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Abstract. Live Sequence Charts (LSCs) are an established visual for-
malism for requirements in formal, model-based development, in par-
ticular aiming at formal verification of the model. The model-checking
problem for LSCs is principally long solved as each LSC has an equiva-
lent LTL formula, but even for moderate sized LSCs the formulae grow
prohibitively large. In this paper we elaborate on practically relevant sub-
classes of LSCs, namely bonded and time bounded, which don’t require
the full power of LTL model-checking. For bonded LSCs, a combination
of observer automaton and fixed small liveness property and for addi-
tionally time bounded LSCs reachability checking is sufficient.

1 Introduction

Scenario-based approaches in general and Live Sequence Charts (LSCs) [1] in
particular have shown adequate for the formal specification of inter-object re-
quirements on distributed systems in formal, model-based development(cf. [2] for
references). That is, requirements on a system under design are formally spec-
ified by LSCs before a model of the system is built. Model-checking can then
automatically check whether the model satisfies the requirements to find errors
early, before the actual implementation.

The model-checking problem of LSCs vs. Kripke structures is principally
solved since universal LSCs translate to equivalent LTL formulae [3] and ex-
istential LSCs translate to observer automata, i.e. 1-acceptance [4], or CTL∗

thus corresponding model-checkers can directly be employed. Accordingly there
are proof-of-concept results for the formal verification of LSCs against State-
mate [5,6] and UML [7,8] models. In particular with the industrial case study
considered in [5] it turned out that the LTL formulae grow large even for LSCs
of moderate size. That is, formal verification becomes expensive due to the size
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of the requirements (for details cf. [3,9]). Our subject is efficient formal verifi-
cation of LSCs. We identify two sub-classes of LSCs for which techniques that
are faster but less powerful than LTL model-checking are sufficient, or help in
finding errors fast.

Related Work. Model-checking LSCs against system models has been first
investigated by [10]. They manually derive a selection of small, local LTL prop-
erties from an LSC and check whether they hold for a model of a bus protocol.
The limited size of the checked properties didn’t raise the need to consider more
efficient procedures. In [11], model-checking is used as a technique to obtain sat-
isfying paths for a set of LSCs in the context of playing-out LSCs [12]. Their
representation of LSCs employs one automaton per instance-line. Similarly, [13]
check a set of LSCs for consistency using a CSP semantics of LSCs, namely one
CSP process per instance line, and the FDR model-checker. Both are particu-
larly tailored for checking LSCs against each other and don’t discuss the relation
to general system model. Furthermore, both discuss only a limited subset of the
dialect [5], in particular excluding time. We use the term “LSC verification” sim-
ilar to, for instance, “LTL verification” which means checking a formula against
a model. The observer based approach for LSC model-checking has been intro-
duced in [14] and further studied in the context of Symbolic Timing Diagrams
(STDs) in [15]. Our results slightly extend [15] since we have to discuss the case
of non-deterministic automata which are needed for non-bonded LSCs while
deterministic automata are sufficient for the scope of [15].

The remainder of the paper is structured as follows. In Sect. 2 we briefly
recall LSCs. Section 3 introduces Timed Symbolic Automata (TSA), the seman-
tical foundation of LSCs, together with the notions of determinism and time
boundedness. It provides the basic strategy for efficient verification of TSAs.
The application to LSC model-checking is discussed in Sect. 4. Section 5 sup-
plies experimental results and Sect. 6 concludes.

2 Live Sequence Charts

The visual formalism LSCs has been introduced in [1] to overcome several short-
comings of the well-known Message Sequence Charts (MSC) wrt. a formal usage.

Table 1. Modalities of LSC elements and their semantics

mandatory/hot/universal possible/cold/existential
chart . . . each activating system run

suffix adheres to scenario
. . . there is an activating and ad-
hering system run suffix

location progress enforced progress not enforced
condition/
local invar.

system violates LSC if condition
doesn’t hold

system satisfies LSC if condition
doesn’t hold

message reception has to be observed reception needn’t be observed
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It is a conservative extension of basic MSCs that gains increased expressive power
by adding modalities to charts, locations, and elements (cf. Table 1).

The mode of a chart can be either existential or universal. An existential
LSC is satisfied by a system if there is at least one system run adhering to the
LSC. Conversely, a universal LSC is satisfied if all runs of the system adhere
to it. A location’s mode, either hot or cold, expresses liveness requirements. An
element following a hot location has to be observed finally in order to satisfy
the LSC. A cold location doesn’t enforce progress. Conditions are, in contrast to
MSCs, semantically relevant in LSCs and have a mode. If a mandatory (or hot)
condition isn’t satisfied when supposed to according to the scenario, the chart
is violated. If a possible (or cold) condition isn’t satisfied, the whole chart is
immediately considered satisfied. It is legally exited. This interpretation applies
alike to local invariants. They have been introduced in [5] to state requirements
on spans of time instead of only single points in time as with conditions. The
mode of a message, either mandatory (hot) or possible (cold), denotes whether
the message may get lost. The reception of a hot message has to be observed to
satisfy the LSC, for a cold message it needn’t be observed.

