
Using Permutation Patterns for Content-Based
Phylogeny

Md Enamul Karim1, Laxmi Parida2, and Arun Lakhotia1

1 Center for Advanced Computer Studies
University of Louisiana at Lafayette, USA

{mek, arun}@cacs.louisiana.edu
2 Computational Biology Center

IBM T J Watson Research Center
Yorktown Heights, USA
parida@us.ibm.com

Abstract. When the same set of genes appear in different orders on the
chromosomes, they form a permutation pattern. Permutation patterns
have been used to identify potential haplogroups in mammalian data [8].
They also have been successfully used to detect phylogenetic relation-
ships between computer viruses [9]. In this paper we explore the use of
these patterns as a content similarity measure and use this in inferring
phylogenies from genome rearrangement data in polynomial time. The
method uses a function of the cardinality of the set of common maximal
permutation patterns as a proxy for evolutionary “proximity” between
genomes. We introduce Pi-logen, a phylogeny tool based on this method.
We summarize results of feasibility study for this scheme on synthetic
data by (1) content verification and (2) ancestor prediction. We also suc-
cessfully infer phylogenies on series of synthetic data and on chloroplast
gene order of Campanulaceae data.

1 Introduction

Genome rearrangements may occur due to events such as inversions, transposi-
tions, fusions, fissions, insertions or deletions. A major challenge in building a
phylogeny from genome rearrangement data is estimating the common ancestor,
either by reversing the effect of evolutionary events or by some other means.

Early approaches used breakpoint distance [2], [10],[11] to estimate the effect
of evolution. Breakpoints are the adjacent genes present in one genome, but not
in the other and breakpoint distance is the total number of such breakpoints.
Consider two genomes each with five genes as shown below. The two breakpoints
are shown by the arrows and the breakpoint distance between G1 and G2 is two.

G1 = g1 g2 g3 g4 g5
G2 = g1 � g3 g2 � g4 g5

Thus breakpoints in the genome indicate the operations transposition and
inversion. However, one or zero (absent) breakpoint may correspond to multi-
ple such operations. Moreover, computing breakpoint phylogeny is an NP-hard
problem [12]. Also, it is unclear how to suitably adapt it for multiple genomes.

J.C. Rajapakse, L. Wong, and R. Acharya (Eds.): PRIB 2006, LNBI 4146, pp. 115–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 M.E. Karim, L. Parida, and A. Lakhotia

Yet another scheme is the use of reversal distance between two genomes as
an estimate of the evolutionary distance. This has been extensively studied in
literature [1], [14], [15], [16] and the use of signed genes actually renders the
problem polynomial time solvable for a pair of genomes [13].

A reversal in a signed permutation is an operation that takes an interval in a
permutation, reverses the order of the numbers, and changes their signs. In the
following example, G3 is transformed into G′

3 by one reversal of the boxed segment
as shown.

G3 = g5 g1 g3 g2 −g9 g7 −g4 g6 g8
G′

3 = g5 g1 −g7 g9 −g2 −g3 −g4 g6 g8

The reversal distance between two genomes is the minimum number of reversals
required to get from one genome to the other. One reversal can eliminate maxi-
mum two breakpoints. Though reversal on signed permutations requires polyno-
mial time for computation, its generalized version is still an NP hard problem [4].
Reversal distance, like the breakpoint, can underestimate the actual number of
steps that occurred biologically and prefers all the genomes under study to have
same set of genes.

Various other hybrid and heuristic based approaches also have been studied in
literature and the reader is directed to [5] for an excellent summary.

In this paper, we propose a content-similarity based measure to handle gene
order data based on permutation patterns [6]. The content similarity is based on
the nature and location of the permutation patterns that co-occur in the genomes.
Through simulations, we observe that ancestral information is substantially pre-
served through the common permutations of various lengths. Based on this ob-
servation we develop a similarity matrix and use this matrix to estimate ancestor
information and build the phylogeny.Pi-logen is an implementation of this scheme:
it can be used for multi-chromosomal genomes and has a polynomial run time. The
tool is available at www.cacs.louisiana.edu/∼mek8058/Pi-logen.

2 Permutation Patterns

Consider genomes G1 and G2 defined as gene orders:
G1=g11g1g2g3g4g5g6g7g8g12, G2=g2g4g1g3g5g9g7g6g10.
Is there anything common between the two genomes? The following clusters or
groups of genes appear in the two genomes: p1 = {g1, g2, g3, g4}, p2 = {g6, g7}. p1
and p2 are called permutation patterns.

