
Storage Exchange: A Global Trading Platform
for Storage Services

Martin Placek and Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory and
NICTA Victoria Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Australia
{mplac, raj}@csse.unimelb.edu.au

Abstract. The Storage Exchange (SX) is a new platform allowing stor-
age to be treated as a tradeable resource. Organisations with varying
storage requirements can use the SX platform to trade and exchange
storage services. Organisations have the ability to federate their storage,
be-it dedicated or scavenged and advertise it to a global storage mar-
ket. In this paper we discuss the high level architecture employed by
our platform and investigate a sealed Double Auction market model. We
implement and experiment the following clearing algorithms: maximise
surplus, optimise utilisation and an efficient combination of both.

1 Introduction

The Internet has proven to be a source of many exciting wide-area distributed
computing applications, enabling its users to share and exchange resources across
geographic boundaries. It is in this context we introduce the Storage Exchange
(SX). Consumers and providers are able to submit their storage requirements
and services along with budgetary constraints to the SX, which in turn employs a
market model to determine successful trades. The motivation and long term goal
behind our research and development of the SX platform has been to achieve
Autonomic [1] management of storage. We envisage Consumers and Providers
will employ brokers which may purchase or sell storage in an autonomic manner
based on the organisations requirements.

The SX platform can be used in a collaborative manner, where participants
use the model to exchange services for credits, or alternatively in an open mar-
ketplace where enterprises trade storage services. Whether in a collaborative or
enterprise environment the incentives for an organisation to use our SX platform
include: (i) monetary gain: Institutions providing storage services (Providers)
are able to better utilise existing storage infrastructure in exchange for mone-
tary gain. Institutions consuming these storage services (Consumers) have the
ability to negotiate for storage services as they require them, without needing to
incur the costs associated with purchasing and maintaining storage hardware.
(ii) common objectives: There may be organisations which may wish to exchange
storage services as they may have a mutual goal such as preservation of informa-
tion [2]. (iii) Spikes in Storage Requirements: Research organisations may require

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 425–436, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

426 M. Placek and R. Buyya

temporarily access to mass storage [3] (e.g. temporarily store data generated from
experiments) and in exchange may provide access to their storage services. (iv)
donate: Institutions may wish to donate storage services, particularly if these
services are going to a noble cause.

There are many considerations which need to be made when building a global
scale platform such as the SX: security, high-availability, fault tolerance, reputa-
tion, monetary issues, consistency, operating environment, just to name a few.
We have chosen to focus our efforts on the core components by proposing and
developing a platform upon which we are able to develop a market model and
begin the work necessary to realise the Storage Exchange.

2 Related Work

Applying economic models to manage computational resources has been the
focus of much recent research [4,5,6]. These papers discuss the application of
economic principles to manage the scheduling of jobs in a large scale environment
such as the Grid [7]. Examples of different economic models and systems which
use them include: (i) Commodity Market model (Mungi [8] and NimrodG [9]),
(ii) Posted price model (NimrodG [9]), (iii) Auction model (Spawn [10] and
Popcorn [11]) (iv) Barter model (Stanford Archival Repository Project [2], and
MojoNation [12]).

FreeLoader [3] aggregates unused desktop storage to provide low-cost solu-
tion to storing massive datasets. Its specifically designed for research institutions
which need to store large scientific datasets. This scenario is particularly use-
ful for scientists engaged in high performance computing, where handling large
datasets is common. FreeLoader aims to handle large immutable files (write-
once-read-many). Farsite [13] is another system which demonstrates the resource
potential to be gained from scavenging unused storage. Farsite operates within
the boundaries of an institution providing a storage service logically similar to
a file-server found in corporate environments.

