
Automatic Refinement and Vacuity Detection for
Symbolic Trajectory Evaluation

Rachel Tzoref1,2 and Orna Grumberg1

1 Computer Science Department, Technion, Haifa, Israel
2 IBM Haifa Research Laboratory, Israel

{rachelt, orna}@cs.technion.ac.il

Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for
model checking. It is based on 3-valued symbolic simulation, using 0,1 and X
(”unknown”). The X value is used to abstract away parts of the circuit. The ab-
straction is derived from the user’s specification. Currently the process of ab-
straction and refinement in STE is performed manually. This paper presents an
automatic refinement technique for STE. The technique is based on a clever se-
lection of constraints that are added to the specification so that on the one hand
the semantics of the original specification is preserved, and on the other hand, the
part of the state space in which the ”unknown” result is received is significantly
decreased or totally eliminated. In addition, this paper raises the problem of vacu-
ity of passed and failed specifications. This problem was never discussed in the
framework of STE. We describe when an STE specification may vacuously pass
or fail, and propose a method for vacuity detection in STE.

1 Introduction

Symbolic Trajectory Evaluation (STE) [11] is a powerful technique for hardware model
checking. STE is based on combining 3-valued simulation with symbolic simulation.
It is applied to a circuit M , described as a graph over nodes (gates and latches). The
specification consists of assertions in a restricted temporal language. The assertions
are of the form A =⇒ C, where the antecedent A expresses constraints on nodes n at
different times t, and the consequent C expresses requirements that should hold on such
nodes (n, t). STE computes a symbolic representation for each node (n, t). The size of
this representation depends on the size of A, rather than on the circuit size. Abstraction
in STE is derived from the specification by initializing all inputs not appearing in A
to the X (“unknown”) value. A forth value, ⊥, represents a contradiction between the
constraint of A on some node (n, t) and its actual behavior. A refinement amounts to
changing the assertion in order to present nodes values more accurately.

STE assertions may either pass or fail on M . In [5], a 4-valued truth domain {0, 1, X,
⊥} is defined for the temporal language of STE, corresponding to the 4-valued domain
of the values of the circuit nodes. The motivation for a 4-valued semantics is to dis-
tinguish between different causes for the pass or fail of an STE assertion. The X truth
value distinguishes the case in which the STE assertion fails due to partial information
about the state space from the case in which it is actually violated by M . In the latter

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 190–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automatic Refinement and Vacuity Detection for Symbolic Trajectory Evaluation 191

case a counterexample is produced, representing an execution of M that satisfies A but
contradicts C. The X truth value stems from a too coarse antecedent which underspeci-
fies the circuit. The ⊥ truth value indicates that the STE assertion passes vacuously due
to a contradiction between A and M .

Generalized STE (GSTE) [19] is a significant extension of STE that can verify all ω-
regular properties. Manual refinement methods for GSTE are presented in [18]. In [16],
SAT-based STE is used for manual refinement of GSTE assertion graphs.

(G)STE has been in active use in the industry, and has been very successful in
verifying huge circuits containing large data paths [12,10,17]. Its main drawback, how-
ever, is the need for manual abstraction and refinement, which can be very labor-
intensive.

Our Contribution. We propose a technique for automatic refinement of assertions in
STE. In our technique, the initial abstraction is derived, as usual in STE, from the given
specification. The refinement is an iterative process, which stops when a truth value
other than X is achieved. In case of a 0 truth value, a counterexample is presented to
the user. Our automatic refinement is applied when the STE specification results with
X . We compute a set of input nodes, whose refinement is sufficient for eliminating
the X truth value. We further suggest heuristics for choosing a small subset of this
set.

Selecting a ”right” set of inputs has a crucial role in the success of the abstraction
and refinement process: selecting too many inputs will add many variables to the com-
putation of the symbolic representation, and may result in memory and time explosion.
On the other hand, selecting too few inputs or selecting inputs that do not affect the
result of the verification will lead to many iterations with an X truth value.

We point out that, as in any automated verification framework, we are limited by
the following observations. First, there is no automatic way to determine whether the
provided specification is correct. Therefore, we assume it is, and we make sure that our
refined assertion passes on the concrete circuit iff the original assertion does. Second,
bugs cannot automatically be fixed. Thus, counterexamples are analyzed by the user.

Abstraction-Refinement is a well known methodology in model checking [4,6] for
fighting the state explosion problem. In [3], it is shown that the abstraction in STE is an
abstract interpretation via a Galois connection. [9] presents a SAT-based algorithm to
assist in manual refinement of STE assertions. However, automatic refinement has never
been suggested before for STE. The work that is closest to ours is [15], which suggests
an automatic abstraction-refinement for symbolic simulation. However, the suggested
heuristics are significantly different from ours.

Another important contribution of our work is identifying that STE results may hide
vacuity. This possibility was never raised before. Hidden vacuity may occur since an
abstract execution of M on which the truth value of the specification is 1 or 0, might
not correspond to any concrete execution of M . In such a case, a pass is vacuous, while
a counterexample is spurious. We propose a method for detecting these cases.