In addition to modes, LSCs add to MSCs means that characterise the situ-
ations to which the scenario applies, i.e. its activation. Activation in general
is characterised by a prefix of the LSC called pre-chart meaning whenever the
pre-chart is observed then the system shall adhere to the rest of the LSC, the
main-chart. The activation condition is a shortcut for pre-charts with a single
condition only. For formal verification, [5] adds the activation mode – one of
initial, invariant, or iterative – to further restrict activation. Initial LSCs may
only be activated in initial system states. Iterative LSCs disregard violations
of reactivating LSCs, i.e. LSCs that comprise a sequence that adheres to the
LSC’s own pre-chart again. Furthermore, both [5,12] have added the notion of
strict vs. tolerant (or weak) interpretation. The strict interpretation requires
that messages used in the chart don’t occur at other points in time than the
ones given by the LSC. The tolerant interpretation ignores additional messages.
For example, a system sending red on once again before expiration of the timer
would not satisfy the LSC from Fig. 1 strictly.

Fig. 1(a) is a simplified requirement on a level crossing controller. It is ac-
tivated when the crossing controller receives an asynchronous message ‘secreq’
from the environment. The crossing controller shall finally, as indicated by the
solid segment of its instance line, start the lights and barrier controllers by
synchronous messages ‘lights on’ and ‘barrier down’. The timing interval [5, 15]
requires lowering the barrier to take between 5 and 15 units of time and the hot
local invariant ¬MvUp requires the barrier not to move up from ‘barrier down’
reception up to and including the point in time where ‘barrier ok ’ is sent. If the
traffic lights controller is not operational when receiving ‘lights on’, the LSC is
legally exited at the cold condition ‘Operational ’. Otherwise timer t is started.
Timeout of t shall occur when sending ‘lights ok ’, i.e. switching on the lights
shall take exactly 7 units of time. The order of ‘lights ok ’ and ‘barrier ok ’ is ex-
plicitly relaxed by enclosing them in a coregion as indicated by the dotted line.
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LSC: sec xing
AC: true
AM: invariant

Environment LightsCtrl

t(7)

Operational

t

CrossingCtrl BarrierCtrl

[5, 15]

secreq

lights on barrier down

red on

lights ok

barrier ok

¬MvUp

done

(a) LSC for securing a level crossing.

q0l on, b dn

q1 b ok, red, ¬Up

q2 red q3
b ok, l ok, ¬Up

q4l ok q5 b ok, ¬Up

q6
donesnd

q7donercv

q8true qexittrue

l on, b dn, Op {c0, c1}

l on, b dn, ¬Op

red, b ok, ¬Up

b ok, red, ¬Up
[5 ≤ c1 ≤ 15]

(1)
(2) l ok, b ok, ¬Up

[c0 = 7]
(3)

red

l ok [c0 = 7]
b ok, ¬Up
[5 ≤ c1 ≤ 15]

donesnd

donercv

(1) red, b ok, ¬Up [5 ≤ c1 ≤ 15]
(2) b ok, l ok, ¬Up [5 ≤ c1 ≤ 15]
(3) l ok, b ok, ¬Up [c0 = 7, 5 ≤ c1 ≤ 15]

(b) sec xing’s body TSA (Sect.3).

Fig. 1. For brevity, overlining denotes negation and comma denotes conjunction in
Fig. 1(b). E.g. q0’s loop fires if neither ‘lights on’ nor ‘barrier down’ are observed.

The messages may occur in any order, even simultaneously. When both have
been received, the crossing controller may send ‘done’ back to the environment
as no hot location enforces progress at this position.

We postpone recalling the formal semantics of LSC following [5] to Sect. 4,
thus after the introduction of Timed Symbolic Automata in Sect. 3. Note that
we discuss the LSC dialect of [5] which is tailored for the application domain of
formal verification in contrast to the play-engine dialect of [12]. This is not an
exclusive choice as both share a large common sublanguage. LSC specifications
may well be played in following [12] and then strengthened for formal verification
using the features from [5]. Furthermore we assume well-formed LSCs [2], i.e.
LSCs without internal contradictions.