Cooper et al [2] propose a bartering storage system for preserving information.
Institutions which have common requirements and storage infrastructure can
use the framework to barter with each other for storage services. The bartering
model relies on their to be a double coincidence of wants [14]. OceanStore [15] is
a globally scalable storage utility, providing paying users with a durable, highly
available storage service by utilising untrusted infrastructure. Mungi [8] is Single-
address-space operating system which employs economic principles to manage
storage quota. MojoNation [12] uses digital currency (Mojo) to encourage users
to share resources on its network, users which contribute are rewarded with Mojo
which can be redeemed for services.

Freeloader [3] and Farsite [13] both demonstrate the storage potential that
exists by scavenging storage from workstations. The following works [8,9,10,12]
apply economic principles to effectively manage and foster the trade and ex-
change of services. The Storage Exchange aims to combine storage scavenging
and economic principles to create a global platform allowing institutions to fed-
erate, trade, exchange and manage storage services.

Storage Exchange: A Global Trading Platform for Storage Services 427

3 System Overview

There are four main components which make up the SX platform, the Storage
Client, Storage Broker, Storage Provider and the Storage Exchange itself (Figure
1). The SX platform has been designed to operate on global network such as the
Internet, allowing organisations across geographic boundaries to trade and utilise
storage services. Organisations have the ability to trade storage based on their
current requirements, if a Storage Broker detects an organisation is running low
on storage it may purchase storage, alternatively if it finds that there is an
abundance of storage it has the ability to lease out the excess storage. The rest
of this section discusses each of the components:

Producer Consumer

Storage
Broker

Storage
Broker

Producer/Consumer

Storage
Broker

Storage
Client

Storage
Client

Storage
Exchange

Storage
Provider

Storage
Provider

Storage
Provider

Storage
Provider

Storage
Provider

Storage
Provider

Storage
Provider

Fig. 1. Storage Exchange: Platform Architecture

Storage Provider: The Storage Provider is deployed on hosts within an or-
ganisation chosen to contribute their available storage. Whilst we envision the
Storage Provider to be used to scavenge available storage from workstations,
there is no reason why it can not be installed on servers or dedicated hosts. The
Storage Provider is responsible for keeping the organisations broker up to date
with various usage statistics and service incoming storage requests from Storage
Clients.

Storage Client: An organisation wishing to utilise a negotiated storage con-
tract will need to use a Storage Client. A user will configure the Storage Client
with the storage contract details. The Storage Client then uses these details to
authenticate itself with the provider’s Storage Broker and upon successful au-
thentication the Storage Client requests a mount for the volume. The provider’s
Storage Broker then looks up the Storage Providers responsible for servicing
the storage contract and instructs them to connect to the Storage Client. Upon

428 M. Placek and R. Buyya

receiving a successful connection from the Storage Provider, the Storage Client
provides an interface to the user (e.g. local mount point).

Storage Broker: For an organisation to be able to participate in the SX plat-
form they will need to use a Storage Broker. The Storage Broker enables the
organisation to trade and utilise storage services from other organisations. The
Storage Broker needs to be configured to reflect how it should best serve the
organisations interests. From a consumer’s perspective the Storage Broker will
need to know the organisations storage requirements and the budget it is allowed
to spend in the process of acquiring them. From the Provider’s perspective the
Storage Broker needs to be aware of the available storage and the financial goals
it is required to reach. Upon configuration, a Storage Broker will contact the
Storage Exchange (SX) with its requirements.

Storage Exchange (SX): The Storage Exchange component provides a plat-
form for Storage Brokers to advertise their storage services and requirements.
The SX is a trusted entity responsible for executing a market model and deter-
mining how storage services are traded. When requests for storage are allocated
to available storage services the Storage Exchange generates a storage contract.
The storage contract contains a configuration of the storage policy forming a
contract binding the provider to fulfill the service at the determined price. In a
situation where either the provider or consumer breaches a storage contract, the
SX will keep a record of reputation for each organisation which can be used to
influence future trade allocations.

4 Trading Storage

This section covers topics key to making trading storage possible and begins by
covering storage policies; which provide a way to quantify storage being traded.
Followed by a discussion on the Double Auction (DA) market model and clearing
algorithms we have investigated.