We implemented our automatic refinement technique within Intel’s Forte environ-
ment [12]. We ran it on two nontrivial circuits with several assertions. Our experimen-
tal results show success in automatically identifying a set of inputs that are crucial for
reaching a definite truth value. Thus, a small number of iterations were needed.

192 R. Tzoref and O. Grumberg

2 Basic Definitions

A circuit M consists of a set of nodes N , connected by directed edges. The nodes
consist of inputs and internal nodes. Internal nodes consist of latches and combinational
nodes. Each combinational node is associated with a Boolean function. We say that a
node n1 enters a node n2 if there exists a directed edge from n1 to n2. The nodes
entering a certain node are its source nodes, and the nodes to which a node enters are
its sink nodes. The value of a latch at time t can be expressed as a Boolean expression
over its source nodes at times t and t − 1, and over the latch value at time t − 1. The
directed graph induced by M may contain loops but no combinational loops.
Throughout the paper we refer to a node n at a specific time t as (n, t).

The bounded cone of influence (BCOI) of a node (n, t) contains all nodes (n′, t′)
with t′ ≤ t that may influence the value of (n, t), and is defined recursively as follows:
the BCOI of a combinational node at time t is the union of the BCOI of its source nodes
at time t, and the BCOI of a latch at time t is the union of the BCOI of its source nodes
at times t and t − 1 according to the latch type.

AND X 0 1 ⊥
X X 0 X ⊥
0 0 0 0 ⊥
1 X 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

OR X 0 1 ⊥
X X X 1 ⊥
0 X 0 1 ⊥
1 1 1 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

NOT
X X
0 1
1 0
⊥ ⊥

Fig. 1. Quaternary operations

Usually, the circuit nodes receive
Boolean values. In STE, a third value,
X (”unknown”), is introduced. At-
taching X to a certain node repre-
sents lack of information regarding the
truth value of that node. A forth value,
⊥, is added to represent the over-
constrained value, in which a node is
forced both to 0 and to 1. This value indicates that contradiction exists between external
assumptions on the circuit and its actual behavior. The set of values Q ≡ {0, 1, X, ⊥}
forms a complete lattice with the partial order 0 � X , 1 � X , ⊥ � 0 and ⊥ � 1. This
order corresponds to set inclusion, where X represents the set {0, 1}, and ⊥ represents
the empty set. As a result, the greatest lower bound � corresponds to set intersection
and the least upper bound � corresponds to set union. The Boolean operations AND,
OR and NOT are extended to the domain Q as shown in Figure 1.

A state s of the circuit M is an assignment of values from Q to all circuit nodes,
s : N → Q. Given two states s1, s2, we say that s1 � s2 ⇐⇒ ((∃n ∈ N : s1(n) =
⊥) ∨ (∀n ∈ N : s1(n) � s2(n))). A state is concrete if all nodes are assigned with
values out of {0, 1}. A state s is an abstraction of a concrete state sc if sc � s.

A sequence σ is any infinite series of states. We denote by σ(i), i ∈ N, the state
at time i in σ, and by σ(i)(n), i ∈ N, n ∈ N , the value of node n in the state σ(i).
σi, i ∈ N, denotes the suffix of σ starting at time i. We say that σ1 � σ2 ⇐⇒ ((∃i ≥
0, n ∈ N : σ1(i)(n) = ⊥) ∨ (∀ i ≥ 0 : σ1(i) � σ2(i))). Note that we refer to states
and sequences that contain ⊥ values as least elements w.r.t �.

Let V be a set of symbolic Boolean variables over the domain {0, 1}. A symbolic
expression over V is an expression consisting of quaternary operations, applied to V ∪
Q. A symbolic state over V is a mapping which maps each node of M to a symbolic
expression. Each symbolic state represents a set of states, one for each assignment to the
variables in V . A symbolic sequence over V is a series of symbolic states. It represents
a set of sequences, one for each assignment to V . Given a symbolic sequence σ and

Automatic Refinement and Vacuity Detection for Symbolic Trajectory Evaluation 193

an assignment φ to V , φ(σ) denotes the sequence that is received by applying φ to all
symbolic expressions in σ. Given two symbolic sequences σ1,σ2 over V , we say that
σ1 � σ2 if for all assignments φ to V , φ(σ1) � φ(σ2).

A Trajectory Evaluation Logic (TEL) formula is defined recursively over V as fol-
lows:

f ::= n is p | f1 ∧ f2 | p → f | Nf

where n ∈ N , p is a Boolean expression over V and N is the next time operator.
Note that TEL formulas can be expressed as a finite set of constraints on values of
specific nodes at specific times. N t denotes the application of t next time operators.
The constraints on (n, t) are those appearing in the scope of N t. The maximal depth of
a TEL formula f , denoted depth(f), is the maximal time t for which a constraint exists
in f on some node (n, t), plus 1.