3 Efficient TSA Model-Checking

3.1 Preliminaries

We use ExprS to denote the propositional logic formulae over signature S, and
I |= ψ to denote that interpretation I satisfies ψ ∈ ExprS with fixed non-
empty universe U . Let C be a set of clocks. A clock valuation is a mapping
τ : C → N0, and T (C) denotes the set of all clock valuations. The update of a
time valuation τ ∈ T (C) by a value x ∈ N0, written τ +x, is pointwise defined as
(τ + x)(c) := τ(c) + x for all c ∈ C. The set of clock constraints Φ(C) is defined
by the grammar φ ::= true | c ≤ x | c ≥ x, ϕ ::= φ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2, c ∈ C,
x ∈ N0. We write τ |= ϕ to denote that the clock valuation τ ∈ T (C) satisfies
the clock constraint ϕ ∈ Φ(C). The definition of satisfaction is standard.
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3.2 Timed Symbolic Automata

Timed Symbolic Automata (TSA) are a variant of timed Büchi automata where
transitions are labelled by expressions from ExprS instead of just an element of
an alphabet (cf. [15] for references). The new notion of default transitions sig-
nificantly eases the formal definition of the clock propagation introduced below.

Formally, a TSA over a signature S is a tuple A = (Q, qs, C, �, D, F ) with
a finite set of states Q, initial state qs ∈ Q, a finite set of clocks C, transition
relation � ⊆ Q × ExprS × Φ(C) × 2C × Q, default transitions D ⊆ Q × Q,
and accepting states F ⊆ Q. We define →⊆ Q × Q as →:= D ∪ {(q, q′) |
∃ (q, ψ, ϕ, ρ, q′) ∈�}. A TSA is called Partially Ordered TSA (POTSA) if the
reflexive transitive closure of → is a partial order, i.e. →∗ is anti-symmetric.
Note that all loops in a POTSA are consequently self-loops.

Let S be a signature and U a fixed universe. A timed interpretation sequence
is a sequence r = ((ιi, ti))i∈N0 with ιi an interpretation of S and ti ∈ N0 a
timestamp such that ti < ti+1, i ∈ N0. Let ((qi, τi))i∈N0 be a sequence with
qi ∈ Q a state and τi ∈ T (C) a valuation of the clocks, i ∈ N0. It is called
timed run of A over r iff it starts in the initial state, i.e. q0 = qs, the clocks
initially have value zero, i.e. τ0(c) = 0, c ∈ C, and states are A-successors.
That is, for i ∈ N0 either there is a transition (qi, ψi, ϕi, ρi, qi+1) ∈� such
that the boolean and clock constraints hold, ιi |= ψi and (τi + (ti+1 − ti)) |=
ϕi, and the clock valuations are updated according to ρi, i.e. τi+1|ρi = 0 and
τi+1|C\ρi

= (τi + (ti+1 − ti))|C\ρi
, or there is a default transition (qi, qi+1) ∈ D

and τi+1 = τi +(ti+1 − ti). A timed run ((qi, τi))i∈N0 is called accepting if qi ∈ F
for infinitely many i ∈ N0. The language accepted by A, denoted by L(A), is the
set of timed interpretation sequences for which an accepting run exists.

In the following we introduce two subclasses of TSAs, namely deterministic
and time-bounded ones. In Sect. 3.4 we will see how membership in these classes
determines the efficiency of the model-checking procedure.

We call a state q ∈ Q determinstic if the constraints on all outgoing transi-
tions are mutually disjoint, i.e. for each two transitions (q, ψ1, ϕ1, ρ1, q1), (q, ψ2,
ϕ2, ρ2, q2) ∈� with q1 �= q2 we have (ι |= ψ1 ∧ τ |= ϕ1) → ¬(ι |= ψ2 ∧ τ |= ϕ2)
for any ι and τ . It is called reaching-deterministic if all q′ ∈ Q with q′ →∗ q are
deterministic. We call A determinstic iff all its states are deterministic.

Given a set of clocks C, the set of upper bounded clock constraints Φ�(C) ⊆
Φ(C) is defined by the grammar φ ::= x1 ≤ c∧c ≤ x2, ϕ ::= φ | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2,
c ∈ C, x1, x2 ∈ N0. We call a state q ∈ Q time bounded iff the clock constraints
on all outgoing transitions are from Φ�(C). We call A time bounded iff all states
from Q \ F are time bounded. Now let A be a POTSA and q a state of it s.t.
all outgoing transitions impose a finite upper bound on clock c. Let q′ be a
state from which an accepting state is only reached by visiting q and let c not
be reset along the path from q′ to q. Then the boundedness of c transitively
induces bounds on all transitions between q′ and q, including self-loops [15].
For example, clock constraint c0 = 7 at the transition from state q4 to q6 in
Fig. 1(b) propagates to the transition from q2 to q4 and to the self-loops at q4
and q2. Consequently, the number of time bounded states can be increased by
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propagating clock constraints backwards through the automaton, i.e. making the
implicit constraints explicit. In [15] we give an algorithm which performs clock
propagation on POTSAs and yields a language-equivalent POTSA.

