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Abstract. In this paper, we investigate the topological properties of synthetic 
RNAs (i.e., functional RNAs synthesized by in vitro selection technique), by 
applying the spectral graph partitioning technique. Our analysis shows that the 
majority of synthetic RNAs possess between two to six vertices and their sec-
ond eigenvalues lie between one and two. In contrast, natural RNA structures 
mostly have nine or ten vertices and are less compact with the second eigen-
value below unity. Our statistical analysis (at 95 percentile) also reveals three 
criteria important for designing novel functional RNAs. Firstly, RNA sequences 
screened from a large random library, with length of 80 nucleotides and 32.31% 
paired bases, are very likely to fold into functional RNAs. Secondly, their pre-
dicted structures should possess two to six vertices inclusively. Thirdly, to 
minimize the number of false positives, a combination of filtering parameters 
should be included, the percentage G/C content of 65.95% and the normalized 
minimum free energy of -0.021 kcal/mol per nucleotide.  

1   Introduction 

Emerging experimental evidence demonstrates that many families of the naturally 
occurring non-coding protein RNA molecules (ncRNAs) found in prokaryotic and 
eukaryotic genomes, are actually integral players of the cellular machinery. The im-
portance of functional ncRNAs participating at multiple regulatory layers and influ-
encing a plethora of vital biological processes like transcriptional regulation, mRNA 
stability and localization, RNA processing and modification, and translation is be-
coming increasingly apparent [1-3]. 

Two recent and notable discoveries of regulatory ncRNAs, riboswitches [4;5] and 
microRNAs [6-8], further highlight their vital regulatory roles in many organisms. 
The former are highly conserved RNA regulatory elements embedded within the 5' 
untranslated region of biosynthesis genes or operons, and cis-modulate their expres-
sions upon binding to metabolite (e.g., guanine and thiamine pyrophosphate), without 
involving protein cofactors. The latter are transcribed from the endogenous transcripts 
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and subsequently processed by the Dicer enzyme to generate ~22 nucleotides mature 
microRNAs. These microRNAs bind to specific complementary sites on the mRNA 
transcripts to down-regulate expression of targeted genes either by inhibiting protein 
synthesis or causing degradation of their target mRNAs [9]. Comprehensive pheno-
typic and gene expression analysis have also suggested an intrinsic association be-
tween oncogensis and human microRNAs found in the tumor tissues [10-12].  

"In vitro selection" or commonly known as "Systematic Evolution of Ligands by 
Exponential Enrichment (SELEX)", is an iterative combinatorial chemistry method 
[13]. Through this technique, many novel functional ncRNAs with specific physical 
or chemical properties can be isolated and preferentially enriched from a large >1015 
random RNA sequences library. Synthetic counterparts of natural functional ncRNAs 
include the target-binding RNA molecules (i.e., aptamers) that bind to a desired me-
tabolite (such as ligands, antibiotics, peptides, and whole viruses) with nano-molar 
affinity, and the allosteric/catalytic RNAs (i.e., ribozymes) that trans-cleave the target 
mRNAs upon recognition of specific sequence patterns [14;15]. SELEX has been 
widely adopted as an important research and development tool in the fields of analyti-
cal, diagnostic, and therapeutic applications for synthesizing molecular switches and 
sensors [16;17], and therapeutic agents [18]. 

The functional activities of both synthetic and natural ncRNAs are pre-determined 
by their distinct local RNA secondary structures. Their capacity to perform ligand-
binding, complementary base pairing, and catalytic reactions, are possible due to the 
conformational flexibility, modularity, and versatility of RNA molecules [19;20]. For 
instance, stem-loop structures present in the 5' untranslated regions of eukaryotic 
genomes may occlude association of the 40S ribosomal subunit with the mRNA to 
inhibit the translation initiation [21], while those present in bacteria can attenuate the 
mRNA degradation rate through inhibiting the nuclease activity [22]. Interestingly, 
hairpin structures discovered in the protein-coding regions of E. coli, S. typhi, and S. 
cerevisiae are also involved in the widespread regulation of RNA processing, mRNA 
stability, and translational control [23]. 