Usually, the satisfaction of a TEL formula f on a symbolic sequence σ is defined
in the 2-valued truth domain [11], i.e., f is either satisfied or not satisfied. In [5], Q is
used also as a 4-valued truth domain for an extension of TEL. Our 4-valued semantics
definition is different from [5] w.r.t ⊥ values. In [5], a sequence σ containing ⊥ values
could satisfy f with a truth value different from ⊥. In our definition this is not allowed.
We believe that our definition captures better the intent behind the specification w.r.t
contradictory information about the state space. Given a TEL formula f over V , a sym-
bolic sequence σ over V , and an assignment φ to V , we define the satisfaction of f as
follows:

[φ, σ |= f] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(σ)(i)(n) = ⊥. Otherwise:
[φ, σ |= n is p] = 1 ↔ φ(σ)(0)(n) = φ(p)
[φ, σ |= n is p] = 0 ↔ φ(σ)(0)(n) �= φ(p) and φ(σ)(0)(n) ∈ {0, 1}
[φ, σ |= n is p] = X ↔ φ(σ)(0)(n) = X φ, σ |= p → f = (¬φ(p) ∨ φ, σ |= f)
φ, σ |= f1 ∧ f2 = (φ, σ |= f1 ∧ φ, σ |= f2) φ, σ |= Nf = φ, σ1 |= f

Note that given an assignment φ to V , φ(p) is a constant (0 or 1). In addition, the ⊥ truth
value is determined only according to φ and σ, regardless of f . It is proven in [5] that
the satisfaction relation is monotonic, i.e., for all TEL formulas f , symbolic sequences
σ1, σ2 and assignments φ to V , if φ(σ2) � φ(σ1) then [φ, σ2 |= f] � [φ, σ1 |= f]. This
also holds for our satisfaction definition. We define the truth value of σ |= f as follows:

[σ |= f] = 0 ↔ ∃φ : [φ, σ |= f] = 0
[σ |= f] = X ↔ ∀φ : [φ, σ |= f] �= 0 and ∃φ : [φ, σ |= f] = X
[σ |= f] = 1 ↔ ∀φ : [φ, σ |= f] �∈ {0, X} and ∃φ : [φ, σ |= f] = 1
[σ |= f] = ⊥ ↔ ∀φ : [φ, σ |= f] = ⊥

It is proven in [5] that every TEL formula f has a defining sequence, which is a
symbolic sequence σf so that [σf |= f] = 1 and for all σ, [σ |= f] ∈ {1, ⊥} iff
σ � σf . For example, σq→(n is p) is the sequence s(n,q→p)sxsxsx..., where s(n,q→p)
is the state in which n equals (q → p) ∧ (¬q → X), and all other nodes equal X , and
sx is the state in which all nodes equal X . σf may be incompatible with the behavior
of M . A (symbolic) trajectory π is a (symbolic) sequence that is compatible with the
behavior of M [8]: let val(n, t) be the value of a node (n, t) as computed according to
its source nodes values in π. It is required that for all nodes (n, t), π(t)(n) � val(n, t)

194 R. Tzoref and O. Grumberg

(strict equality is not required in order to allow external assumptions on nodes values to
be embedded into π). A trajectory is concrete if all its states are concrete. A trajectory
π is an abstraction of a concrete trajectory πc if πc � π.

The defining trajectory πf of M and f is a symbolic trajectory so that [πf |= f] ∈
{1, ⊥} and for all trajectories π of M , [π |= f] ∈ {1, ⊥} iff π � πf (Similar definitions
for σf and πf exist in [11] w.r.t a 2-valued truth domain). Given σf , πf is computed as
follows: ∀i, πf (i) is initialized to σf (i), and the nodes values from time i and i − 1 are
propagated forward to nodes at time i until no new values are derived. The � operator
is used to incorporate a propagated value into the current value of a node (n, i).

STE assertions are of the form A =⇒ C, where A (the antecedent) and C (the
consequent) are TEL formulas. A expresses constraints on circuit nodes at specific
times, and C expresses requirements that should hold on circuit nodes at specific times.
M |= (A =⇒ C) iff for all concrete trajectories π of M and assignments φ to V ,
[φ, π |= A] = 1 implies that [φ, π |= C] = 1.