Another operation of interest is the failure state completion [15] of A. For each
reaching-deterministic state in Q, it adds a default transition to a designated fail-
ure state ‘qfail’, i.e. it yields the language equivalent [15] TSA (Q ∪̇{qfail}, qs, C,
�, D′, F ) with D′ := D ∪ {(q, qfail) | q is reaching-deterministic}. Then reaching
‘qfail’ with sequence r is a sufficient criterion for r /∈ L(A).

3.3 Timed Symbolic Automata as Specification

A Kripke Structure is a tuple K = (AP,S,S0,R,L) with atomic propositions
AP, states S, initial states S0 ⊆ S, transition relation R ⊆ S × S, and labelling
function L : S → 2AP, AP and S finite. As TSAs are defined using interpretation
sequences, we assume that each subset 	 ⊆ AP defines an interpretation ι� of S.
The TSA and the model are then called compatible. A run s0, s1, . . . of K induces
the timed interpretation sequence ((ιi, ti))i∈N0 with ιi = L(si), ti = i. The set of
all timed interpretation sequences induced by the runs of K is denoted by R(K).

Using a TSA A as a specification on K means relating R(K) to L(A). To
increase precision of the specification, here we always consider an activation
condition ν ∈ ExprS and an activation mode of initial, invariant, and iterative to-
gether with A. We say K satisfies A initially wrt. ν, denoted by K |=ν,init A, iff all
((ιi, ti))i∈N0 ∈ R(K) with ι0 |= ν are in L(A). It satisfies A invariantly wrt. ν, de-
noted by K |=ν,inv A, iff ιi |= ν implies that the suffix (�ιi+1,�ti+1)(�ιi+n,�ti+n) . . .
is in L(A). Iterative satisfaction, denoted by K |=ν,iter A, is special to POTSAs.
It is similar to invariant but excludes overlapping activations of A. The motiva-
tion to introduce this mode was to ease the understanding of counter-examples.
It is easier to uniquely identify where activation takes place if there are no over-
lapping activations. But this mode has the serious drawback that if it is used for
a TSA that actually has an overlapping activation, a violation may be shadowed.
Checking whether a TSA doesn’t have an overlapping activation (it is then called
non-reactivating) or not is an additional non-trivial task.

Note that by the definition above we choose model steps as time units. In
general, other notions of time have to be supported, for instance, the supersteps
of Statemate models. In [15], the approach presented here has been extended to
support two notions of time by assuming that the passing of time is observable on
the model, for instance by a special signal of the model which is raised whenever
a superstep is completed. To keep the discussion focused and to adhere to space
restrictions, we only consider step time. Adding the more general treatment of
time following [15] is actually straightforward.

3.4 Efficient POTSA Model-Checking

Each non-iterative POTSA with step clocks has an equivalent LTL formula [16]
in negative normal form, thus LTL model-checking can be applied to decide
whether K satisfies A. For all POTSAs, there is an additional approach based
on composing in parallel to the model a number of time counters, one for each
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s0

{resetc, (c = 0)}

sc
1

{(c = 1)}

sc
2

{(c = 2)}
. . . sc

N

{(c = N)}

Fig. 2. Kripke structure of timer c with upper bound N + 1

clock, and a kind of transition system view of the TSA, i.e. dismissing the Büchi
criterion. This parallel composition is then checked for reachability of certain
states or for a small fixed liveness formula. In this section we introduce the
parallel composition of K with observers. Section 3.4.3 discusses when to apply
which approach.

3.4.1 Timer Extension
In model-checking timed TSA properties, we can’t directly employ the sequences
from R(K) as the time stamps are unbounded. By [15] it is sufficient for the
observer approach to consider finite time counters for each clock of the (not nec-
essarily time bounded) TSA and these bounds are effectively computable. These
time counters are transition systems that count model steps until their finite
upper bound is reached and that may reset themselves any time and then set a
reset flag (cf. Fig. 2). They are composed in parallel to the model. More formally,
let c be a clock with upper bound N + 1, and Sc = {sc

0, . . . , s
c
N} a set of fresh

states wrt. S. The timer extension of K for c is Kc = (APc,Sc,Sc
0,R

c,Lc) with

– APc = AP ∪̇{resetc, (c = 0), . . . , (c = N)}, Sc = S × Sc, Sc
0 = S0 × {sc

0},
– Rc = {((s, sc

i ), (s
′, sc

0)), ((s, s
c
N ), (s′, sc

N )) | (s, s′) ∈ R}
∪ {((s, sc

i ), (s
′, sc

i + 1)) | (s, s′) ∈ R, 0 ≤ i < N}
– Lc((s, sc

i )) = L(s) ∪ {resetc | i = 0} ∪ {(c = i)}.