"Spectral graph partitioning" is a promising technique for analyzing RNA secon-
dary structures, while providing an efficient organization of the structural folds using 
their topological properties [19;20]. The underlying principle is that the unique topol-
ogy of RNA structural motifs (including the loops of hairpin, internal, bulge, and 
multi-branch, as well as stems) corresponds uniquely to a planar tree-graph represen-
tation, where the vertices are connected by incident edges. Applying the concept of 
spectral graph partitioning derived from the field of domain decomposition in parallel 
computing [24], the degree of connectivity of the tree-graph is represented by the 
Laplacian matrix. From which, the matrix's mathematical properties such as its asso-
ciated eigenvalues and the number of vertices can be derived for characterizing and 
screening RNA secondary structures. 

Since its introduction in 2003 [19;20], bioinformatics applications include the pre-
diction of multiple mutations to disrupt motifs in riboswitches [25], the prediction of 
RNA conformational switch by mutation [26;27], the search and analysis of RNA 
secondary structures [28], the classification of RNA coarse-grained tree-graph struc-
tures [29;30], and lastly for systematically partitioning complex RNA structures into 
simpler fragments with maximal decoupling between them [20]. Together, they un-
derscore the potential of spectral graph partitioning as an invaluable in silico tool to 
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elucidate the topological patterns hidden in genomic sequences and to offer a tremen-
dous opportunity for an enhanced understanding of functional genomics.   

To the best of authors' knowledge, the application of spectral graph partitioning on 
functional RNAs generated by SELEX, has not been systematically explored. Moti-
vated by this challenge, our contribution in this paper, is a computational study based 
on the recently published spectral graph partitioning technique, for characterizing and 
analysis of in vitro synthesized RNAs. To date, the Aptamer Database [31] archives 
over 3,000 DNA/RNA sequences (across 300+ articles as of October 2005) of aptam-
ers and synthetic ribozymes spanning diverse functions, that have been synthesized by 
in vitro selection method. This comprehensive and valuable knowledge-based re-
source, which is updated monthly, provides a unique opportunity and fertile ground 
for characterizing synthetic RNA's two-dimensional structures by applying new con-
ceptual and mathematical approaches. A secondary motivation is, through this inves-
tigation, the prediction, screening, and engineering of novel functional ncRNA mole-
cules in silico can be further advanced.  

This paper is organized as follows. Section 2 describes the methods and materials. 
It introduces briefly the basic principles of predicting RNA secondary structure, the 
graph theoretic formalisms for RNA structures using tree-graph representation and 
Laplacian matrix, and the technique of spectral graph partitioning. In section 3, the 
results for 1,943 synthetic RNA sequences are presented and discussed. Finally, sec-
tion 4 concludes with a discussion on the notable findings of the proposed methodol-
ogy, and avenues for future research are outlined. 

2   Methods and Materials 

A typical experimental setup using spectral graph partitioning analysis is illustrated in 
Fig. 1. Briefly, through in vitro selection, a small RNA aptamer was isolated that 
bound with nano-molar affinity to human transcription factor NF-kappa B [32]. This 
transcription factor is a key regulator of inflammation, HIV-1 gene expression, and 
apoptosis. Experimental evidence showed binding of the small RNA aptamer effec-
tively inhibited the ability of NF-kappa B to bind duplex DNA, performing as an anti-
NF-kappa B [32]. 