Storage Policy: Storage policies provide a way to quantify a storage service,
this is essential regardless of chosen market model. Systems such as the one
proposed in [16] use Storage Policies as a way to specify high-level Quality of
Service (QoS) attributes, effectively abstracting away error prone low-level con-
figurables from the administrator. Our use of Storage Policies allow Storage
Brokers to quantify the service which they wish to lease out or acquire. When a
trade is determined the storage policy will form the basis for a storage contract
containing details of SLA (Service Level Agreement). The attributes which make
up a storage policy are as follows:

1. Storage Service Attributes:
(a) Capacity(C): Storage Capacity (GB) of volume.
(b) Upload Rate (U): Rate (kb/sec) of transfer to the volume.
(c) Download Rate (D): Rate (kb/sec) of transfer from the volume.

2. Duration:
(a) Time Frame (T): Lifetime (sec) of storage policy.

Storage Exchange: A Global Trading Platform for Storage Services 429

Market Model: Decades of research and experiments [17,18,19,20] show that
Double Auctions (DA) are effective and efficient market model. DAs have been
shown to quickly converge towards a Competitive Equilibrium (CE). The CE
is the intersection point of true demand and supply curves, yielding allocations
which are near 100% efficient. From an economic stand point DAs are a sound
and efficient market model. In a Double Auction (DA) [18] both buyers (Con-
sumers) and sellers (Providers) may submit offers to buy and sell respectively.
Providers and Consumers submit asks and bids simultaneously and hence par-
ticipate in a Double-sided auction. The process of clearing determines the way
in which trades are allocated amongst the asks and bids. There are two ways
in which clearing may take place, continuously or periodically. Double Auctions
cleared continuously are refered to as Continuous Double Auctions (CDA) and
compatible bids and asks are cleared instantaneously. The New York Stock Ex-
change (NYSE) and Chicago Commodities market both employ a CDA market
model. Double Auctions may also be cleared periodically, these are refered to
as Clearinghouse (CH) or Call Markets. Bids and Asks are submitted sealed to
a clearinghouse, which periodically processes the queued up bids and asks to
determine a market clearing price. Call Markets are used to determine opening
prices in continuous markets such as the NYSE.

As well as being economically sound there are two attractive features of Dou-
ble auctions which come to our attention, (i) many trades can be cleared in an
instant and using a sealed model (ii) the need to continuously broadcast the
current market status to all participants is removed. Studies comparing Dou-
ble Auctions [21,22] with other auction protocols (Dutch, English, First Price
Sealed bid) found that Double Auctions possess least communication overhead.
These remarkable properties have motivated our research and subsequent ap-
plication of a DA market model in our SX platform. The Storage Exchange
is responsible for executing a Clearinghouse variation of the DA model, which
involves accepting sealed offers from provider and consumer brokers and period-
ically allocating trades amongst the queued up offers using a clearing algorithm.
Consumers submitting bids do so in the form of Storage Request Bids (SRB).
A SRB consists of a Storage Policy detailing the storage service and a bid price
SRB = (C, U, D, T, $). A Provider submits a Storage Service Ask (SSA) repre-
senting the storage service they wish to lease out. An SSA consists of a Stor-
age Policy representing the storage service they are selling, along with a cost
function SSA = (C, U, D, T, CostFunction(C, U, D, T)). The cost function rep-
resents the Providers responsible and determines a cost based on Storage Policy
attributes. The Storage Exchange uses the cost function to determine how much
a Consumers would need to pay based on their Storage Policy. To achieve this
the Storage Exchange substitutes consumers Storage Policy attributes into the
Providers cost function to determine a price.