The timer extension Kc is by the same procedure extended to Kc,c′
for a second

clock. We use KC := Kc1,...,cn to denote the timer extension of K for all clocks
from C. A state s ∈ KC canonically defines a clock valuation τs as τs(c) := i if
(c = i) ∈ L(s). The clocks reset in s are ρs := {c | resetc ∈ L(s)}.

3.4.2 Observer Extension
Let A = (Q, qs, C, �, D, F ) be a TSA compatible with K and KC the timer
extension of K. Using sC to denote the components of states that are introduced
by the timer extension, the observer extension of K for activation expression ν
and initial activation A is KA/init = (APA,SA,SA

0 ,RA,LA) with

– APA = (APC ∪̇{fair, fail}), SA = SC × (Q ∪̇{qidle}),
– SA

0 = {(s, sC , qs) | (s, sC) ∈ SC
0 , ιL(s) |= ν}

∪{(s, sC , qidle) | (s, sC) ∈ SC
0 , ιL(s) �|= ν},

– ((s, sC , q), (s′, s′C , q′)) ∈ RA iff ((s, sC), (s′, s′C)) ∈ RC and q = q′ = qidle or
• either there is a regular transition (q, ψ, ϕ, ρ, q′) ∈� with

ιL(s) |= ψ, τ(s′, s′C) |= ϕ, and ρs = ρ
• or there is a default transition (q, q′) ∈ D and ρs = ∅,

– LA((s, sC , q)) = LC((s, sC)) ∪ {fair | q ∈ F} ∪ {fail | q = qfail}.
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For invariant activation, the observer KA/inv is activated non-deterministically
thus additionally all (s, sC , qidle) are in SA

0 independent from satisfaction of ν.
Furthermore there is a transition from q = qidle to q′ = qs whenever ιL(s) |= ν.
For iterative activation, the initial states of the observer extension are as in
KA/init. KA/iter remains in qidle only if ν is not satisfied and takes the transition
to qs whenever possible. In addition there are transitions back to qidle and qs

from each accepting state with only a self-loop. The transition is to qs if ν is
satisfied and to qidle otherwise. Thus KA/iter is slightly smaller than KA/inv.
Note that KA/m, m a mode, restricts the behaviour of the clocks, but not the
behaviour of the model. In KA/m, clocks are only reset if there is a transition in
the TSA with a corresponding reset set. KA/m sets the flag ‘fail ’ iff the failure
state of the TSA is reached and ‘fair ’ iff the TSA is in an accepting state. We call
a state sA ∈ SA a failure state iff fail ∈ LA(sA) and fair state iff fair ∈ LA(sA).

3.4.3 Putting It All Together
Now we can devise a strategy for deciding whether a given Kripke structure
satisfies a failure state completed POTSA using four different standard model-
checking procedures of different worst-case complexity, namely reachability check-
ing with safety observer, ACTL model-checking with and without observer, and
LTL model-checking. The following Lemma states that the less powerful tech-
niques are helpful for finding violations early and that they are sufficient for
deterministic (time bounded) POTSAs.

Lemma 1. Let A be a POTSA, K a Kripke structure, ν a condition, m a mode.

1. [15] If a failure state of KA/m is reachable, then K �|=ν,m A. If A is deter-
ministic and time bounded then K �|=ν,m A implies reachability of a failure
state.

2. [15] If KA/m |= AGAF fair, then K |=ν,m A. If A is deterministic then
K |=ν,m A implies KA/m |= AGAF fair.

3. If A is non-deterministic, then there is no LTL formula λ using only atomic
proposition ‘fair’ s.t. KA/m �|=ν,m λ implies K �|=ν,m A. ♦

Proof. (1.3) Assuming such a formula λ, exploit non-determinism in observer to
construct a Kripke structure K s.t. KA/m doesn’t satisfy λ but K |=ν,m A. ��

Note that Lemma 1.3 implies that there is no known procedure to decide satis-
faction of iterative non-deterministic TSAs because within an LTL formula we
cannot, as with observer extensions, refer to the own state of activation.

Using that the ACTL formula obtained from an LTL formula in negative
normal form by prefixing all modal operators by ‘A ’ implies the LTL formula,
we devise the strategy depicted in the following control flow diagram for the
verification of POTSA specifications. The idea is to apply the procedure with
the best worst-case complexity first to find contradictions early. Only if no errors
are unveiled and the procedure is too weak for the POTSA, the next expensive
procedure is applied. The increasing prevalence of multi-processor or multi-core
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hosts allows to apply the procedures in parallel and stop all other procedures
once a significant result is obtained.

start

1.(a):fail reachable in
KA/iter?

