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Abstract. Using functions of parallelized mathematical libraries is a
common way to accelerate numerical applications. Computer architec-
tures with shared memory characteristics support different approaches
for the implementation of such libraries, usually OpenMP or MPI.

This paper’s content is based on the performance comparison of
DGEMM calls (floating point matrix multiplication, double precision)
with different OpenMP parallelized numerical libraries, namely Intel
MKL and SGI SCSL, and how they can be optimized. Additionally, we
have a look at the memory placement policy and give hints for initializing
data. Our attention has been focused on a SGI Altix 3700 Bx2 system
using BenchIT [1] as a very convenient performance measurement suite
for the examinations.

1 Measurement Environment

For a detailed analysis of a system architecture by parameter studies, the choice
of a suitable measuring framework is an important decision. To benchmark the
DGEMM calls we use BenchIT. This performance measurement suite helps to
compare different algorithms, implementations of algorithms, features of the soft-
ware stack, and hardware details of whole systems. It has been designed to run
many microbenchmarks on every POSIX 1.003 compatible system in a very user-
friendly way. BenchIT has been developed at the Center for Information Services
and High Performance Computing (ZIH) at the Technische Universität Dresden
and was previously mentioned at [2,3,4]. Sources and results are freely available
at [1].

2 The SGI Altix 3700 Bx2 System

2.1 System Architecture

The SGI [5] Altix 3700 Bx2 is a ccNUMA shared memory system based on
Intel Itanium 2 processors and SGI’s scalable node architecture SN2. In develop-
ing this, special attention has been paid to building a highly scalable computer
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with large bandwidths on all data paths. It provides cache coherency in one
coherent sharing domain (CSD), which runs a Linux kernel and can scale up to
512 processors each. A single processor is operating at 1.5GHz and therefore
a maximum floating point performance of 6 GFLOPS can be reached. More in-
formation, especially about the SGI bricks and application benchmarks, can be
found at [6].

2.2 First Touch Policy

In contrast to former SGI systems like the Origin 3800, the Altix does not move
data near the processor which is using it most. Instead, it uses the so-called first
touch policy which means that data is placed next to the processor that writes
to it first. This may have no effect if the application was parallelized with MPI,
and the data was spread manually. Multithreaded programs usually don’t spread
data because all addresses can be accessed from every thread.

In the worst case, all data is placed in just one memory module when all other
OMP threads want to access it. The remaining bandwidth for each thread would
shrink to b/p, where b is the bandwidth of a single memory module and p the
number of participating processors and threads respectively.

3 Optimizing the DGEMM Call

The cblas dgemm call is defined as shown in Listing 1.1. A description of the
parameters can be found at [7].

void cblas_dgemm (

const enum CBLAS_ORDER Order ,

const enum CBLAS_TRANSPOSE TransA ,

const enum CBLAS_TRANSPOSE TransB ,

const int M, const int N,

const int K, const double alpha ,

const double *A, const int lda ,

const double *B, const int ldb ,

const double beta ,

double *C, const int ldc);

Listing 1.1. cblas dgemm call declaration

A simple cblas dgemm call for a matrix multiplication for two square matrices
of order size would look like this:

cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,

size , size , size , 1.0, A, size , B,

size , 1.0, C, size );

Listing 1.2. Simple matrix multiplication using cblas dgemm
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The following sections will explain how these DGEMM calls can be parallelized
and optimized to scale well up to at least 124 processors on the SGI Altix 3700.

3.1 The BenchIT DGEMM Kernel

As previously mentioned, BenchIT is a measurement environment which helps
to examine a system with microbenchmarks. Some of these execute a sequential
matrix multiplication with different libraries. During each measuring run, which
means one performance measurement for one problem size, the matrices are
allocated and filled with variables. After the measurement the allocated memory
is being released. Therefore, each measurement consists of three steps: initializing
the data, recording the duration of processing, and destroying data. The problem
sizes that are to be measured can be set as parameters for the microbenchmark.