Given the primary sequence of the anti-NF-kappa B described in FASTA format, 
(step A) its optimal secondary structure is predicted using RNAfold [33] (or mfold 
prediction server [34;35]). This program computes the lowest minimum free energy 
of folding (MFE) for the most favorable RNA conformation, based on the Zuker's 
energy minimization algorithm [34;35] and the experimentally derived Turner's en-
ergy rules [36]. Default parameters and temperature setting of 37°C were used 
throughout this study to ensure consistency. The output of RNAfold is a FASTA-like 
format appended with the optimal structure in Vienna dot-bracket notation with the 
base pairs and unpaired bases represented by brackets '( )' and dots '.' [33], respec-
tively and the minimum free energy. In this example, the RNA secondary structure 
predicted by RNAfold has three hairpin loops, 5' and 3' termini, an internal loop, and 
two multi-branch loops − all of these stabilized by six stems. After applying the pair 
of vertex-edge rules (step B) [29;30;37], the structure in bracket notation is converted 
into a planar tree-graph consisting of six arbitrarily labeled vertices (•) connected by 
five unweighted edges (—). Finally, (step C) the six by six Laplacian matrix and its 
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corresponding eigenvalue spectrum are computed using the spectral graph partitioning 
technique. Of interest is the second eigenvalue λ2 = 0.438447 (indicated by ←) that 
describes the compactness of the RNA structure [25;28]. This value increases mono-
tonically when the tree-graph topology has greater degree of compactness. 

 

Fig. 1. Methodology for spectral graph partitioning analysis of in vitro synthesized RNA struc-
tural folding. Our predicted structure differs in shape from the one published [32], though both 
are predicted by Zuker's energy minimization algorithm. Possibly the cited work was using 
mulfold, an older Macintosh version of mfold with previous energy rules or different default 
settings. ←, the second eigenvalue λ2. 

2.1   Representing RNA Secondary Structure as Planar Tree-Graphs 

The primary structure of a linear RNA chain molecule is the nucleotide sequence s = 
s1s2 …si …sL, and runs in the direction 5' → 3' terminus. L is the number of nucleotides 
and si ∈ ∑ = (A, C, G, U) is the biochemical nucleotide at the ith position. The RNA 
molecule s folds upon itself relatively rapid into a two-dimensional RNA secondary 
structure S [38]. The structure S is stabilized by the energetic interactions of Watson-
Crick G≡C and A=U, wobble G=U, and other non-canonical base pairings.  

A planar RNA secondary structure S depicted in Fig. 2, is mathematically defined 
by a set of base pairings (i, j) ∈ S connecting bases si and sj, where i < j [39]. Given (i, 
j) and (k, l) ∈ S, a nucleotide can base pair to at most one other nucleotide i.e., i = k 
⇔  j = l. A set of ∆ ∈ Z+ consecutive base pairs defines a stem for stabilizing the 
structure against thermal fluctuations. In addition, the number of unpaired nucleotides 
between paired si and sj should at most be θ ∈ Z+ i.e., i < j + θ. Otherwise, the  
structural motif is considered as an unpaired-loop of multi-branch, bulge, hairpin, or 
internal. Though unpaired-loops tend to destabilize the structures, they are generally 
necessary for the biological functions. For example, the cloverleaf structure of tRNA 
performs a critical role in transporting amino acids to the site of polypeptide synthesis 
[40]. A set of motifs containing nested base pairs i.e., i < k < j ⇔ i < l < j are classi-
fied as pseudoknots. These pseudoknots are excluded in this spectral graph partition-
ing analysis, as both RNAfold and mfold assume the base pairs are non-crossing i.e., 
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they disallow i < k < j < l  and k < i < l < j for reasons of computational complexity. 
Illustrated in Fig. 2, the native RNA secondary structure consists of two hairpin loops, 
an internal loop, a bulge loop, a multi-branch loop, six stems, and a pseudoknot.  