K �|=ν,m A
K |=ν,m A
︸ ︷︷ ︸

by Lemma 1.11.(b):fail reachable in
KA/inv?

K �|=ν,m A
K |=ν,m A
︸ ︷︷ ︸

by Lemma 1.12.(a):KA/iter |= AG AF fair?

K �|=ν,m A
K |=ν,m A
︸ ︷︷ ︸

by Lemma 1.22.(b):KA/inv |= AG AF fair?

K �|=ν,m A
K |=ν,m A
︸ ︷︷ ︸

by Lemma 1.23:KC |= ACTL(A)? [16]

K �|=ν,m A
K |=ν,m A
︸ ︷︷ ︸

by ACTL → LTL4:KC |= LTL(A)? [16] result is authoritative

no reaching-det. state in A

yes

no, A det., time-bnd., and
(non-react. or iterative)

else
no, A react., invariant

yes

no, A det. and time-boundedelse

no

yes, A deterministic, and
(non-react. or iterative)

else
no, A react., invariant

no

yes, A deterministicelse

no, counter-example is path

yesno, counter-example is tree

The refinement of steps 1 and 2 into (a) and (b) is a minor optimisation using
the expectation that checking A iteratively is less expensive (cf. 3.4.2). An initial
TSA is treated like an interative one, as the time of activation is then uniquely
determined to be an initial state.

Note that the time and space resource consumption of certain observer based
tasks can be reduced by applying a POTSA version of the decomposition algo-
rithm presented in [9] and conducting the decomposed, smaller tasks in parallel.

4 Efficient LSC Model-Checking

The following transfer of the results from the previous section to the domain
of LSCs is effective as most practically used LSCs yield deterministic POTSAs.
Furthermore, unbounded liveness requirements typically only occur in early and
rather abstract parts of a system’s LSC specification and are restricted by bounds
in later, more detailed versions thus most LSCs yield time-bounded TSAs.

Section 4.1 briefly recalls the LSC semantics in terms of TSA and relates the
TSA classes identified in Sect. 3 to LSCs. For a complete definition of the LSC
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α

StepL

(α,Scl1)
StepL

(α,Scln)
αexit

. . .

. . .

HoldL(α)

TransL(α,Scl1) TransL(α, Scln)

ExitL(α)

true

(a) Outgoing transitions from state α.

α0

α⊥

αfinαexit

. . .

. . .

TransL(α0, {A⊥
L })

ExitL(α0)

HoldL(α)ExitL(α⊥)

truetrue

(b) Overall structure of AL.

Fig. 3. Structure of the LSC body automaton. Double lined states are in F .

language, its abstract syntax, and the semantics-giving unwinding procedure
the reader is referred to [5]. The discussion of LSC verification starts in Sect. 4.2
with the simplest case, namely invariant universal LSCs without pre-chart or
assumptions. The additional features of LSCs are then discussed in isolation in
the subsequent sections.

4.1 LSC Semantics and TSA Properties

The central concept of the LSC semantics [5] is the notion of the cut, i.e. a set
of at least one location per instance line (more than one for coregions). The
gray line in Fig. 1(a) indicates a cut. Each TSA state corresponds to one cut of
the LSC, e.g. the example cut in Fig. 1(a) corresponds to state q6 in Fig. 1(b).
Intuitively, a system satisfies the LSC if for each system run suffix with a prefix
in the language of the pre-chart TSA, the rest of the run is in the language of
the main-chart TSA. The algorithm of [5] translates the pre- and main-chart
of each commitment and assumption LSC of a requirement into separate TSAs.
Fig. 3(a) schematically shows a state of the TSA obtained by the unwinding
procedure [5]. It has a self-loop awaiting the subsequent LSC elements and one
transition for each combination of occurrence and non-occurrence of awaited
elements. Violations of cold conditions lead to the accepting state αexit. Fig. 3(b)
shows the overall structure of the TSA. The state α⊥ corresponds to the cut with
all instance heads and αfin to complete traversal. Fig. 1(b) gives the TSA of the
main-chart from Fig. 1(a). (The initial TSA state α0 is omitted for brevity.)

Following [3], each TSA of an LSC is a POTSA. The timer propagation algo-
rithm of [15] applies directly. In [3], we have introduced a sufficient criterion on
LSCs that implies determinism of the corresponding TSAs. The TSAs are de-
terministic if all conditions and local invariants occur bonded in the LSCs. That
is, if they are in a simultaneous region with at least one message, timeout, or
instance head. Then the evaluation time for the condition is well-defined. This
criterion is easily [2] checkable on the abstract syntax of the LSC. The observer
automaton construction of [15] as introduced in Sect. 3 applies directly as LSCs
share activation modes initial, invariant, and iterative with TSAs.