Clearing Algorithms: Periodically the Storage Exchange allocates trades
amongst queued up SRBs with SSAs, the manner in which it does so is de-
termined by the clearing algorithm it employs. We propose and investigate the
following clearing algorithms in the context of our SX platform:

430 M. Placek and R. Buyya

1. First fit: SRBs are allocated to SSAs on a first fit basis. An SSA is deemed
to fit if it has the storage resources required by the SSA and the cost function
returns a price within the SSA bid amount. SRBs are processed in the order
which they have been queued up.

2. Maximise Surplus: This clearing algorithm aims to maximise the profit
of the auction. An SRB is allocated to an SSA which results the maximum
difference between Consumers bid price and result of Providers cost function.

3. Optimise Utilisation: This algorithm focuses on achieving better utilisation
by trying to minimize the left overs that remain after an SRB is allocated
to an SSA. A measure of fit is calculated (Algorithm 1) between an SRB
and each SSA. A large measure of fit indicates that the remaining ratios
have a large spread amongst each of the Storage Service Attributes and
therefore would result in an SSA with potentially more waste, whereas a
small population variance would indicate that the remaining Storage Service
Attributes within the SSA would have less waste. Upon calculating a measure
of fit between the considering SRB and each SSA, we allocate it to the SSA
which returned the smallest measure of fit. SRBs are processed in the order
which they have been queued up.

Algorithm 1. MeasureOfFit(S,A)
1: Input: Storage Request Bid S, Storage Service Ask A
2: Output: Measure of Fit F
3: A = {a1, a2, ..., an}//Storage Service Attributes
4: //belonging to Available Storage Policy
5: S = {s1, s2, ..., sn}//Storage Service Attributes belonging to Storage Request
6: // calculate a remaining ratio for each of Storage Service Attributes
7: R = {r1 = a1−s1

a1
, r2 = a2−s2

a2
, ..., rn = an−sn

an
}

8: // calculate the population variance amongst the remaining ratios
9: F = 1

n

�n
i=1(ri − uR)2, where uR = 1

n

�n
i=1 ri

4. Max-Surplus/Optimise Utilisation: This clearing algorithm (Algorithm 2
incorporates the last two allocation strategies and aims to draw a balance
between the two. Parameter (k) serves to bias the balance, (0.5 < k <= 1)
means that importance will be given to utilisation, whereas a k(0 <= k <
0.5) will give importance to achieving a better surplus. Algorithm 2 is applied
to every SRB, in the order which they have been queued up.

5 Performance and Evaluation

Implementation: The Storage Provider and Storage Client components have
been written in C. The Storage Client utilises the FUSE library [23] to provide
a local mount point of the storage volume in user space. The Storage Broker
and Storage Exchange have both been written in Java. Interactions between
the Broker, Provider and Client have been implemented and tested. We have
been able to successfully mount a replicated storage volume utilising scavenged

Storage Exchange: A Global Trading Platform for Storage Services 431

Algorithm 2. Max-Surplus/Optimise Utilisation Algorithm
1: Input: Storage Request Bid S, Storage Service Asks A, Balance k
2: Output: Selected Storage Policy P
3: F ← {∅} // a set to store MeasureOfFit values
4: M ← {∅} // a set to store Surplus calculations
5: for all availableStoragePolicy ∈ A do
6: if availableStoragePolicy has greater resource attributes than S and

S bid price is greater than availableStoragePolicy reserve then
7: F ← F ∪ MeasureOfFit(S, availableStoragePolicy)
8: M ← M ∪ surplus(S, availableStoragePolicy)
9: end if

10: end for
11: minSurplus = min(M), worseF it = max(F)
12: deltaMeasureF it = worseF it − min(F), deltaSurplus = max(M) − minSurplus
13: currentHighScore = Large Negative Number
14: for all availStoreP l ∈ A do
15: ratioBetterF it = (worseF it − MeasureOfFit(S, availStoreP l))/deltaMeasureF it
16: ratioBetterSurplus = (surplus(S, availStoreP l) − minSurplus)/deltaSurplus
17: score = k ∗ ratioBetterF it + (1 − k) ∗ ratioBetterSurplus
18: if score > currentHighScore then
19: currentHighScore = score
20: P ← {availStoreP l} // assign Storage Policy with max score
21: end if
22: end for

storage made available by Providers. Communication between components is
carried out via TCP socket communication. The Storage Exchange accepts offers
from Storage Brokers and employs a clearing algorithm to allocate trades. Our
performance evaluation focuses on the Storage Exchange and comparing the
different clearing algorithms it employs.