Let G1 and G2, defined on Σ, be of length n each. The number of common per-
mutation patterns in G1 and G2 can be no more than O(n2), since each pattern
can start at location i and end at location (j > i), 1 ≤ i < j ≤ n. In the following
example, we show that O(n2) can actually be obtained. Consider G1 and G2 of
size 4n each as shown.

G1 = g1ag1b
g1cg1d

g2ag2b
g2cg2d

. . . gnagnb
gncgnd

G2 = g1cg1ag1d
g1b

g2cg2ag2d
g2b

. . . gncgnagnd
gnb

These two sequences have O(n2) common permutation patterns given by pij =
∪j

k=i{gka, gkb
, gkc , gkd

}, 1 ≤ i < j ≤ n. The following lemma is easy to see.

Using Permutation Patterns for Content-Based Phylogeny 117

Lemma 1. Given m sequences of length n each, the number of permutation pat-
terns that appear in at least K(≥ 2) sequences is ≤ mn2.

Given K, 2 ≤ K ≤ m and a collection of m sequences (genomes) Gi, 1 ≤ i ≤ m,
let P be the collection of all permutation patterns that appear at least K times.
An m-dimensional array Fp corresponding to a permutation pattern p ∈ P as fol-
lows, can be viewed as Gi’s feature vector, where f(p) is some appropriate function
of p:

Fp[i] =
{

f(p) if p occurs in Gi

0 otherwise

2.1 Dimension Reduction Via Maximality

Choosing the right length of a permutation pattern to extract content information
is tricky. One option is to use all possible lengths, however, this gives a O(n2)-
dimension feature space (n is the length of the genome).

We tackle this problem using maximal permutation patterns which reduces the
dimension to O(n). Maximal permutation patterns cover all the permutation pat-
terns of different granularity. We recall the definition of a maximal permutation
pattern [6].

Definition 1. (maximal) Let P be the collection of all permutation patterns on a
given data. Let p1, p2 ∈ P be such that each occurrence of p2 in the data is covered
by an occurrence of p1 and each occurrence of p1 covers an occurrence of p2, then
p1 is not maximal with respect to p2. A pattern p ∈ P is maximal if there exists no
q ∈ P such that p is not maximal with respect to q.

Consider the following example. G1 = g1g2g3g9g0g4g5g6 , G2 = g3g0g2g9g4g5g7g8
and G3 = g4g9g2g0g3g8g7g5. Let P ′ be the collection of all maximal permutation
patterns, then P ′ = {p1, p2, p3}, where
p1 = {g0, g2, g3, g4, g5, g7, g8, g9} that occurs in G2 and G3;
p2 = {g0, g2, g3, g4, g5, g9} that occurs in G1 and G2;
p3 = {g0, g2, g3, g4, g9} that occurs in G1, G2 and G3.

Other permutation patterns are not in P ′ because they are not maximal w.r.t
either of p1, p2, p3. For example, {g4, g5} is a permutation pattern appearing in
G1 and G2, however, both of its occurrences are covered by two occurrences of p2
making is non maximal.

For the above example, by the definition, Fp1 = [0, 1, 1], Fp2 = [1, 1, 0], Fp3 =
[1, 1, 1]. Now, the following lemma is straightforward to verify.

Lemma 2. (p is not maximal w.r.t. q) ⇒ (Fp = Fq).

The converse of the lemma is not true, since there may be distinct permutation
patterns that occur in the same input sequences.

Each maximal permutation pattern may have two kinds of components: (1)
sequence-preserving and (2) true permutations. For example, in p2, {g0, g2, g3, g9}
is a true permutation and {g4, g5} is a sequence preserving component. In fact a

118 M.E. Karim, L. Parida, and A. Lakhotia

maximal permutation pattern has a clean hierarchical structure that is explored
in [8]. Lets define cnt1(p) to be the ratio of sequence-preserving components and
cnt2(p) to be the ratio of true permutation components in p.

2.2 Similarity Measure

We use the common permutations as an estimate of the similarity between
genomes. Let P ′ be the set of maximal permutation patterns and let P ′

i ⊆ P ′ be
the collection that occurs in genome i. We define similarity between two genomes
i and j, S(i, j) as,

S(i, j) =
∑

(p ∈ P ′
i ∩ P ′

j

OR
p �∈ P ′

i ∪ P ′
j)

(1 − α) cnt1(p) + α cnt2(p) (1)

where 0 ≤ α ≤ 1 is a fixed constant (weighting factor) to take care of the effect
of the internal structure of p, if there exists any.

