The distribution of the runtime cost in the z_solve function
confirm the workload distribution and scaling pattern that was generated by the MA
model for the NAS SP benchmark (Figure 12).

0%

20%

40%

60%

80%

100%

16 36 64 100 196 256

Number of processors

%
 o

f t
o

ta
l z

_s
o

lv
e

ru
n

tim
e

l16

l15

l14

l13

l12

l11

l10

l9

l8

l7

l6

l5

l4

l3

l2

l1

Fig. 13. The distribution of the runtime cost measured on the Blue Gene/L processor for the
Class C problem instance of the NAS Parallel benchmark

76 S.R. Alam and J.S. Vetter

In Figure 5, we showed that the floating-point and load-store operation cost
increase at an exponential rate by increasing the problem_size parameter in the
SP benchmark. In order to confirm the growth rate prediction generated by the MA
models, we ran experiments by doubling the problem_size parameter value for
NAS SP Class C experiments on the Blue Gene/L system. Results in Figure 14
confirm that the runtime cost for a large number of loop blocks increases rapidly (up
to 10 times) by doubling the problem_size parameter.

36

10
0

25
6

l1

l4

l7

l10
l13

l16

0%

200%

400%

600%

800%

1000%

1200%

% increase in
runtime

Number of
processors

Loop blocks

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

l12

l13

l14

l15

l16

Fig. 14. Percentage increase in runtime by doubling the problem_size parameter in NAS SP
Class C experiments on the Blue Gene/L system

5 Conclusions and Future Work

We present the multi-resolution validation of symbolic performance models of
parallel scientific kernels using a technique called Modeling Assertions (MA). We
have shown that our modeling scheme provides an insight into the workload
distribution and scaling characteristic of scientific codes by comparing model
predictions with the runtime data collected on contemporary massively-parallel
systems. Furthermore, we validate the growth rates predictions generated by the MA
models of two scientific benchmarks by increasing key input parameters of the
scientific simulations. Development of hierarchical MA symbolic models is a first
step toward developing precise prediction model on target architectures and future
problem configurations. We are extending the MA API and the framework that will
enable code and algorithm developers to augment MA annotations with performance
attributes, for instance, the memory access patterns and data-level parallelism for a
given loop block. We also plan to introduce a set of modeling attributes that can
represent the unique performance enhancing features of emerging architectures.

 Hierarchical Model Validation of Symbolic Performance Models 77

Acknowledgements

This research was sponsored by the Office of Mathematical, Information, and
Computational Sciences, Office of Science, U.S. Department of Energy under
Contract No. DE-AC05-00OR22725 with UT-Batelle, LLC. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S. Government
purposes.

References

1. S. Alam, and J. Vetter, A Framework to Develop Symbolic Performance Models of
Parallel Applications, 5th International Workshop on Performance Modeling, Evaluation,
and Optimization of Parallel and Distributed Systems (PMEO-PDS 2006). Held in
conjunction with IPDPS 2006.

2. George S. Almasi, Calin Cascaval, José G. Castaños, Monty Denneau, Wilm E. Donath,
Maria Eleftheriou, Mark Giampapa, C. T. Howard Ho, Derek Lieber, José E. Moreira,
Dennis M. Newns, Marc Snir and Henry S. Warren Jr, Demonstrating the scalability of a
molecular dynamics application on a Petaflop computer, Proceedings of Int'l Conf.
Supercomputing, 2001.

3. D. Bailey, E. Barszcz et al., The NAS Parallel Benchmarks (94), NASA Ames Research
Center, RNR Technical Report RNR-94-007, 1994,
http://www.nas.nasa.gov/Pubs/TechReports/RNRreports/dbailey/RNR-94-007/RNR-94-
007.html.

4. S. Browne, J Dongarra, N Garner, G. Ho, P Mucci, A Portable Programming Interface for
Performance Evaluation on Modern Processors, The International Journal of High
Performance Computing Applications, Volume 14, number 3, Fall 2000.

5. Darren J. Kerbyson, Henry J. Alme, Adolfy Hoisie, Fabrizio Petrini, Harvey J.
Wasserman, M. Gittings: Predictive performance and scalability modeling of a large-scale
application. Proceedings of Int'l Conf. Supercomputing, 2001.

6. M. Ohmacht, R. A. Bergamaschi, S. Bhattacharya, A. Gara, M. E. Giampapa,
B. Gopalsamy, R. A. Haring, D. Hoenicke, D. J. Krolak, J. A. Marcella, B. J. Nathanson,
V. Salapura, M. E. Wazlowski, Blue Gene/L compute chip: Memory and Ethernet
subsystem, IBM Journal of Research and Development, Vol. 49, No. 2/3, 2005.

7. A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia A. Purkayastha., A Framework
for Performance Modeling and Prediction, Proceedings of Int'l Conf. Supercomputing
(electronic publication), 2002.

8. J. Vetter, S. Alam, T. Dunigan, M. Fahey, P. Roth and P. Worley, Early Evaluation of the
Cray XT3, 20th IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2006.

9. T. Yang, X. Ma and F. Mueller, “Predicting Parallel Applications’ Performance Across
Platforms using Partial Execution,” ACM/IEEE Supercomputing Conference, 2005.

10. MATLAB, http://www.mathworks.com/products/matlab/.
11. Octave, http://www.gnu.org/software/octave/.

	Introduction
	The MA Framework
	Evaluation of Symbolic Models
	Multi-resolution Validation of MA Models
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