N4

N5

N3

N6

In1

In2

In3
N2

N1

Fig. 2. A Circuit

A natural verification algorithm for an STE asser-
tion A =⇒ C is to compute the defining trajectory
πA of M and A and then compute the truth value of
πA |= C. If [πA |= C] ∈ {1, ⊥} then it holds that
M |= (A =⇒ C). If [πA |= C] = 0 then it holds that
M �|= (A =⇒ C). If [πA |= C] = X , then it cannot
be determined whether M |= (A =⇒ C). The case
in which there is φ so that φ(πA) contains ⊥ is known
as an antecedent failure. The default behavior of most
STE implementations is to consider antecedent failures
as illegal, and the user is required to change A in order to eliminate any ⊥ values.
For lack of space, in the rest of the paper, we take the same approach. The alternative
approach of STE implementations that supports occurrences of ⊥ in πA is described
in [13]. Note that although πA is infinite, it is suffice to examine only a bounded prefix
of length depth(A) in order to detect ⊥ in πA. The first ⊥ in πA is the result of the � op-
eration on some node (n, t), where both operands have contradicting assignments 0 and
1. Since ∀i > depth(A) : σA(i) = sx, it must hold that t ≤ depth(A). In order to com-
pute πA |= C (assuming πA does not contain ⊥), πA is compared to σC , the defining
sequence of C. If πA � σC , then [πA |= C] = 1. If there are φ, i ≥ 0, n ∈ N so that
φ(πA)(i)(n) �� φ(σC)(i)(n) and φ(πA)(i)(n) �� φ(σC)(i)(n), then [πA |= C] = 0.
Otherwise, [πA |= C] = X . Note that although πA and σC are infinite, it is suffice to
examine only a bounded prefix of length depth(C), since ∀i > depth(C) : σC(i) = sx.

Example 1. Consider the circuit M in Figure 2, containing three inputs In1, In2 and In3,
two OR nodes N1 and N2, two AND nodes N3 and N6, and two latches N4 and N5. For
simplicity, the latches clocks were omitted and at each time t the latches sample their
data source node from time t−1. Note the negation on the source node In2 of N2. Also
consider the STE assertion A =⇒ C, where A = (In1 is 0)∧(In3 is v1)∧(N3 is 1), and
C = N(N6 is 1). Figure 3 describes the defining trajectory πA of M and A, up to time
1. It contains the symbolic expression of each node at time 0 and 1. The state πA(i) is
represented by row i. The notation v1?1 : X stands for ”if v1 holds then 1 else X”. σC

is the sequence in which all nodes at all times are assigned X , except for node N6 at

Automatic Refinement and Vacuity Detection for Symbolic Trajectory Evaluation 195

time 1, which is assigned 1. [πA |= C] = 0 due to those assignments in which v1 = 0.
We will return to this example in Section 5.

Time In1 In2 In3 N1 N2 N3 N4 N5 N6
0 0 X v1 X v1?1 : X 1 X X X
1 X X X X X X 1 v1 v1

Fig. 3. The Defining Trajectory πA

STE implementations use a specific
encoding called dual rail in order
to represent the nodes (n, t) in se-
quences. The dual rail of a node
(n, t) in πA consists of two func-
tions defined from V to {0, 1}: f1

n,t

and f0
n,t, where V is the set of variables appearing in A. For each assignment φ to V ,

if f1
n,t ∧ ¬f0

n,t holds under φ, then (n, t) equals 1 under φ. Similarly, ¬f1
n,t ∧ f0

n,t,
¬f1

n,t ∧¬f0
n,t and f1

n,t ∧ f0
n,t stand for 0, X and ⊥ under φ, respectively. Likewise, g1

n,t

and g0
n,t is the dual rail representation of (n, t) in σC . Note that g1

n,t ∧ g0
n,t never holds,

since we always assume that C is not self-contradicting.

3 Choosing Our Automatic Refinement Methodology

Intuitively, the defining trajectory πA of a circuit M and an antecedent A is an ab-
straction of all concrete trajectories of M on which the consequent C is required to
hold. This abstraction is directly derived from A. If [πA |= C] = X , then A is too
coarse, that is, contains too few constraints on the values of circuit nodes. Our goal is to
automatically refine A (and subsequently πA) in order to eliminate the X truth value.

In this section we examine the requirements that should be imposed on automatic
refinement in STE. We then describe our automatic refinement methodology, and for-
mally state the relationship between the two abstractions, derived from the original and
refined antecedent. We refer only to STE implementations that compute πA. We assume
that antecedent failures are handled as described in Chapter 2.

Traditionally, the abstraction and refinement process in STE works as follows: the
user writes an STE assertion A =⇒ C for M , and receives a result from STE. If
[πA |= C] = 0, then the set of all φ so that [φ, πA |= C] = 0 is provided to the user.
This set, called the symbolic counterexample, is given by the Boolean expression over
V :

∨
(n,t)∈C((g1

n,t ∧¬f1
n,t ∧f0

n,t)∨(g0
n,t ∧f1

n,t ∧¬f0
n,t)). It stems from either an illegal

behavior of the circuit, or an erroneous specification. The user decides which of these
possibilities the counterexample displays. If [πA |= C] = X , then the set of all φ so
that [φ, πA |= C] = X is provided to the user. This set, called the symbolic incomplete
trace, is given by:

∨
(n,t)∈C((g1

n,t ∨ g0
n,t) ∧ ¬f1

n,t ∧ ¬f0
n,t). The user decides how to

refine the specification in order to eliminate the partial information that causes the X
truth value. Otherwise, [πA |= C] = 1 and the verification completes successfully.