Hairpin loop Internal loop 

Bulge loop 

Multi-branch 
loop 

Single-Stranded

Stem

5' 

3' 
Pseudoknot

 

Fig. 2. Planar schematic of a RNA secondary structure and its embedded motifs. Hairpin loop, 
folds upon itself; Internal loop, an unpaired region between two stems due to mismatched 
(e.g., AG and CU) or unpaired bases; Bulge loop, an asymmetrical internal loop formed from 
one strand; Multi-branch loop or junction, more than two stems coincide with some unpaired 
bases; Stem, a base paired region; Pseudoknot, a long-range interaction between an upstream 
exposed loop (e.g., bulge loop) and downstream region. Short and long dashed lines indicate 
unpaired nucleotides and paired bases, respectively. (•) and (—) represent vertex and edge, 
respectively after processing through the pair of vertex-edge rules [29;30;37].  

A RNA secondary structure S is represented as a RNA planar tree-graph G = (V, E) 
after processing through the following pair of vertex-edge rules [29;30;37]. Referring 
to Fig. 2, the predicted RNA structure (ignoring the pseudoknot as it is not predicted 
by RNAfold and mfold) is represented as a planar tree-graph consisting of six vertices 
(•) and five edges (—).  

1. Vertex, V (•) represents a set of θ ≥ 1 mismatched nucleotides or unmatched pairs 
of bases that of a bulge loop, hairpin loop, internal loop, the 5' and 3' unpaired ter-
mini, and the multi-branch loop. In general, vertices are arbitrarily labeled in the 
direction 5' → 3' terminus. 

2. Edge, E (—) denotes a RNA stem having ∆ ≥ 2 consecutive complementary pairs 
stabilized by the canonical Watson-Crick G≡C and A=U, and wobble G=U. Edges 
may optionally be weighted by the frequency of paired bases, or the percentage 
G/C content, or the minimum free energy (MFE) of the helical duplex. 

2.2   Spectral Graph Partitioning Theory of RNA Secondary Structures 

A RNA planar tree-graph G = (V, E) is a mathematical formalism composed of n 
vertices vi ∈ V, i = (1, 2,…,|V|) connected by m incident undirected edges (vi, vj) ∈ E, 
each of which is assigned an edge weight Eij. Without loss of generality, edges are 



86 S.K.L. Ng and S.K. Mishra 

unweighted i.e., Eij = 1 [25;28]. The tree-graph G is uniquely represented by the 
Laplacian matrix L(G)n×n as defined in Eq. (1). 

( , ) ( ) ( ) ( ) .G V E G G G= ↔ = −L D A  (1) 

Where D(G)n×n and A(G)n×n are known as the degree and adjacency matrices of the 
tree-graph G, respectively. The diagonal elements dij of D(G)n×n specify the degree or 
the minimum number of incident edges that each vertex vi connects with the other 
vertices vj ≠ vi, denoted by deg(vi). In relation to a RNA secondary structure, dij takes 
on values of deg(vi) = 1 for hairpin loop, as well as 5' and 3' unpaired termini; deg(vi) 
= 2 for internal and bulge loops; and deg(vi) > 2 for multi-branch loop. The off-
diagonal elements aij of A(G)n×n specify whether there exists an incident edge con-
necting the vertices vi and vj. If vi and vj are adjacent aij = 1, otherwise aij = 0.  

L(G)n×n is a symmetric matrix having each of its rows and columns indexed by V, 
and individually total to zero. The value of element lij is given by the difference be-
tween dij and aij, as defined in Eq. (2). It specifies the degree of connectivity between 
the vertices vi and vj of the tree-graph G.  
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Applying the "Eigen-decomposition theorem" onto L(G)n×n, as shown in Eq. (3), 

[ ]( ) = ( ) .G Gλ λ⇔ − =L X X L I X O  (3) 

Where eigenvalue λ is some scalar of L(G)n×n with its corresponding eigenvec-
tor 0n∈ℜ ≠X . I and O are the identity and null matrices. Equation (3) has non-trivial 
solutions if and only if the condition given in Eq. (4) is satisfied,  

det ( ) 0.G λ− =L I  (4) 