4.2 LSC Model-Checking

Note that an LSC’s strict or tolerant interpretation is mostly orthogonal to the
issues discussed below. In the TSA, strictness is expressed by strenghtening the
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transition annotations. Each expression is additionally conjoined with a term that
excludes all messages that are not referred to by the expression. Thus the strict
TSA doesn’t introduce new non-determinism and as it only considers messages,
non-determism is not resolved except for few pathological cases. Consequently we
needn’t treat the interpretation explicitly below.

4.2.1 Universal, No Pre-chart or Assumption
In the easiest case, we only have to consider the TSA A of the main-chart and
an activation condition. Then the algorithm from Sect. 3.4.3 applies directly.

4.2.2 Pre-chart
For the pre-chart of an LSC, a separate TSA is constructed. The slightly dif-
ferent algorithm adjusts transitions to the special interpretation of pre-charts
which don’t have a notion of violation. Using the ACTL/LTL way there are two
options for checking an LSC with pre-chart. Let ϕpc and ϕL be the LTL formu-
lae corresponding to the pre-chart and the whole LSC, i.e. pre- and main-chart
together. Following [17], we can check G (ϕpc → ϕL). This formula tends to grow
large since the pre-chart part occurs twice, even if the more compact formulae
also presented in [17] is usable.

As the semantics of the pre-chart is indication of complete traversal of its
scenario, the Büchi criterion is actually not needed. Finite automaton acceptance
is sufficient. This can be exploited by composing in parallel with the observer
extension of a model a (non-deterministically activating) observer for the pre-
chart that drives an additional proposition ‘pc’ which holds iff the pre-chart has
just been observed. By changing the main-chart observer such that its activation
expression is ‘pc’ the algorithm from Sect. 3.4.3 still applies directly.

If the observer way is too weak, then G (pc → ϕmc) (or the ACTL correspon-
dence) is checked in steps 3 and 4; ϕmc being the main-chart’s LTL formula.

4.2.3 Assumptions
The semantics of LSC assumptions is standard. A system satisfies a universal
LSC with assumptions iff all runs satisfying all assumptions also satisfy the
commitment. Thus, iff

(G (ϕa1 ∧ · · · ∧ ϕam
)) → (G (pc → ϕmc)), (1)

with ϕa1 , . . . , ϕam
the LTL formulae for the assumptions, ‘pc’ the pre-chart ob-

server from Sect. 4.2.2, and ϕmc the main-chart’s LTL formula.
To avoid representing the assumption part as (again large) formulae, we can

start with properties which are stronger than (1), i.e. that imply (1), but are
easier to check. On the downside, obtaining a counter-example is then no longer
directly significant as the counter-example may be a false negative. It has to be
checked not to be spurious, for example by simulation.

An approach stronger than (1) is to consider the tableau of the parallel compo-
sition of all assumptions as an additional observer, i.e. parallel composed to the
observer extension. The formula to check is then (AGAF afair) → (AG AF fair) (2)
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where ‘afair’ holds iff the tableau is in an accepting state. If (2) passes and if
the LSC and all assumptions are bonded, then the system satisfies the LSC. A
failure may be a false negative.

An approach stronger than (2) is to check for reachability of a state with
¬afail ∧ fail in the parallel composition of KA with one iteratively activated
observer automaton per assumption, i.e. not the tableaux. If such a state isn’t
reachable and if the LSC and all assumptions are bonded and time-bounded and
no assumption is invariant, then the system satisfies the LSC.

With these three (non exhaustive) options, the algorithm from Sect. 4.2.1
can be extended as follows. Pragmatically we don’t consider all of the possible
combinations with procedures for the commitment. In step 1, only the first option
is used for assumptions in order to obtain a reachability property. In each substep
of 2, the first option for assumptions can be tried first, followed by the second
option from above. In steps 3 and 4, all three options can be tried subsequently,
trading size of the formula for size of the model.

Note that a non-bonded assumption is typically easily violated by “clever
choice” of transitions in the TSA. Therefore non-bonded assumptions in general
are of limited use as an easily violated assumption excludes too many system runs
from consideration; the requirement may even be trivially satisfied if all system
runs are excluded. As a consequence, all LSCs used in assumption/guarantee
style verification should be bonded.

4.2.4 Existential LSCs
Recall from Sect. 2 that an existential LSC is satisfied by a system iff there is
at least one system run that adheres to the LSC. Using CTL∗, we obtain an
equivalent formula by prefixing the LTL formula with the existential quantifiers
‘E ’ or ‘EF ’ [3].