As mentioned before, we must assume that the given specification is correct. Thus,
automatic refinement of A must preserve the semantics of A =⇒ C: Let Anew =⇒ C
denote the refined assertion. Let runs(M) denote the set of all concrete trajectories of
M . We require that Anew =⇒ C holds on runs(M) iff A =⇒ C holds on runs(M).

In order to achieve the above preservation, we chose our automatic refinement as
follows. Whenever [πA |= C] = X , we add constraints to A that force the value of
input nodes at certain times (and initial values of latches) to the value of fresh symbolic

196 R. Tzoref and O. Grumberg

variables, that is, symbolic variables that do not already appear in V . By initializing
an input (in, t) with a fresh symbolic variable instead of X , we represent the value
of (in, t) accurately and add knowledge about its effect on M . However, we do not
constrain input behavior that was allowed by A, nor do we allow input behavior that
was forbidden by A. Thus, the semantics of A is preserved. In Section 4, a small but
significant addition is made to our refinement technique.

We now formally state the relationship between the abstractions derived from the
original and the refined antecedents. Let A be the antecedent we want to refine. Let Aorg

be the original antecedent written by the user. Let Vnew be a set of symbolic variables
so that V ∩ Vnew = ∅. Let PIref be the set of inputs at specific times, selected for
refinement. Let Anew be a refinement of A over V ∪ Vnew , where Anew is received
from A by attaching to each input (in, t) ∈ PIref a unique variable vin,t ∈ Vnew and
adding conditions to A as follows: Anew = A ∧

∧
(in,t)∈PIref

N t(p → (in is vin,t)),
where p = ¬q if (in, t) has a constraint N t(q → (in is e)) in Aorg for some Boolean
expressions q and e over V , and p = 1 otherwise ((in, t) has no constraint in Aorg).
The reason we consider Aorg is to avoid a contradiction between the added constraints
and the original ones, due to constraints in Aorg of the form q → f .

Let πAnew be the defining trajectory of M and Anew, over V ∪ Vnew . Let φ be an
assignment to V . Then runs(Anew , M, φ) denotes the set of all concrete trajectories π
for which there is an assignment φ′ to Vnew so that (φ ∪ φ′)(πAnew) is an abstraction
of π. Since for all concrete trajectories π, [(φ ∪ φ′), π |= Anew] = 1 ⇐⇒ π �
(φ ∪ φ′)(πAnew), we get that runs(Anew, M, φ) are exactly those π for which there is
φ′ so that [(φ ∪ φ′), π |= Anew] = 1.

Theorem 1. 1. For all assignments φ to V , runs(A, M, φ) = runs(Anew , M, φ).
2. If [πAnew |= C] = 1 then ∀φ it holds that ∀π ∈ runs(A, M, φ) : [φ, π |= C] = 1.
3. If there is φ′ to Vnew and π ∈ runs(Anew , M, φ ∪ φ′) so that [(φ ∪ φ′), π |=

Anew] = 1 but [(φ∪φ′), π |= C] = 0 then π ∈ runs(A, M, φ) and [φ, π |= A] = 1
and [φ, π |= C] = 0.

Theorem 1 implies that if Anew =⇒ C holds on all concrete trajectories of M , then so
does A =⇒ C. Moreover, if Anew =⇒ C yields a concrete counterexample ce, then ce
is also a concrete counterexample w.r.t A =⇒ C.

4 Selecting Inputs for Refinement

In this section we describe how exactly the refinement process is performed. We assume
that [πA |= C] = X , and thus automatic refinement is activated. Our goal is to add a
small number of constraints to A forcing inputs to the value of fresh symbolic variables,
while eliminating as many assignments φ as possible so that [φ, πA |= C] = X . The
refinement process is incremental - inputs (in, t) that are switched from X to a fresh
symbolic variable will not be reduced to X in subsequent iterations.

Choosing Our Refinement Goal. Assume that [πA |= C] = X , and the symbolic in-
complete trace is generated. This trace contains all assignments φ for which [φ, πA |=
C] = X . For each such assignment φ, the trajectory φ(πA) is called an incomplete

Automatic Refinement and Vacuity Detection for Symbolic Trajectory Evaluation 197

trajectory. In addition, this trace may contain multiple nodes that are required by C to a
definite value (either 0 or 1) for some assignment φ, but equal X . We refer to such nodes
as undecided nodes. We want to keep the number of added constraints small. There-
fore, we choose to eliminate one undecided node (n, t) in each refinement iteration,
since different nodes may depend on different inputs. A motivation for eliminating only
part of the undecided nodes is that an eliminated X value may be replaced in the next
iteration with a definite value that contradicts the required value (a counterexample).
We suggest to choose an undecided node (n, t) with minimal number of inputs in its
BCOI. Out of those, we choose a node with minimal number of nodes in its BCOI. Our
experimental results support this choice. The chosen undecided node is our refinement
goal and is denoted (root, tt). We also choose to eliminate at once all incomplete tra-
jectories in which (root, tt) is undecided. These trajectories are likely to be eliminated
by similar sets of inputs. Thus, by considering them all at once we can considerably
reduce the number of refinement iterations, without adding too many variables.