Solving the nth-degree characteristic polynomial in Eq. (4) generates the entire set 
of ordered eigenvalues λ1 ≤ λ2 ≤ …≤ λn. This set is the matrix's eigenvalue spectrum 
quantifying the connectivity as well as characterizing the graph similarity. Generally, 
L(G) is always positive semi-definite such that the first eigenvalue λ1 = 0 and those of 
higher orders λk > 1 ∈ +ℜ [25;28]. Of interest is the second (also known as the Fiedler) 
eigenvalue λ2, it represents mathematically the algebraic connectivity of the tree-
graph G. In relation to the RNA secondary structure, λ2 defines the compactness of the 
RNA topology at the coarsest scale [25;28]. RNA structures having similar values of 
λ2 tend to be similar in topologies. Generally, the value of λ2 increases monotonically 
with greater compactness in the RNA structure. Large values correspond to vertices of 
high degree that are in close proximity, while small values for more equally dispersed 
edge set. Maximum value of λ2 is either 1 or 2 for an n > 2 perfectly connected star-
shaped tree-graph or for n = 2 linear tree-graph, respectively [25;28].  
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3   Results and Discussion 

We have retrieved 3,498 DNA/RNA sequences spanning across 308 articles from the 
Aptamer Database [31], as of October 2005. Among them, 1,943 RNA sequences 
gathered from 124 articles were used for investigation in the spectral graph partition-
ing analysis. Fig. 3 summarizes the topological properties of novel functional RNAs 
generated by in vitro selection method (1,943 synthetic) and of naturally occurring 
ones (200 natural) [29;30].  

 

Fig. 3. Notched box-plots for the number of vertices V and second eigenvalue λ2 of the 1,943 
synthetic and 200 natural RNAs sequences [29;30]. Non-overlapping notches indicate that their 
medians do differ at the 5% significance level. Box lines indicate the lower quartile, median, 
and upper quartile. Whisker lines extend to the most extreme data value or at most 1.5 times the 
box height. •, 95 percentile. +, outlier. 

At 95 percentile, 1,943 synthetic RNAs possess between two to six vertices, and 
their values of λ2 lie between the interval one and two. In contrast, those of natural 
RNA structures have higher number of vertices ranging nine to ten and lower λ2 < 1. 
Exceptions include the transfer RNA, which has a cloverleaf secondary structure 
consisting of either five or six vertices connected by four stems, but with λ2 = 0.5188 
[29;30]. According to the Mann-Whitney Rank Sum Test at α = 0.05, there are statis-
tically significant differences (p-values ≤ 0.001) in V and λ2 between the two classes 
of RNAs. This finding suggests that the synthetic RNA structures have relatively 
stronger degree of connectivity per fewer numbers of vertices than natural RNA  
structures. 

Table 1 summarizes the abbreviations and definitions of the seven measures inves-
tigated. Fig. 4 depicts how the non-topological properties of the primary sequence 
(i.e., L and G/C) and of the secondary structure (i.e., PB and MFE) are correlated with 
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varying degrees to the topological measures (i.e., E, V, and λ2) for the 1,943 synthetic 
functional RNAs generated by in vitro selection method.  

Table 1. Abbreviations and definitions of seven measures for the 1,943 synthetic RNAs 

Abbreviation Definition 
L Length of RNA sequence s, nucleotides. 
G/C Percentage G/C content in the RNA sequence s. 
PB Percentage paired bases in the RNA structure S. 
MFE Normalized Minimum Free Energy (MFE) of S, kcal/mol per nucleotide. 
E Number of edges in the RNA tree-graph G. 
V Number of vertices in the RNA tree-graph G. 
λ2 Second (or the Fiedler) eigenvalue of L(G). 