Experiment Setup: We randomly generate a series of bids (SRB) and asks
(SSA) which comply to the posting protocol used by Consumers and Providers.
The cost functions in the SSAs are linear. The parameters we have used to
generate our random set of offers are outlined in Table 1. Each experiment exe-
cuted represents a single clearing period, that is assume the set of bids and asks
generated were queued up over some period of time by the Storage Exchange,
our experiment focuses on the sole process of clearing at the end of that period.
With every experiment the same set of orders are loaded in the same order in the
Storage Exchange to ensure each clearing algorithm is executed in exactly the
same manner. Parameters with ranges are assigned with a randomly generated
numbers within the specified range. Whilst our scenario has many more bids
(600) than asks (50), the asks contain much larger storage service attributes,
which would imply that Providers have a large quantity of storage they wish to
sell to many consumers.

Results: Our experiment results have been broken down into four plots. The
first two plots (Figure 2 and 3) focus on budget aspects while the second set of

432 M. Placek and R. Buyya

Table 1. Experiment Parameters

Parameter Description Values
SRB Number of Storage Request Bids 600
SRCrange Storage Request Capacity range (GB) 5 - 50
SRUrange Storage Request Up Rate range (kb/sec) 5 - 50
SRDrange Storage Request Down Rate range (kb/sec) 5 - 50
SRDU Storage Request Duration (sec) 20000
SSA Number of Storage Service Asks 50
SACrange Storage Ask Capacity range (GB) 50 - 500
SAUrange Storage Ask Up Rate range (kb/sec) 100 - 1000
SADrange Storage Ask Down Rate range (kb/sec) 100 - 1000
SADU Storage Ask Duration (sec) 20000

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 0 100 200 300 400 500 600[A
uc

tio
n

S
ur

pl
us

 (
di

ffe
re

nc
e

be
tw

ee
n

al
lo

ca
te

d
B

id
 p

ric
e

an
d

A
sk

 r
es

er
ve

)
]

[Number of storage requests processed]

% (First Fit)
 (Maximise Surplus)

 (Optimise Utilisation)
 (k = 0.25 Max-Surplus/Optimise Utilisation)
 (k = 0.50 Max-Surplus/Optimise Utilisation)
 (k = 0.75 Max-Surplus/Optimise Utilisation)

Fig. 2. Results: Auction Surplus

plots (Figure 4 and 5) focus on utilisation achieved. The horizontal axis in all
the plots represents the number of bids that have been processed. We can see
from the Auction Surplus plot that the Maximise Surplus algorithm achieves far
better surplus than either first fit or Optimise Utilisation, but performs poorly in
utilisation plots (Figure 4 and 5) which in turn has a bad impact on Ask budget
met. The Optimise Utilisation algorithm achieves a far better utilisation (Figure
4 and 5) than Maximise Surplus, so much so it achieves the best in percentage
of Ask budget met. Even though it performs well in utilisation it achieves a
poor result in auction surplus. Finally when we apply Max-Surplus/Optimise
Utilisation clearing algorithm we are able to achieve best Auction Surplus (k =
0.75) whilst achieving better utilisation than Maximise Surplus.