The original hardware vendor mathematical libraries available on SGI Al-
tix 3700 are the Intel Math Kernel Library - MKL 8.0 [8] and the SGI Scientific
Computing Software Library - SCSL 1.6.1.0 [9]. They both nearly reach peak
performance on a single processor (Fig. 1).
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Fig. 1. MKL and SCSL DGEMM performance on Intel Itanium 2

3.2 Library Provided OpenMP Parallelization

The DGEMM calls can easily be parallelized by setting the environment variable
OMP NUM THREADS. This implicit parallelization is provided by both the
MKL and SCSL, using OpenMP to handle different threads in order to calculate
the matrix multiplication faster.

Fig. 2 shows a nearly linear speedup for 2, 4, and 8 processors. The graph
for 16 CPUs in Fig. 3 also shows acceptable performance, but using 32 or 64
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Fig. 2. MKL DGEMM performance on Itanium2 for 1, 2, 4, and 8 CPUs
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Fig. 3. MKL DGEMM performance on Itanium2 for 16, 32, and 64 CPUs

processors will need very large matrices to achieve at least a small speedup, and
can even be slower for small matrices.

The SCSL shows equally discouraging results as the MKL does in Fig. 3,
which is not surprising, as the limiting factor for more than 16 processors is just
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the memory bandwidth due to the bad data distribution. The next subsection
will describe how this performance degradation can easily be corrected for both
libraries.

3.3 Parallelizing the Data Initialization

With the first touch policy (see 2.2) in mind, a better data distribution on
the machine should be implemented. This can be achieved by surrounding the
initialization loop that fills the matrices with an OpenMP pragma. Listing 1.3
shows the corresponding C code. Please note that the data is distributed on
the machine by different threads, each of them running on a different processor.
Therefore the matrices are spread row-wise over the memory modules. Special
attention should be paid to this parallelization in order not to scatter the cache
lines. We did not find a better data distribution by using, for example, different
chunksizes or other scheduling strategies such as dynamic scheduling.

Without having extended knowledge of the DGEMM library, it is impossible
to know which processor will predominantly use which data to further improve
the code in listing 1.3. Thus we can only spread the data over the memory mod-
ules in order to use the whole memory bandwidth of the system as efficiently
as possible without providing a perfect data distribution. However, when us-
ing OpenMP-parallized calculations in a specific program, the data distribution
should be adjusted accordingly.

#pragma omp parallel for schedule (static ,1) \

private(x,index ,max) shared(A,B,C,size)

for(x = 0; x < size; x++) {

index = x * size;

max = index + size;

for(index; index < max; index++) {

A[index] = 30.0;

B[index] = 0.01;

C[index] = 0.0;

}

}

Listing 1.3. Surrounding pragma for initialization loop

As shown in Fig. 4, the improved data distribution speeds up the matrix
multiplication for a large number of processors significantly. The 64 processor
measurement now peaks at about 330GFLOPS instead of 170GFLOPS. As we
have noticed for example for getrf (LAPACK) measurements, the effect can
be much larger for algorithms which are not as cache efficient as DGEMM but
depend more on memory bandwidth. As a welcome side effect, the improved data
distribution has resolved the issue of the striking variability in the performance
of the MKL calls in Fig. 3.



150 D. Hackenberg et al.

32 CPUs MKL 64 CPUs MKL 124 CPUs MKL 124 CPUs SCSL

Matrix Order
0 2,500 5,000 7,500 10,000 12,500 15,000 17,500

G
FL

O
P

S

0

50

100

150

200

250

300

350

400

450

500

550

600

650

Fig. 4. Optimized MKL and SCSL DGEMM performance on Itanium 2
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Fig. 5. Zoom on MKL DGEMM performance for 64 and 124 CPUs

Despite the obvious performance improvement, Fig. 4 also shows that MKL
DGEMM calls with 64 and more processors are still not perfect. Instead, they
show a very unsteady behavior. A more detailed view on the results (Fig. 5)
shows that MKL scales best when the problem size is a multiple of the number
of processors used. For a matrix multiplication running on 124 processors a
difference of one as matrix order can decide whether the achieved performance
is about 300 or 600GFLOPS.
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The SCSL on the other hand does not show this unsteady behavior as the plot
for 124 CPUs represents in Fig. 4. However, the MKL peak performance is signif-
icantly higher, which suggests a further improvement of the MKL DGEMM call.