 

Fig. 4. Correlations between the seven measures for the 1,943 synthetic RNAs. Data for E is 
not shown, as graphs of E and V are identical. E correlates perfectly to V i.e., E = V − 1 in the 
planar tree-graph G, as pseudoknots are not considered in this work. (Upper and lower diago-
nals) scatter plots; (Diagonal) histogram bar plot. 

To elucidate the correlation among the statistics, Table 2 enumerates the values of 
Pearson correlation coefficient Cp(f, g) defined in Eq. (5) between measures f and g in 
Table 1, 95th percentile, and p-values. We have cross-validated the trends of Cp 
matched similarly to those computed using spearman-rank Cs (ranks-based) and 
Kendall's Ck (relative ranks-based) correlation metrics (data not shown). Existing 
empirical studies have shown that Cp assumes a pseudo-Gaussian distribution of the 
dataset, and is not robust to outliers and to non-Gaussian distributions. In contrast, the 
non-parametric Cs and Ck are robust against non-guassian distributed outliers. 

( ) ( )
( , ) .p

f f g g
C f g

f f g g

− ⋅ −=
− −

 
 

(5) 
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Table 2. Pearson correlation coefficients Cp(f, g) between the measures f and g, 95th percentile, 
and p-values. (Upper diagonal) -1.0 ≤ Cp ≤ 1.0, 1.0 for trend identical, -1.0 for perfect 
opposite, and 0.0 for complete independence. Bold, 0.5 ≤ |Cp| strongly correlated. Italic, 0.4 ≤ 
|Cp| < 0.5 weakly correlated; (Diagonal) 95th percentile; (Lower diagonal) two-tailed p-values 
using the Student's t distribution. p-value < 0.05, statistically significant at 95% confidence. 

Cp( f, g) L G/C PB MFE E V λ2 

L 80.0000 0.0181 0.3882 -0.4258 0.8342 0.8342 -0.6779 
G/C 4.51E-01 65.9505 0.1689 -0.4530 0.0763 0.0763 -0.0549 
PB 1.02E-63 1.33E-12 0.3231 -0.7178 0.4366 0.4366 -0.4761 
MFE 1.30E-77 7.92E-89 9.19E-276 -0.0209 -0.4061 -0.4061 0.3897 
E 0.00E+00 1.44E-03 5.90E-82 4.00E-70 5.0000 1.0000 -0.8715 
V 0.00E+00 1.44E-03 5.90E-82 4.00E-70 0.00E+00 6.0000 -0.8715 
λ2 1.25E-234 2.21E-02 3.57E-99 3.14E-64 0.00E+00 0.00E+00 2.0000 

Notable observations on the relationships can be concluded as follows. Firstly, the 
measure L is weakly and inversely correlated to the MFE at -0.4258, as well as 
strongly correlated to the E and V at 0.8342, and to λ2

 at -0.6779. These correlations 
are statistically significant (p-values < 0.05) showing that a reduction in the length of 
synthetic RNA (i.e., its primary sequence has fewer nucleotides) weakens the thermo-
stability of its structural folding, due to the fewer degree of freedom to form edges 
(i.e., stems) and vertices (i.e., loops). Consequently, this shifts λ2 upwards for in-
creased degree of compactness in the synthetic RNA structural topology at the coars-
est scale. 

Secondly, the statistic G/C is also weakly and negatively correlated to the MFE at -
0.4530. This statistically significant observation (p-value < 0.05) is to be expected 
since each of the G≡C base pair has lower energy than the other possible base pair-
ings, resulting in higher thermo-stability of the RNA structure. However, our analysis 
shows that the G/C measure is linearly independent to the others |Cp(G/C, g ≠ MFE)| 
< 0.2. Possibly, a primary sequence of synthetic RNA possessing higher percentage of 
G/C does not necessarily have greater number of base pairs, as the G/C nucleotides 
may be distributed in a manner that they do not interact with each other energetically. 
Consequently, these synthetic RNAs molecules fold into structures that may neither 
necessarily have more number of vertices V (i.e., loops) nor display a lesser degree of 
compactness λ2 in their tree-graph topologies.  