This similarity measure rewards for the presence in both genomes i and j or
absence in both i and j, and penalizes for being present in one and absent in the
other.

3 Method

In this section we describe the method implemented in Pi-logen: it uses an agglom-
erative hierarchical clustering method [7]. Given the m genomes, in this scheme ev-
ery genome is initially considered a cluster. Then the two genomes with the highest
similarity are combined into a cluster. This iterative procedure continues until a
stopping criterion is fulfilled (a single cluster, say).

Computing pairwise similarity. The pairwise similarity measure for genomes
Gi, 1 ≤ i ≤ m′, for a given quorum K (≤ m′) and a weighting factor 0 ≤ α ≤ 1 is
computed in four steps as follows:

(Step 1) Compute P ′, the collection of all the maximal permutation patterns that
occur in at least K genomes. Let |P ′| be denoted by n. For each pi ∈ P ′, also com-
pute cnt1(pi) and cnt2(pi) (see Section 2.1).
(Step 2) Create m feature vectors of n dimension each as the (m × n) feature
matrix F :

F [i, j] =
{

1 pj occurs in Gi

0 otherwise

This matrix is required for easy updates during the clustering.
(Step 3) Build a temporary (m′ × m′) × n matrix T :

T [i, j, k] =
{

1 if F [i, k] = F [j, k]
0 otherwise

This matrix is not explicitly built but is given here for ease of exposition. Note
that in the next step, this matrix can be temporarily built as and when required.

Using Permutation Patterns for Content-Based Phylogeny 119

(Step 4) Build an m′ × m′ similarity matrix S as follows:

S[i, j] =
n∑

k=1

T [i, j, k] ((1 − α) cnt1(pk) + α cnt2(pk))

This completes the computation of the similarity matrix S.

Hierarchical clustering. The iterative process is applied as follows:

m′ ← m
Compute (m′ × m′) similarity matrix S
Repeat

(a) Let S[p, q] have the largest value in S,
link p, q

(b) Replace row q by (q ∨ p) in F and
recompute row and column q in S accord-
ingly

(c) Remove rowand column p from F and
S

(d) m′ ← (m′ − 1)
Until (m′ = 1)

The hierarchy that is constructed by this process corresponds to the inferred
phylogeny tree. In actual implementation we use either the upper or lower trian-
gular of S because S is symmetric and just ignore row and column p instead of
actually removing them.

Time complexity. Assume that all m genomes are of length N each. Step 1 takes
O(N2m logG log n) where G is the number of distinct genes in the data [6], [8].
Step (2) takes O(mn) time and Step (4) takes O(m2n) time. The algorithm is
iterated O(m) times, each iteration taking O(mn) time. Thus the algorithm takes
O(m2n + N2m log G log n)) time.

4 Feasibility Experiments

The key contributions of our approach is the ancestor content prediction (step (b)
in repeat loop) based on maximal permutation patterns and the similarity measure
(step 3 and 4). The effectiveness of this approach to discover a good phylogeny
depends on the feasibility of these two methods. Hence, we setup two experiments
using synthetic data to verify their feasibility empirically. Synthetic data, in all
the experiments, is produced through simulation of evolution.

For the first experiment we carry out a content verification test. For the second
one we check how well the similar species are grouped together under each internal
nodes (ancestors). We call this measure ”ancestor prediction”. The second exper-
iment also involves estimating a good weighting factor, α.

(1) Content verification: The experiment involves taking a genome of length
n and applying d “evolution” edit operations on it to obtain a set of m evolved

120 M.E. Karim, L. Parida, and A. Lakhotia

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1
#(reversal+transposition)/marker

#m
ax

im
al

 p
er

m
ut

at
io

n
pa

tte
rn

s

recovered actual

n=30

n=100

Fig. 1. Content verification: Number of maximal permutation patterns recovered is plot-
ted against the actual number of permutations in the data. See text for details.

genomes. These operations are reversals and transpositions. The nature and loca-
tion of the operation is picked at random. Then we look for the presence of P ′, the
union of permutation patterns in the m evolved genomes, in the ancestor genome.