The Boolean expression (¬f1
root,tt∧¬f0

root,tt∧(g1
root,tt∨g0

root,tt)) represents the set
of all φ for which (root, tt) is undecided in φ(πA). Our goal is to add a small number
of constraints to A so that (root, tt) will not be X whenever (g1

root,tt ∨ g0
root,tt) holds.

Eliminating Irrelevant Inputs. Once we have a refinement goal (root, tt), we need to
choose inputs (in, t) for which constraints will be added to A. Naturally, only inputs in
the BCOI of (root, tt) are considered, but some of these inputs can be safely eliminated.

Consider an input (in, t), an assignment φ to V and the defining trajectory πA. We
say that (in, t) is relevant to (root, tt) under φ, if there is a path of nodes P from
(in, t) to (root, tt) in M , so that for all nodes (n, t′) in P , φ(πA)(t′)(n) = X . (in, t)
is relevant to (root, tt) if there exists φ so that (in, t) is relevant to (root, tt) under φ.

For each (in, t), we compute the set of assignments to V for which (in, t) is rel-
evant to (root, tt). The computation is performed recursively starting from (root, tt).
(root, tt) is relevant when it is X and is required to have a definite value: (¬f1

root,tt ∧
¬f0

root,tt ∧ (g1
root,tt ∨ g0

root,tt)). A source node (n, t) of (root, tt) is relevant when-
ever (root, tt) is relevant and (n, t) equals X . Let out(n, t) return the sink nodes
of (n, t) that are in the BCOI of (root, tt). Proceeding recursively, we compute for
each node (n, t) the set of assignments relevantn,t given by the Boolean expression
(
∨

(m,t′)∈out(n,t) relevantm,t′) ∧ ¬f0
n,t ∧ ¬f1

n,t, until we reach the input nodes (in, t).
For all φ that are not in relevantin,t, changing (in, t) from X to 0 or to 1 in φ(πA)

can never change the value of (root, tt) in φ(πA) from X to 0 or to 1. Thus, if (in, t) is
chosen for refinement, a possible optimization is to constrain it to a fresh symbolic vari-
able only when relevantin,t holds, as follows: relevantin,t → Nt(in is vin,t). If (in, t)
is chosen in a subsequent iteration for refinement of a new refinement goal (root′, tt′),
then the previous constraint is extended by disjunction to include the condition under
which (in, t) is relevant to (root′, tt′). Theorem 1 holds also for the optimized re-
finement. Let PI be the set of inputs of M . The set of all inputs that are relevant to
(root, tt) is PI(root,tt) ≡ {(in, t) | in ∈ PI ∧ relevantin,t �≡ 0}. Adding constraints
to A for all relevant inputs (in, t) will result in a refined antecedent Anew . In πAnew , it
is guaranteed that (root, tt) will not be undecided. Note that PI(root,tt) is sufficient but
not minimal for elimination of all undesired X values from (root, tt). Namely, adding
constraints for all inputs in PI(root,tt) will eliminate all cases in which (root, tt) is

198 R. Tzoref and O. Grumberg

undecided. However, adding constraints for only a subset of PI(root,tt) may still elim-
inate all such cases. The set PI(root,tt) may be valuable to the user even if automatic
refinement does not take place, since it excludes inputs that are in the BCOI of (root, tt)
but will not change the verification results w.r.t (root, tt).

Heuristics for Selection of Important Inputs. We now propose heuristics for select-
ing a subset of PI(root,tt) for refinement. A motivation for this is that a 1 or 0 truth
value may be reached even without adding constraints for all relevant inputs.

We apply the following heuristics: each node (n, t) selects a subset of PI(root,tt) as
candidates for refinement. The final set of inputs for refinement is selected out of the
candidates of (root, tt). Each input in PI(root,tt) selects itself as a candidate. Other
inputs have no candidates for refinement. sourceCandn,t denotes the sets of candi-
dates of the source nodes of a node (n, t), excluding the source nodes that do not have
candidates. The candidates of (n, t) are determined as follows:

1. If there are candidate inputs that appear in all sets of sourceCandn,t, then they are
the candidates of (n, t).

2. Otherwise, if (n, t) has source nodes that can be classified as control and data, then
the candidates of (n, t) are the union of the candidates of its control source nodes,
if this union is not empty. For example, a latch has one data source node and at
least one control source node - its clock. The identity of control source nodes is
automatically extracted from the netlist representation of the circuit.

3. If none of the above holds, then the candidates of (n, t) are the inputs with the
largest number of occurrences in sourceCandn,t.

We prefer to refine inputs that affect control before those that affect data since the
value of control inputs has usually more affect on the verification result. Moreover, the
control inputs determine when data is sampled. Therefore, if the value of a data input is
required for verification, it can be restricted according to the value of previously refined
control inputs. In the final set of candidates, sets of nodes that are entries of the same
vector are treated as one candidate. Since the heuristics could not prefer one entry of the
vector over the other, then probably only their joint value can change the verification
result. Additional heuristics choose a fixed number of l candidates out of the final set.