Thirdly, the structural measure PB is strongly and negatively correlated to the MFE 
at -0.7178, weakly related to the E and V at 0.4366, and to the λ2 at -0.4761. These 
statistically significant findings (p-values < 0.05) are also to be expected since a syn-
thetic RNA secondary structure having greater number of complementary base pairs, 
would structurally be more stable against thermal fluctuations, resulting in lower 
MFE than others. However, our statistical analysis suggests that more complementary 
pairing present in the structure does not necessarily give rise to increased likelihood 
of forming stems and vertices, and corresponding reduced degree of compactness λ2. 

Fourthly, the structural measure MFE is highly and negatively correlated to the PB 
at -0.7178 and weakly correlated to the rest except λ2 at 0.3897. This statistically 
significant observation implies that a highly stable synthetic RNA structure does not 
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necessarily possess a compact topology, unless the degree of compactness provides 
the capacity to be biologically relevant to the RNA molecule's function.  

Lastly, both the topological measures E and V are perfectly correlated, affirming 
the validity of the linear relationship E = V − 1 when pseudoknots are not considered. 
E and V are strongly and negatively correlated to λ2 at -0.8715. This finding (p-value 
< 0.05) suggests that the degree of compactness of synthetic RNAs vary inversely to 
the number of vertices and stems. A possible explanation is that each vertex deletion 
tends to shift λ2 upwards towards the maximum value of one or two as the linear tree-
graph attains greater degree of compactness, and vice-versa [24]. 

4   Conclusion 

The main contribution of this paper is, we have characterized existing functional 
RNAs generated by in vitro selection method (SELEX) using a recently published 
spectral graph partitioning technique. This computational approach operates inde-
pendently of the folding algorithms, but relies on and is limited by their predictions. 
For example, pseudoknots were not analyzed in this work, as RNAfold does not pre-
dict such motifs.  

Our topological and in-depth statistical analysis reveals three criteria important for 
the functionality of synthetic RNAs generated by SELEX, which can be adopted as 
part of an in silico design methodology. Firstly, the length of RNA sequence L and the 
percentage paired bases PB are two critical non-topological parameters for screening 
likely functional RNA sequences from a large random RNA sequence libraries. At the 
95 percentile, RNA sequences with L = 80 nucleotides and can fold with approxi-
mately 32.31% base pairings, are probable targets to begin with. Secondly, the pre-
dicted RNA structure should possess two to six vertices inclusively. Putative  
functional RNAs with second eigenvalue λ2 deviating furthest from the wild-type λ2 
requires further inspection, especially those that occur rarely and possess unique 
traits. λ2 can be regarded as an effective similarity measure between a library of RNA 
structures and for discriminating them against a particular fold. Thirdly, to minimize 
the number of false positives, a combination of filtering parameters should be in-
cluded, the percentage G/C content of 65.95% and the normalized minimum free 
energy MFE of -0.021 kcal/mol per nucleotide, at the 95 percentile. This last criterion 
is highly applicable in rare cases of multiple RNA structures possessing identical 
values of λ2. To resolve the ambiguity, their sequence compositions (e.g., the percent-
age G/C content) and structural properties (e.g., the MFE) can be used to distinguish 
them. 

Spectral graph partitioning is a promising technique for extracting the topological 
properties of the detailed RNA structures. This reduced spatial information along with 
existing characteristics at both the structural and sequence levels are suitable for high-
throughput prediction, screening, and engineering of novel functional RNA mole-
cules. Part of our ongoing research is to investigate their topological properties, in 
order to gain important insights into several open questions. Firstly, whether in vitro 
synthesized RNA sequences belonging to different functional classes are well con-
served structurally and topologically. Secondly, whether they possess unique topo-
logical characteristics in comparison to randomized RNA sequences. 
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