But the existential mode is different from the universal mode in that one
wants to obtain a witness if the formula is satisfied. That is, similar to pre-
charts, the Büchi criterion isn’t used and thus the ACTL/LTL way is practically
not relevant. Furthermore, in practice one is typically interested in an example
system run that traverses the LSC completely [18] instead of taking a legal exit
on a cold condition. To achieve all this, the states of the main-chart TSA are
turned into non-accepting states except for the state corresponding to the final
cut. If the LSC has a pre-chart, the main-chart TSA is again activated by the
pre-chart observer ‘pc’ as discussed in Sect. 4.2.2. Verifying the existential LSC
is then equivalent to reachability of the remaining unique accepting state under
all given assumptions.

5 Figures, Please

Table 2 supports our claims with exemplary experimental results. It lists pure
model-checking time, i.e. without constructing and loading the transition re-
lation BDD, and without counter-example post processing, for all techniques
discussed in Sect. 4 (VIS 2.0 [Brayton et al.], Intel Xeon 3.06GHz, 4GByte). The
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Table 2. Experimental Results. Model-checking time in seconds.

rch/iter rch/inv AGAF/iter AGAF/inv ACTL LTL
Fig.1/tb 36.3s/✘∗ 48.6s/✘ 303.4s/✘ 294.9s/✘ 755.2s/✘ –
Fig.1/tb 37.3s/✔∗ 45.0s/✔ 41.0s/✔ 31.5s/✔ 698.8s/✔ –
Fig.1 72.7s/✔ 82.2s/✔ 81.8s/✔∗ 57.4s/✔ 468.1s/✔ –
Fig.1/as 359.3s/✔ 49.2s/✔ 47.2s/✔∗ 29.0s/✔ 757.7s/✔ –
Fig.1/nd 56.9s/✔ 48.7s/✔ 134.2s/✘ 128.4s/✘ – –
[9]/2 31.0s/✔ 44.5s/✔ 96.3s/✔∗ 37.5s/✔ 258.1s/✔ –
[9]/3 43.6s/✔ 121.6s/✔ 60.7s/✔∗ 87.5s/✔ – –
(✔= passed, ✘= failed, – = terminated after 1h, ∗ = first significant result.)

pre-chart is always an observer and the tableau is used for assumptions. The im-
plementation is taken from [5] and [15]. To isolate the effects under discussion,
all experiments use a model that first solves a puzzle to provide some complexity
and then adds one or two paths relevant for the LSC.

All experiments use a model which first solves a puzzle to provide some com-
plexity and then adds one or two paths relevant for the LSC.

The first (singleton) group is a time bounded version of the LSC from Fig. 1
on a model not satisfying it due to a condition violation. From the table we can
see that the reachability-based approach is significantly faster than the others.

The second group uses a model satisfying the LSC. Its first row is the LSC
from Fig. 1, ‘as’ is a variant with an assumption, and ‘nd’ is a non-determistic
variant where the condition Operational is moved downwards such that it is no
longer bonded. In this group, the table indicates that the reachability approach
is not always faster, in particular if the property actually holds. In case ‘nd’
we remain inconclusive whether the system satisfies the LSC or not. The ‘✔’
results of the reachability way only indicate that there is no safety violation.
The following two ‘✘’ results only indicate that it’s possible to avoid a fair state.

The last group is the example from [9], an untimed but highly concurrent LSC
with extraordinary large corresponding formulae. It uses only 6 (9) messages to
require that 2 (3) agents are started concurrently, then work concurrently, and
then report back concurrently. This LSC is bonded, but not time bounded. From
the table we can see that the observer approach allows to establish the property
in the given amount of time and space while the formula doesn’t.

Noticeable in the table is that the LTL way is always terminated prematurely,
even if the preceding puzzle is removed. If the model has only a single trace and
the LSC is changed s.t. it comprises no timing requirements and no concurrency,
the task completes within ∼1h, thus the LTL way seems rather impractical.

6 Conclusion

Although LSC model-checking is basically solved as each LSC has an equivalent
temporal logic formula, in practice direct model-checking of the formula is pro-
hibitively expensive due to its size. Our results indicate that full model-checking
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power is only necessary for non-bonded LSCs which occur seldom in practice.
In contrast, bonded, time-bounded LSCs are as easy as a reachability problem.
To the practically most relevant class of bonded, non-time-bounded LSCs, an
approach in between both techniques applies that uses an observer automaton
and a small fixed liveness formula. Experimental data indicates that it’s ben-
eficial to apply the reachability approach even to non-time-bounded LSCs as
contradictions are found faster.

Although our criteria classify most practically occurring LSCs correctly, it is
of academic interest to have an algorithm deciding time boundedness. It would
be a minor improvement to identify more states as deterministic by more so-
phisticated procedures.
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