5 Detecting Vacuity and Spurious Counterexamples

In this section we raise the problem of hidden vacuity and spurious counterexamples
that may occur in STE. This problem was never addressed before in the context of STE.

In STE, A functions both as determining the level of the abstraction of M , and as
determining the trajectories of M on which C is required to hold. An important point is
that the constraints imposed by A are applied (using the � operator) to abstract trajec-
tories of M . If for some node (n, t) and assignment φ to V , there is a contradiction be-
tween φ(σA)(t)(n) and the value propagated through M to (n, t), then φ(πA)(t)(n) =
⊥, indicating that there is no concrete trajectory π so that [φ, π |= A] = 1.

In this section we point out that due to the abstraction in STE, it is possible that for
some assignment φ to V , there are no concrete trajectories π so that [φ, π |= A] = 1,

Automatic Refinement and Vacuity Detection for Symbolic Trajectory Evaluation 199

but still φ(πA) does not contain ⊥ values. This is due to the fact that an abstract tra-
jectory may represent more concrete trajectories than the ones that actually exist in M .
Consequently, it may be that [φ, πA |= C] ∈ {1, 0}, and there is no indication that this
result is vacuous, i.e., for all concrete trajectories π, [φ, π |= A] = 0. Note that this
problem may only happen if A contains constraints on internal nodes of M . Given a
constraint a on an input, there always exists a concrete trajectory that satisfies a (unless
a itself is a contradiction, which can be easily detected). This problem exists also in
STE implementations that do not compute πA, such as [8].

Example 2. We return to Example 1 from Section 2. Note that the defining trajectory
πA does not contain ⊥. In addition, [πA |= C] = 0 due to the assignments to V in
which v1 = 0. However, A never holds on concrete trajectories of M when v1 = 0,
since N3 at time 0 will not be equal to 1. Thus, the counterexample is spurious, but
we have no indication of this fact. The problem occurs when calculating the value of
(N3,0) by computing X � 1 = 1. If A had contained a constraint on the value of In2 at
time 0, say (In2 is v2), then the value of (N3,0) in πA would have been (v1 ∧ v2) � 1 =
(v1 ∧ v2?1 : ⊥), indicating that for all assignments in which v1 = 0 or v2 = 0, πA does
not correspond to any concrete trajectory of M .

Vacuity may also occur if for some φ to V , C under φ imposes no requirements. This
is due to constraints of the form p → f where φ(p) is 0.

An STE assertion A =⇒ C is vacuous in M if for all concrete trajectories π of M
and assignments φ to V , either [φ, π |= A] = 0, or C under φ imposes no requirements.
This definition is compatible with the definition in [1] for ACTL.

We say that A =⇒ C passes vacuously on M if A =⇒ C is vacuous in M and
[πA |= C] ∈ {⊥, 1}. A counterexample π is spurious if there is no concrete trajectory
πc of M so that πc � π. Given πA, the symbolic counterexample ce is spurious if for
all assignments φ to V in ce, φ(πA) is spurious. A =⇒ C fails vacuously on M if
[πA |= C] = 0 and ce is spurious.

As explained before, vacuity detection is required only when A constrains internal
nodes. It is performed only if [πA |= C] ∈ {0, 1} (if [πA |= C] = ⊥ then surely
A =⇒ C passes vacuously). In order to detect non-vacuous results in STE, we need to
check whether there exists an assignment φ to V and a concrete trajectory π of M so
that C under φ imposes some requirement and [φ, π |= A] = 1. In case [πA |= C] = 0,
we also require that [φ, π |= C] = 0. Since A can be expressed as an LTL formula, we
can translate A and M into a Bounded Model Checking (BMC) [2] problem. Note that
in this BMC problem we search for a satisfying assignment for A, not for its negation.
Additional constraints should be added to the BMC formula as follows.

For detection of vacuous pass, the BMC formula is constrained as follows: Recall
that (g1

n,t, g
0
n,t) denotes the dual rail representation of (n, t) in σC . The Boolean expres-

sion g1
n,t ∨g0

n,t represents all assignments φ to V under which C imposes a requirement
on (n, t). Thus,

∨
(n,t)∈C g1

n,t ∨ g0
n,t represents all assignments φ under which C im-

poses some requirement, and is added as an additional constraint to the BMC formula.
A satisfying assignment to the resulting formula constitutes a witness for A =⇒ C.

For detection of vacuous fail, the BMC formula is constrained by conjunction with
the symbolic counterexample ce =

∨
(n,t)∈C((g1

n,t∧¬f1
n,t∧f0

n,t)∨(g0
n,t∧f1

n,t∧¬f0
n,t)).

200 R. Tzoref and O. Grumberg

ce represents all assignments φ for which [φ, πA |= C] = 0. A satisfying assignment to
the resulting formula constitutes a concrete counterexample for A =⇒ C.