The ancestral genome is the identity permutation 0 1 2 3 . . . (n-2) (n-1). We de-
scribe the results for n = 30, 100 and m = 3. Three genomes G1, G2, G3 are ob-
tained by d edit operations (i.e., reversals and transpositions) each on the ancestral
genome.

Let change ratio rd be defined as rd = md/n. The simulations are repeated a
number of times to obtain an average trend and the result is shown in Figure 1.
It plots the number of recovered maximal permutation patterns and the actual
number of them in the ancestor sequence against rd.

Because we use UNION operation to compute ancestral content from descen-
dants, it is likely that we may overestimate ancestral content. We use an evaluation
function ωn that calculates the amount of overestimation in the ancestral content
prediction where the ancestral genome is of length n. The experiment is performed
for l distinct change ratios. If for a specific change ratio, the predicted number of
permutations is on and an of them are actually present, then

ωn =
−1
l

l∑
i=1

an − on

an

In our experiments, we obtained ω30 = 0.083 and ω100 = 0.052. In other words,
on an average, there is an overestimation of only 8% on genomes of length 30 and
an overestimation of only 5% on genomes of length 100.

(2) Ancestor prediction: We created a set of m genomes with n genes each.
These m genomes correspond to the m leaves of a reference phylogeny tree Tr. In
this tree, each descendant is obtained by at most d edit operations (inversion or
transposition). The length of a segment affected by these edit operations is ran-
domly chosen between 1 and 10.

Using Permutation Patterns for Content-Based Phylogeny 121

Our suite of experiments uses m = 16 and n = 120. For each d we produce
five such data sets and run the experiments over a series of α. For comparison
purposes, every time we generated 16 species, we maintained a fixed reference tree,
Tr = (T 1

r , T 2
r) where

T 1
r = (((0, 1)(2, 3)), ((4, 5), (6, 7)))

T 2
r = (((8, 9), (10, 11)), ((12, 13), (14, 15)))

Note that this reference tree is a complete binary tree that has fifteen internal
nodes, including the root node. In each experiment, the topology of the reference
tree is the same, but the edit (or evolution) operations on the branches of the tree
as well as the genomes corresponding to the leaves are different.

Measuring matches of trees. We used the following measure to match differ-
ent trees that have the same set of leaf node labels. Let an internal node(ancestor)
numbered i of tree TX be denoted as T i

X and let D(T i
X) denote the set of leaves

reachable from this node. For example, in the reference tree, D(T 1
r) =

{0, 1, 2, 3, 4, 5, 6, 7}. If two sets D1 and D2 are equal then we have an ancestor
match, formally

δ(D1, D2) =
{

1 if (D1 = D2)
0 otherwise

We use a simple measure Match(TI , Tr) to compare the inferred tree TI with
the reference tree Tr whose values range from values 0 to (m − 1) with (m − 1)
denoting a perfect match and 0 denoting a complete mismatch. Formally,

Match(TI , Tr) =
(m−1)∑

i=1

(m−1)∑
j=1

δ(D(T j
I), D(T i

r))

Estimating α, the weighting factor: A control parameter in this scheme is the
weighting factor α, in the similaritymeasure,S(i, j), of genomes i and j as shown in
Equation (1). We carry out a series of experiments and the results are summarized
in Table (1). We obtain the best values of match for (1 − α) = 0.5 and 0.6. We

Table 1. Match(TI , Tr), for d edit operations and weighting factor α

(1 − α)
d 0 .0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Average
1 7.3 8.9 9.1 10.8 12 12.7 12.1 10.9 10.8 10.9 10.8 10.57
2 9.2 9.3 9.7 10.7 11.7 12.2 12.4 11.5 11.3 10.9 11.1 10.91
3 8.4 8.5 9.5 10.3 11.5 11.2 11.5 10.2 9.7 9.4 9.4 9.96
4 10.1 12.2 12.9 13.5 13.8 14.2 14.2 14.1 13.7 13.4 12.7 13.16
5 9.7 10.6 11.5 12.9 13 13.7 13.5 13.4 12.9 12.2 11.3 12.25
6 12.6 12.8 12.8 13.3 13.8 13.9 14.2 13.7 13.7 13.1 13 13.35
7 13.2 12.9 12.9 13.7 13.8 14.3 14.1 13 13.1 12.9 12.7 13.33
8 13.1 13.3 13.4 14.2 14.2 14.3 14.3 13.4 13.1 14.1 14 13.76

Average 10.45 11.06 11.48 12.43 12.98 13.31 13.29 12.53 12.19 12.11 11.88 12.16

122 M.E. Karim, L. Parida, and A. Lakhotia

Table 2. Match(TI , Tr) for 10 trees with d = 4, (1 − α) = 0.5

14 13 15 14 14 13 12 13 15 13 Average 13.6

verify this with further simulation experiments, whose results are summarized in
Table (2).

