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Abstract. In this paper we describe a new hybrid distributed/shared
memory parallel software for support vector machine learning on large
data sets. The support vector machine (SVM) method is a well-known
and reliable machine learning technique for classification and regression
tasks. Based on a recently developed shared memory decomposition al-
gorithm for support vector machine classifier design we increased the
level of parallelism by implementing a cross validation routine based on
message passing. With this extention we obtained a flexible parallel SVM
software that can be used on high-end machines with SMP architectures
to process the large data sets that arise more and more in bioinformatics
and other fields of research.

1 Introduction

Support vector machines are well-known data mining methods for classification
and regression problems [I]. Their popularity is mainly due to their applicability
in various fields of data mining, such as text mining [2], biomedical research [3],
and many more. Their accuracy is excellent and in many cases they outper-
form other machine learning methods such as neural networks. SVMs have their
roots in the field of statistical learning which provides the reliable generaliza-
tion theory [4]. Several properties that make this learning method successful are
well-known, e.g. the kernel trick [5] for nonlinear classification and the sparse
structure of the final classification function. In addition, SVMs have an intuitive
geometrical interpretation, and a global minimum can be located during the
SVM training phase. In comparison to genetic algorithms or neural networks,
less experience is required for using them, which helps researchers to get started
with SVM software quite fast. The main drawback of current SVM models is
their high computational complexity for large data sets [6]. This can in fact
restrict the applicability of SVMs since the amount of data for classification
modeling increases dramatically. Therefore the development of highly scalable
parallel SVM algorithms is a new important topic of current SVM research.
Some algorithms for parallel SVM learning already do exist, but most of them
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are limited to heuristics for distributed training on reduced data sets. These are
not useful as stand-alone systems for high quality learning on large data.

In this paper we propose an efficient parallel support vector machine software
well suited for multi-processor shared memory (SMP) clusters that become more
and more available. Our algorithm can be used in serial and parallel mode. The
parallel implementation provides pure MPI and OpenMP modes as well as a
hybrid mode which combines fine and coarse grained parallelization aspects to
a well scalable SVM learning method.

The remainder of this paper is organized as follows. In Sect. 2l we briefly review
the basic concepts of support vector machine learning and describe the SVM pa-
rameter optimization problem, which leads to the computational challenges we
address in this paper. We limit the discussion to the issues that are essential for
understanding the following sections. Since the field of parallel SVM methods
is quite new and implementations are rare, we give a detailed review of exist-
ing approaches for parallel data mining and support vector machine learning in
Sect. Bl One aim of this paper is therefore to present the current state-of-the-art
in parallel support vector machine design. In Sect. ] we explain the structure
of our new parallel SVM software HyParSVM. In Sect. [0l we present first ex-
perimental results on the IBM p690 cluster JUMP at Research Centre Jiilich.
Finally, Sect. [0l contains a summary and shows directions for future work.

2 Theoretical Background

In this paper we consider the well-known supervised binary classification prob-
lem [7]. Given a training set (reference data) of the form

{(=',y;) e R" x {-1,1}, i=1,...,1},

where [ € IN is the number of given instances and n € IN the number of attributes
in the data set, the task of support vector machine learning is to find a hypothesis
function A : IR™ — IRthat can be used to classify unseen data. The hypothesis
function, the sign of which is used to classify a point x, is of the form

h(zx) = Z yio, K (x', x) + b*.
:a; >0

It is mainly controlled by the so-called Lagrange multipliers «; (i = 1,...,1).
They can be determined via the solution of the quadratic programming (qp)
problem
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Fig. 1. Structure of parameter tuning with a 4-fold cross validation method

The function K : R™ x R"™ — IR is known as the kernel [I] and measures
similarity between input vectors. C' € R4 is an SVM internal error penaliza-
tion parameter which controls the trade-off between a large margin and the
corresponding training errors. We refer to [I] for a detailed description of the
SVM learning problem. Usually, for SVM learning either the Li-norm or the
Lo-norm approach is used. In this paper we work with the Li-norm approach
(@ and avoid the discussion about SVM internal algorithmics. Our software
is able to handle both methods. All details to our flexible serial implementa-
tion are given in [§] where we presented a comparison between these methods
and observed a superiority of the Li-norm model for unbalanced classification
problems.