3.4 Partitioning the DGEMM Call

It was shown that a very good but not constant performance for a DGEMM call
was reached by the MKL. For further optimization, we split up the DGEMM
call to limit the computation of the resulting matrix in the number of columns
and rows to a multiple of the number of processors and threads respectively.
The remaining parts of the resulting matrix are calculated later on in separate
DGEMM calls. Fig. 6 shows how this partitioning is done for a square matrix.
There are four separate matrix multiplications and four corresponding DGEMM
calls to be calculated. optsize equals the original matrix order (size) truncated
to a multiple of the number of processors (p) and diff represents the overlapping
part. Or as a formula: diff = size mod p and optsize = size − diff .

optsize diff
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(
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(
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(
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Fig. 6. Partitioning the matrix multiplication

By splitting up the DGEMM calls we make sure that the largest part of
the calculation (C11 in Fig. 6) is done with optimal performance. Considering
the cubic complexity of the matrix multiplication, the computing effort for the
remaining parts is, especially for larger matrices, very small.

The optimized C code for square matrices is shown in Listing 1.4. The code
for non-square matrices is similar but slightly more sophisticated, as there are
three optimal sizes that need to be calculated.

With this implementation, a maximal performance of about 600GFLOPS for
124 processors is reached and stays nearly at the very same level. This means a
speedup of about 102 in comparison to a single Itanium 2 processor for DGEMM
calls. The performance of the new implementation is dominating the old one
which means that there is nearly no performance loss. A speedup of 2 is reached
for problem sizes N , when N = p ∗ n − 1, where p is the number of processors
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and n is a large natural number. The lowest performance improvement is visible
for problem sizes N = p ∗ n, as they already had a good performance before the
optimization. The overhead for these problem sizes is very small as there are
only three additional integer calculations to be executed.

diff = size % omp_get_max_threads ();

optsize = size - diff;

cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,

optsize , optsize , size , 1.0,

A, size , B, size , one , C, size ); /* main part */

if (diff > 0) /* calculate remaining parts */

{

/* right */

cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,

optsize , diff , size , 1.0, A, size , &(B[optsize ]),

size , one , &(C[optsize]), size );

/* bottom */

cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,

diff , optsize , size , 1.0, &(A[size*optsize]),

size , B, size , one , &(C[size*optsize]), size );

/* bottom right */

cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,

diff , diff , size , 1.0, &(A[size*optsize]),

size , &(B[optsize ]), size , one ,

&(C[size*optsize+optsize]), size );

}

Listing 1.4. Optimized DGEMM call for MKL on SGI Altix

The overall speedup for the optimization described in this section is between
one and two. Figure 7 compares the DGEMM performance on 124 processors
for SCSL and MKL with improved data distribution according to 3.3 and MKL
with additional DGEMM partitioning.

However, a direct optimization within the Intel MKL library might deliver
even higher performance than the implementation described above.

3.5 Reinitializing the Data

Further examinations have revealed that beyond the DGEMM call a lot of time
is used for initializing the matrices, even though this was parallelized. In fact, the
parallel initialization of the three matrices with an order of 13000 takes about
nine seconds on 124 processors. The corresponding write bandwidth is about
31MByte/s. According to SGI [10], the glibc malloc/free calls consume sig-
nificant system time due to memory management overhead. In order to prevent
glibc from using mmap, the environment variables MALLOC TRIM THRESHOLD =-1
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Fig. 7. Optimized MKL and SCSL DGEMM performance for 124 CPUs

and MALLOC MMAP MAX =0 have to be set. Thereby, repeated matrix reinitializa-
tions as in our BenchIT performance measurement runs are about one order of
magnitude faster. However, these time values are unsteady and therefore further
examination is planned.

4 Conclusion

The Altix 3700 combined with the Intel MKL or SGI SCSL provides a fast
computation of DGEMM calls. These calls can easily be parallelized, but special
attention should be paid to the first touch policy. For matrices of order 5000 or
higher, 64 or more CPUs can be used efficiently but native MKL DGEMM calls
show unsteady performance. We have described how to optimize these calls to
offer steady performance and clearly outperform SCSL, mostly independent of
the matrix order and the number of OpenMP threads used.
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