Storage Exchange: A Global Trading Platform for Storage Services 433

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600

[P
er

ce
nt

ag
e

of
 A

sk
 B

ud
ge

t M
et

]

[Number of storage requests processed]

(First Fit)
(Maximise Surplus)

(Optimise Utilisation)
 (k = 0.25 Max-Surplus/Optimise Utilisation)
 (k = 0.50 Max-Surplus/Optimise Utilisation)
 (k = 0.75 Max-Surplus/Optimise Utilisation)

Fig. 3. Results: Percentage of Ask Budget met

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

[P
er

ce
nt

ag
e

of
 U

ns
ol

d
S

to
ra

ge
]

[Number of storage requests processed]

(First Fit)
(Maximise Surplus)

(Optimise Utilisation)
 (k = 0.25 Max-Surplus/Optimise Utilisation)
 (k = 0.50 Max-Surplus/Optimise Utilisation)
 (k = 0.75 Max-Surplus/Optimise Utilisation)

Fig. 4. Results: Percentage of Unsold Storage

434 M. Placek and R. Buyya

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100 200 300 400 500 600

[P
er

ce
nt

ag
e

of
 U

nf
ea

si
bl

e
B

id
s

]

[Number of storage requests processed]

(First Fit)
(Maximise Surplus)

(Optimise Utilisation)
 (k = 0.25 Max-Surplus/Optimise Utilisation)
 (k = 0.50 Max-Surplus/Optimise Utilisation)
 (k = 0.75 Max-Surplus/Optimise Utilisation)

Fig. 5. Results: Percentage of Unfeasible Bids

6 Conclusion

The SX platform provides organisations with various storage services and re-
quirements the capability to trade and exchange these services. Our platform
aims to federate storage services, allowing organisations to find storage services
which better meet their requirements whilst better utilising their available in-
frastructure. Organisations are able to scavenge storage services across their net-
work of workstations and with the use of the SX platform lease it out globally.
The Storage Exchange serves as a foundation for further research and develop-
ment into utilising economic principles to achieve Autonomic management [24]
of storage services.

In this paper we discuss our SX platform and apply a sealed Double Auction
market model and evaluate various clearing algorithms which aim to maximise
surplus, optimise utilisation and finally combining the previous two. Our re-
sults show that combining maximise surplus and optimise utilisation algorithms
achieves better utilisation and consequently the best auction surplus. A couple
of areas which require further research include:

1. Determining a clearing price: Whilst determining a clearing price in a double
auction which deals with goods that are homogeneous and divisible abstract
entities such as money and shares is found by looking where supply intersects
demand, this is not applicable when dealing with heterogeneous goods [25]
such as storage policies.

Storage Exchange: A Global Trading Platform for Storage Services 435

2. Extending Experiment: Conduct a more detailed assessment of our clearing
aglorithms by varying parameters described in Section 5. Also determining
a theoretically optimal clearing result would allow us to compare and guage
the efficiency of our clearing algorithms.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)
(2003) 41–50

2. Cooper, B.F., Garcia-Molina, H.: Peer-to-peer data trading to preserve informa-
tion. ACM Transactions on Information Systems 20(2) (2002) 133–170

3. Vazhkudai, S.S., Ma, X., Freeh, V.W., Tammineedi, J.W.S.N., , Scott., S.L.: Free-
loader: Scavenging desktop storage resources for scientific data. In: IEEE/ACM
Supercomputing 2005 (SC—05), Seattle, WA, IEEE Computer Society (2005)

4. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: G-commerce: Market formulations
controlling resource allocation on the computational grid. In: International Parallel
and Distributed Processing Symposium (IPDPS), San Francisco, IEEEE (2001)

5. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
management and scheduling in grid computing. The Journal of Concurrency and
Computation: Practice and Experience (CCPE) (2002)

6. Weglarz, J., Nabrzyski, J., Schopf, J., eds.: Grid resource management: state of
the art and future trends. Kluwer Academic Publishers, Norwell, MA, USA (2004)

7. Foster, I.T.: The anatomy of the grid: Enabling scalable virtual organiza-
tions. In: Euro-Par ’01: Proceedings of the 7th International Euro-Par Conference
Manchester on Parallel Processing, London, UK, Springer-Verlag (2001) 1–4

8. Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S., Liedtke, J.: The Mungi
single-address-space operating system. Software Practice and Experience 28(9)
(1998) 901–928

9. Buyya, R., Abramson, D., Giddy, J.: NimrodG: An Architecture of a Resource
Management and Scheduling System in a Global Computational Grid. In: Pro-
ceedings of the 4th International Conference on High Performance Computing in
Asia-Pacific Region. (2000)

10. Waldspurger, C.A., Hogg, T., Huberman, B.A., Kephart, J.O., Stornetta, W.S.:
Spawn: A distributed computational economy. IEEE Transactions on Software
Engineering 18(2) (1992) 103–117

11. Regev, O., Nisan, N.: The popcorn market an online market for computational
resources. In: ICE ’98: Proceedings of the first international conference on In-
formation and computation economies, New York, NY, USA, ACM Press (1998)
148–157

12. Wilcox-O’Hearn, B.: Experiences deploying a large-scale emergent network. In:
Revised Papers from the First International Workshop on Peer-to-Peer Systems,
Springer-Verlag (2002) 104–110

13. Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur, J.R., How-
ell, J., Lorch, J.R., Theimer, M., Wattenhofer, R.P.: Farsite: federated, available,
and reliable storage for an incompletely trusted environment. SIGOPS Operating
Systems Review 36(SI) (2002) 1–14

14. Richard G. Lipsey and K.Alec Chrystal: Principles of Economics 9th Edition.
Oxford University Press (1999)

436 M. Placek and R. Buyya

15. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: Oceanstore: An architecture
for global-scale persistent storage. In: Proceedings of ACM ASPLOS, ACM (2000)

16. Devarakonda, M.V., Chess, D.M., Whalley, I., Segal, A., Goyal, P., Sachedina,
A., Romanufa, K., Lassettre, E., Tetzlaff, W., Arnold, B.: Policy-based autonomic
storage allocation. In Brunner, M., Keller, A., eds.: DSOM. Volume 2867 of Lecture
Notes in Computer Science., Springer (2003) 143–154

17. Smith, V.L.: An experimental study of competitive market behavior. The Journal
of Political Economy 70(2) (1962) 111–137

18. Friedman, D., Rust, J.: The Double Auction Market: Institutions, Theories and
Evidence. Addison-Wesley Publishing (1993)

19. Gjerstad, S., Dickhaut, J.: Price formation in double auctions. In: E-Commerce
Agents, Marketplace Solutions, Security Issues, and Supply and Demand, London,
UK, Springer-Verlag (2001) 106–134

20. Rustichini, A., Satterthwaite, M.A., Williams, S.R.: Convergence to efficiency in a
simple market with incomplete information. Econometrica 62(5) (1994) 1041–63

21. Assuncao, M., Buyya, R.: An evaluation of communication demand of auction
protocols in grid environments. In: Proceedings of the 3rd International Workshop
on Grid Economics and Business (GECON 2006), World Scientific Press (2006)

22. Morali, A., Varela, L., Varela, C.: An electronic marketplace: Agent-based coor-
dination models for online auctions. In: XXXI Conferencia Latinoamericana de
Informática, Cali, Colombia (2005)

23. FUSE: http://sourceforge.net/projects/fuse/ (2000)
24. Pattnaik, P., Ekanadham, K., Jann, J.: Autonomic Computing and GRID. In:

Grid Computing: Making the Global Infrastructure a Reality. Wiley Press, New
York, NY, USA (2003)

25. Kalagnanam, J.R., Davenport, A.J., Lee, H.S.: Computational aspects of clear-
ing continuous call double auctions with assignment constraints and indivisible
demand. Electronic Commerce Research 1(3) (2001) 221–238

	Introduction
	Related Work
	System Overview
	Trading Storage
	Performance and Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