One of the main challenges when using SVM-based methods is parameter
selection. Several data dependent parameter values need to be adjusted [9]. Dif-
ferent methods for tuning the parameters have been proposed [10]. One of them
is a search procedure that iteratively creates new parameter values using quality
results from k-fold cross validation. In Fig. [l we explain this method for k = 4.
A k-fold cross validation includes k¥ SVM training and test stages as well as a
final combination of the results to obtain a quality measure value [9]. We are
working with our implementation of the decomposition method which includes
the fast projection method proposed in [I1]. However, a single SVM training is
expensive for large data. Thus, a complete validation takes a very long time. Our
work is aimed at speeding up the SVM parameter optimization time. Please note
that parameter tuning usually means to perform a large number of validation
stages. Efficient and fast methods are of great interest since they allow for an
extensive scan of the parameter space and usage of additional parameters, e.g.
for sensitive classification of highly unbalanced data [9].
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3 History of Parallel Support Vector Machines

Most sequential data mining algorithms have large runtimes, but the volume of
data available for analysis is growing rapidly, i.e. the number of attributes as well
as the number of instances both increase. In addition to improvements of the
serial algorithms the development of parallel techniques may help to avoid com-
putational bottlenecks. This section gives an overview of activities concerning
large scale data mining, particularly the problem of classification using machine
learning techniques like SVMs.

Parallel Data Mining

The first parallel data mining algorithms have emerged a decade ago. In [12]
the general differences between parallel data mining and other numerical par-
allel algorithms are explained. The design of scalable data mining algorithms
requires meeting several challenges, e.g., the enormous memory requirements
have to be supported by the computing system. Various algorithms, especially
for supervised learning methods, have been parallelized.

— A parallel algorithm for data mining of association rules was presented
n [I3]. It has been designed for work on shared memory multiprocessors.

— The ScalParC software [14], designed in 1998, was one of the first methods
for parallel decision tree classification. Parallel decision tree applications are
still of interest, mainly in the important field of Grid computing [15].

— Clustering is useful in various fields, i.e., pattern recognition and learning
theory. The runtime complexity of a serial k-means clustering algorithm is
high for problems of large size. Therefore parallel clustering methods have
been developed. We refer to [16] for a master-slave approach.

— K-nearest neighbor methods have received a great deal of attention since
they are applied frequently in bioinformatics, but performance is a serious
problem for many implementations. In [I7] a parallel algorithm was intro-
duced to overcome the problem of runtime.

— Artificial neural networks (ANNs) are well-known data mining methods with
high learning cost when the models are large. An approach for speeding up
their implementation by using parallel environments is given in [18].

— Bayesian networks for unsupervised classification tasks include time consum-
ing steps which can be parallelized. A description is given in [19].

— Boosting is a method for improving the accuracy of any given learning al-
gorithm [20] and is often used within the context of supervised learning. A
framework for distributed boosting is presented in [21I]. The method requires
less memory and computational time than serial boosting packages.

Parallel Support Vector Machine Approaches

Efficient and parallel support vector machine learning is a young and emerging
field of research, but the number of truly parallel implementations is small.
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Most approaches just try to increase the efficiency of the serial algorithms and
to overcome the problem of large scale applications by dividing the data into
subsets.

— Different approaches for splitting a large data set into small subsets have
been implemented [22]. Usually results of the individual training stages are
merged to finally obtain a single SVM model. The individual optimization
steps can be run in parallel.

— A fast SVM algorithm, which uses caching, digest and shrinking policies is
given in [23].

— The clustering-based SVM [24] is a learning method that scans the data set
before training the SVM. It selects the data which are supposed to maximize
the benefit of learning and is useful for very large problems when a limited
amount of computing resources is available. So far it is only applicable for
linear problems.

In addition, various projects exist where a simple parallelization scheme is used
to speed up the learning process.

— In [25] a parallel optimization step is proposed. It approximates the kernel
matrix by block diagonal matrices and splits the original problem into sub-
problems which can be solved independently from each other with standard
algorithms. This step is used to remove non-support vectors before SVM
training.

— Parallel training of several binary SVMs for solving multiclass problems is
described in [26].

— Parallel cross validation methods do exist for the WEKA machine learning
package [27].

— Parallel parameter optimization techniques such as grid search or pattern
search have been studied for SVM parameter fitting [28].

These approaches can be interpreted as coarse grained parallelization techniques
for SVM methods at a high level which is independent from the inner solver for
the problem ([Il). However, the computational bottleneck of a single SVM training
on a large data set can be avoided only by implementing a fine grained parallel
support vector machine training. The following methods have been proposed.