Effect of d on reconstruction: Further, we observed that the accuracy of the
tree reconstruction using the measure Match(Tr, TI), usually improves with in-
crease in the number of edit operations d during each “evolution” process. The
results are shown in Table (1), which is not a surprising observation and is in fact
reassuring about our proposed scheme.

The conclusion of the exercise performed in this section is that it is worthwhile
to explore the reconstruction of an underlying phylogeny tree using the set of max-
imal permutation patterns.

5 Experimental Results

Here we discuss our results of using Pi-logen on synthetic data and then on chloro-
plast DNA (cpDNA) of the Campanulaceae family.

5.1 Synthetic Data

We now describe our simulation experiments for inferring phylogeny trees. We
fixed the topology of the reference tree to Tr of the last section. We generated
100 cases: in each we generated 16 genomes (corresponding to the leaves of Tr) by
using randomly chosen values of the number of edit operations d = 1, 2, 3, . . . , 10,
for each evolution step. Given this set of 16 genomes, we then inferred the under-
lying phylogeny tree with Pi-logen using the estimated value of α = 0.4 and 0.5
from the previous section and K = 2 . Figure 2 shows three of the trees inferred by
the algorithm for d = 3. In one of them (leftmost) the reference tree is predicted
exactly.

6
7

4
5

2
3

0
1

12
13

14
15

8
9

10
11

12
13

15

14

8
9

10
11

2
3

0
1

6
7

4
5

10
11

8
9

14
15

12

0
1

13

2
3

4
5

7

6

Fig. 2. Three trees inferred by Pi-logen for d = 3

Using Permutation Patterns for Content-Based Phylogeny 123

n=120

10

11

12

13

14

15

16

17

0 1 2 3 4 5 6 7 8 9
Maximum number of evolutionary operations at each level

N
um

be
r

of
 a

nc
es

to
rs

Actual number of ancestors
Correctly predicted
Average of correctly predicted

Fig. 3. Number of ancestors correctly predicted plotted against the number of edit op-
erations

Figure 3 shows Match(TI , Tr) for the inferred trees for different amount of evo-
lutionary changes d. The average Match(TI , Tr) value for this setup was found
to be 13.85. Recall that for this setup the best value of Match(., .) is 15 (and the
worst is 0). The average number of maximal permutation patterns for this setup
was 471.4 and the average tree computation required 16.13 seconds on a 2.3 GHz
pentium 4 processor.

5.2 Campanulaceae Data

We next use our algorithm on the cpDNA for Campanulaceae data set that has
been also used by [3], [5]. This data set has about 105 genes in 13 extant species.
We found 167 maximal permutation patterns and it took approximate 11 seconds
to generate the phylogeny tree.

Tra

Tob

Pla

Cya

Cod

Tri

Leg

Asy

Mer

Wah

Ade

Cam

Sym

Cam

Tob

Pla

Cya

Cod

Tri

Asy

Leg

Mer

Wah

Sym

Tra

Ade

(a) (b) (c)

Fig. 4. The phylogeny tree inferred using (a) maximal permutation pattern (b) reversal
and (c) breakpoint based methods on the cpDNA of Campanulaceae data set

124 M.E. Karim, L. Parida, and A. Lakhotia

Figure 4 shows three inferred trees: (a) using maximal permutation patterns
(using Pi-logen), (b) using reversal based algorithm [3] and (c) using breakpoint
based algorithm [5] .

The sub-tree (((Tra, Sym), (Cam, Ade)), (Wah, Mar)) in (a) is identical to the
one in (c). The sub-tree (((Cod, Cya), P la), T ob) in (a) is identical to the one in
(b). The sub-tree ((Leg, T ri), Asy) in (a) is different from the one in (b) and (c).
The aligned genomic sequences are shown below:

Leg : 76-56 s1 90-84 s2 91-96 5-8 55-53
Tri : 76-56 s1 89-84 s2 90-96 X 55-53
Asy : 76-57 s1 89-84 s2 90-96 X X

The numbers refer to the gene encodings and s1 and s2 correspond to common
segments (of genes) in the three. One can see that from this alignment, the correct
choice of a subtree on these three genomes is not apparent.