— Parallel computation of the kernel matrix for high dimensional data spaces is
implemented in [29]. The speedup is limited because of high communication
costs. Therefore an approximation method that reduces the kernel matrix
was implemented, too. The method is applicable only for commonly used
kernels which are inner product-based and requires changes in the algorithm
for each kernel.

— A distributed SVM algorithm for row-wise and column-wise data distribution
is described in [26], which so far can be used for linear SVMs only.

— A promising parallel MPI-based decomposition solver for training support
vector machines has been implemented recently [30].

— A parallel support vector machine for multi-processor shared memory (SMP)
clusters has been introduced in [31].
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4 A New Hybrid Parallel SVM Software

In [3T] we have discussed a mixed library/loop-based shared memory paralleliza-
tion for a single SVM training. We have continued to optimize the parallel code,
i.e., in addition to the mixed parallelization we implemented two versions of the
parallel SVM training that perform library- or loop-based parallelization exclu-
sively (except for the distributed kernel computations). The first one is based
on calls to the shared memory parallel version of the ESSL (Engineering Scien-
tific Subroutine Library) [32], whereas the second one implements OpenMP loop
level parallelism. This scheme was realized for the outer decomposition loop, as
well as the projection method and the inner solver. The settings may be cho-
sen independently for each routine by using C preprocessor macro names. The
code is written in Fortran90, and the IBM XL Fortran compiler is used. We
observed satisfactory speedups for moderate numbers of processors on the IBM
supercomputer JUMP (Juelich Multi Processor) at Research Centre Jiilich [33].
For a larger number of processors the speedup values tended to stagnate or even
decreased. The training routine comprises some sequential parts that cannot be
parallelized, e.g., the iterative working set selection scheme. These parts con-
sume approximately 5% of the training time for data sets with more than 10000
points. In addition, the working set size, an important parameter for the de-
composition loop that determines the size of the qp problem ([II), which is solved
within the parallel OpenMP mode, is limited by the available memory. Therefore
the ESSLsmp routines have limited scalability for increasing numbers of threads.
All in all, for the data we have analyzed, the attainable speedup was limited to
values between 5 and 10. For a large number of threads (> 12) the speedups
started to decrease. In this paper we present a parallel software which speeds up
the SVM learning process to a greater extent by exploiting an additional level
of parallelism.

So far, the parallel shared memory SVM training had been embedded into
the serial validation loop as it is shown in Fig. Bl At this higher level we added
a new parallelization scheme. A pure extension of the shared memory approach
was not reasonable since usage of more than 32 processors on the JUMP su-
percomputer would mean to assign the validation tasks to different nodes which
do not share the same memory and can communicate with MPI-based func-
tions only. Therefore we implemented a hybrid parallel support vector machine
with an MPI-based cross validation routine. Using a coarse grained paralleliza-
tion scheme the k validation steps for a k-fold cross validation are distributed
to p processes, each of which performs a training-and-testing step for k/p data
sets. Each training may in turn be executed by multiple threads, as shown in
Fig. 2l Since I/O is necessary only at the beginning of the program, we could
use a simple data distribution scheme. A single (“master”) process reads the
complete training data, preprocesses it and then calls MPI collective broad-
cast operations to distribute the validation matrix to the other processes. Inside
the validation loop each process uses the matrix k/p times to extract private
training and test data. Each process accumulates results of the local validation
tests during execution of the program. At the end of the validation loop, MPI
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Fig. 2. Shared memory parallel SVM training as part of the validation loop to be
parallelized

collective reduction operations compute the overall results, and the master
process calculates the overall quality measure. Each validation step consists of a
single SVM training on a data matrix with n features and ! - (1 —1/k) instances.
It is known that training time is quadratic in the number of instances and lin-
ear in the number of features and does not heavily depend on other parameters
except the outer SVM parameters which do not change during a single valida-
tion process. Due to this relatively balanced load and the fact that variances in
time are data dependent and unpredictable, the assignment of validation jobs to
processes was implemented in a straight forward way. As it can be seen in Fig.
each step of the cross validation method previously comprised some non-parallel
parts (dark grey), which we have parallelized now with a distributed memory
approach to increase the efficiency of the overall scheme. The additional speedup
obtained by the hybrid parallelization is particularly useful in the context of pa-
rameter search, since a large number of validation steps may be necessary here.
Sophisticated parameter search is usually performed iteratively and new paths
in the parameter space are defined based on former results. For simple tuning
approaches like grid search, where the validation runs are independent and can
be processed in parallel, the MPI-parallelelism of our hybrid software may be
turned off.

5 Experimental Results

We performed our tests on the Juelich Multi Processor. JUMP is a distrib-
uted shared memory parallel computer consisting of 41 frames (nodes). Each
node contains 32 IBM Power4d+ processors running at 1.7 GHz, and 128 GB
shared main memory. The 1312 processors have an aggregate peak performance
of 8.9 TFlop/s. For our tests we have used a QSAR data set from pharmaceutical
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Table 1. Comparison of ( running time in seconds : speedup : efficiency) for 8-fold
cross validation using the Li-norm approach with a Gaussian kernel. A data set with
40000 instances and 50 features was tested.

# processes
1 2 4 8

6105 :1.0:1.00 3074 : 2.0:1.00 1566 : 3.9:0.98834: 7.3:0.91
3157:1.9:0.951599 : 3.8:0.95 815: 7.5:0.94 453 :13.5:0.84
2168 : 2.8 : 0.93 1109 : 5.5:0.92 577:10.6:0.88 348 : 17.5: 0.73
1641 :3.7:0.93 847: 7.2:0.90 444 :13.7:0.86 284 : 21.5 : 0.67
1362 :4.5:0.90 703: 8.7:0.87 366:16.7:0.84 187 :32.7:0.82
1172 :5.2:0.87 609 :10.0:0.83 326:18.7:0.78 165 : 37.0: 0.77
1054 : 5.8:0.83 549 :11.1:0.79 299:20.4:0.73 155:39.4:0.70

978 :6.2:0.78 518:11.9:0.74 290:21.9:0.68 158 : 42.9 : 0.67

# threads
0~ O U W

industry with 40000 instances and 50 features. We show results for an SVM with
the Gaussian kernel. However, with our flexible implementation any other kernel
function is applicable, since the kernel function itself is not parallelized. The user
may integrate his own kernel function into the software. We believe that this con-
cept of a non-parallel kernel function is crucial for a flexible usage of the parallel
SVM software as it allows for the classification of data sets with widely differing
characteristics. Due to the fact that we focus on a parallelization scheme, no
accuracy results for the data in this paper are given. In our tests we observedm
that parallel computataion of ({I]) does not change the global solution. Concern-
ing verification and improvement of SVM quality we refer to our work [S[9)28].

In the following we present the results for an 8-fold cross validation task using
the hybrid software with the ESSLsmp-based inner parallelization. The working
set size of the decomposition method was set to the largest possible value of
40000 - 7/8 = 35000, which is the size of the qp problems to be solved in the
validation loop. For the allocation of matrices and vectors during computation
each process needed 12 GB of memory, which was then used by the threads
assigned to each process. In cases where only a smaller amount of memory is
available the working set size may be reduced. This will cause the decomposition
method to optimize the vector « iteratively. As we mentioned in the last chapter,
each validation step is expected to consume approximately the same amount of
time. For our data set the timings were between 751 and 778 seconds with
a mean value of 763. These results were obtained with one thread and a single
process on JUMP. Thus, the time differences between the steps are negligible and
the assignment of steps to the available processes may indeed be implemented
without a special mapping method. In Table [§] we show speedup and efficiency
values for various combinations of processes and threads. The additional level of
parallelism successfully increased the achievable speedup. Most interesting it the
last column. The efficiency decreases from 0.91 down to 0.67 for 32 processors. If
additional 8 processors are added, the efficiency increases to 0.82 and decreases
again for further more processors. For tests with more than 32 processors two
nodes of JUMP are used; all other tests were run on a single node. With using
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two nodes, memory bandwidth limitations become visible. However, our speedup
values are promising — for 64 processors the SVM validation time decreased with
a factor of 43 by using 8 processes with 8 threads each.

6 Summary and Future Work

In this paper we presented the new HyParSVM software for parallel SVM learn-
ing. This software, which is under development at the Research Centre Jiilich,
helps speeding up the data mining pipeline in various fields of classification
applications. The hybrid implementation is very flexible and shows promising
results on the JUMP supercomputer. In addition to the hybrid SVM software
the user may increase the level of parallelism even more by using a parallel pa-
rameter tuning method which calls the HyParSVM cross validation routine, e.g.
on different nodes of a SMP cluster.

Our future work will be aimed at further improvement of the HyParSVM
software. The shared memory parallelization of the training routine will be en-
hanced and tested for larger data sets. We will analyze which parallel scheme —
ESSLsmp or OpenMP-based constructs — gives the best speedups. The influence
of the working set size onto the scalability will be investigated.
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