6 Conclusion

We present Pi-logen a content similarity based method for inferring phylogeny in
genome arrangement data. This similarity is based on a well studied regularity
measure, a permutation pattern, that co-occurs in multiple genomes. We summa-
rize our results of an extensive feasibility study of using this scheme by content
verification and ancestor prediction. We also successfully test the scheme on syn-
thetic and cpDNA of Campanulaceae data.

References

1. Kececioglu, J. and Sankoff, D.(1994) Efficient bounds for oriented chromosome in-
version distance. 5th Annual Symposium on Combinatorial Pattern Matching CPM,
807 307-325

2. Blanchette, M., Bourque, G. and Sankoff, D. (1997) Breakpoint phylogenies. In
Genome Informatics Workshop (GIW 1997), (eds. S. Miyano and T. Takagi), pp.
25-34. University Academy Press, Tokyo.

3. Bourque, G. and Pevzner, P. A.(2002) Genome-Scale Evolution: Reconstructing
Gene Orders in the Ancestral Species. Genome Research, 12(1): 26-36, Cold Spring
Harbor Laboratory Press

4. Caprara, A. (1999) Formulations and complexity of multiple sorting by reversals.
Proceedings of the Third Annual International Conference on Computational Molec-
ular Biology RECOMB, (eds. S. Istrail et al.), pp. 8493. ACM Press, Lyon, France.

5. Cosner, M. E. et. al. (2000) An Empirical Comparison of Phylogenetic Methods on
Chloroplast Gene Order Data in Campanulaceae. Comparative Genomics: Empirical
and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evo-
lution of Gene Families, D. Sankoff and J. Nadeau, eds., 99-121, Kluwer Academic
Publishers

6. Eres R., Landau, G. M. and Parida, L. (2003) Combinatorial approach to auto-
matic discovery of cluster patterns. Algorithms in Bioinformatics: Third Interna-
tional Workshop, WABI, Budapest, Hungary, WABI, pp. 139 - 150, Springer-Verlag

7. Kauffman, L. and Rousseeuw, P. (1990) Finding Groups in Data: An Introduction
to Cluster Analysis

Using Permutation Patterns for Content-Based Phylogeny 125

8. Landau, G. M., Parida, L. and Weimann, O. (2005) Using PQ Trees for Comparative
Genomics. Combinatorial Pattern Matching, CPM, Jeju Island, South Korea, CPM,
pp. 128 - 143, Springer-Verlag

9. Karim, M. E., Walenstein, A., Lakhotia, A. and Parida, L. (2005) Malware phy-
logeny generation using permutations of code. European Journal of Computer Vi-
rology 1 1-11

10. Nadeau, J. and Taylor, B. (1984) Lengths of chromosomal segments conserved since
divergence of man and mouse. Proc. Natl.Acad. Sci. PNAS 81 814-818

11. Watterson, G., Ewens, W., Hall, T. and Morgan, A. (1982) The chromosome inver-
sion problem. J. Theor. Biol. 99 1-7

12. Peer, I. and Shamir, R. (1998) The median problems for breakpoints are NP-
complete, Electronic Colloquium on Computational Complexity Technical Report
98-071, http://www.eccc.uni-trier.de/eccc.

13. Hannenhalli, S. and Pevzner, P. (1995) Transforming cabbage into turnip (polyno-
mial algorithm for sorting signed permutations by reversals). Proc. of the 27th An-
nual Symposium on Theory of Computing STOC, 178189

14. Sankoff, D. (1992) Edit distance for genome comparison based on non-local opera-
tions. Proc of the 3rd Annual Symposium on Combinatorial Pattern Matching CPM,
121-135

15. Berman, P. and Hannenhalli, S.(1996) Fast sorting by reversal. 7th Annual Sympo-
sium on Combinatorial Pattern Matching CPM, 1075 168-185

16. Kaplan, H., Shamir, R. and Tarjan,R. (1997) Faster and simpler algorithm for sort-
ing signed per- mutations by reversals. Proc of the 8th Annual ACM-SIAM Sympo-
sium onDiscrete Algorithms SODA, 344-351

	Introduction
	Permutation Patterns
	Dimension Reduction Via Maximality
	Similarity Measure

	Method
	Feasibility Experiments
	Experimental Results
	Synthetic Data
	Campanulaceae Data

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