If BMC finds a satisfying assignment to the resulting formula, then the original truth
value of [πA |= C] is returned. Otherwise, we conclude that the STE result is vacuous.
In [13], we suggest an alternative vacuity detection algorithm that uses STE and present
an additional vacuity problem that arises in constraint-based STE [8].

6 Experimental Results

We implemented our automatic refinement algorithm AutoSTE on top of STE in Intel’s
FORTE environment [12]. AutoSTE receives a circuit M and an STE assertion A =⇒
C. When [πA |= C] = X , it chooses a refinement goal (root, tt) out of the undecided
nodes, as described in Section 4. Next, it computes the set of relevant inputs (in, t). The
Heuristics described in Section 4 are applied in order to choose a subset of those inputs.
In our experimental results we restrict the number of refined candidates in each iteration
to 1. A is changed as described in Section 4 and STE is rerun on the new assertion.

We ran AutoSTE on two different circuits, which are challenging for Model Check-
ing: the Content Addressable Memory (CAM) from Intel’s GSTE tutorial, and IBM’s
Calculator 2 design [14]. The latter has a complex specification.Therefore, it constitutes
a good example for the benefit the user can gain from automatic refinement in STE. All
runs were performed on a 3.2 GHz Pentium 4 computer with 4 GB memory.

hitTAG MEMORY

DATA MEMORY

n

n

d

aread

dwrite
dout

daddr[log(n)−1..0]

datain[d−1..0]

t

tagin[t−1..0]

taddr[log(n)−1..0]

twrite

Fig. 4. Content Addressable Memory. Tag size=t,
Number of entries=n, Data size=d.

Content Addressable Memory. The
CAM shown in Figure 4 contains 16
entries, has a data size of 64 bits and
a tag size of 8 bits. It contains 1152
latches, 83 inputs and 5064 combi-
national gates. CAMs use bit fields
called tags to identify particular data
entries stored in an array. The associa-
tive read operation (aread) of CAMs
consists of searching in parallel all
tags in the CAM tag memory to find
a match to an input tag (tagin). If a match is found, the CAM outputs the associated
data entry to dout. The verification of the aread operation using STE is described in [7].
The assertions in [7] contain assumptions on the internal state of the tag memory. The
user may want to check the aread operation after a write operation to the tag memory. In
STE such cases can be checked by bounding the time that passed between the writing
and the reading of the tag. We present the results of AutoSTE on 3 such assertions.
Figure 5 reports the final result, number of refinement iterations, run-time in seconds
and peak BDD nodes for each assertion. Table 1 reports the refinement goal and added
constraint in each refinement iteration. vn,t denotes a fresh symbolic variable for node
(n, t). −→v n,t denotes a vector of fresh symbolic variables for a vector of nodes (n, t).

Assertion 1 checks that if a tag value
−−→
TAG is written to an address

−→
A in the tag

memory at time 0 (where
−−→
TAG and

−→
A are vectors of symbolic variables over {0, 1}),

and at time 1
−−→
TAG is read, then it should be found in the tag memory and hit should

Automatic Refinement and Vacuity Detection for Symbolic Trajectory Evaluation 201

be 1: (tagin is
−−→
TAG)∧(taddr is

−→
A)∧(twrite is 1)∧N((areadis1)∧(taginis

−−−→
TAG)) =⇒

N(hitis1). Assertion 1 should pass: if at time 1 there is no write operation to the tag
memory (twrite is 0), then

−−→
TAG should be found in address

−→
A . If at time 1 twrite is 1,

Assertion result Total Iter. Time BDD Nodes
1 pass 2 3 4768
2 fail 7 20 57424
3 fail 3 17 29006

Fig. 5. Automatic Refinement Performance on
CAM Assertions

−−→
TAG should be found since it is writ-
ten again to the tag memory. However,
[πA |= C] = X . Since twrite and
taddr at time 1 are X , the CAM cannot
determine whether to write the value
of tagin at time 1 to the tag memory,
and to which tag entry to write it. As a
result, the entire tag memory at time 1
is X .Thus, hit at time 1 is X .

After two refinements, AutoSTE returns a pass result. Note that only constraints
necessary for obtaining the pass result were added.

−−→
TAG �= 0 appears in the constraint

since in this CAM implementation, the default value of the data source nodes of the tag
memory is 0. Thus, when

−−→
TAG = 0, even without knowing if and to which entry a tag is

written at time 1, the CAM determines that a tag that equals 0 exists in the tag memory.
Assertion 2 is an extension of Assertion 1. We add a constraint to the antecedent

that at time 0, datamem[−→A] is
−→
D . We also add a requirement to the consequent that at

time 1, dout is
−→
D . The first two refinements are the same as for assertion 1. The next

refinement goal is dout[0]. In iterations 3-4, twrite and taddr at time 1 are added to
A when

−−→
TAG = 0, since they are required in order to determine the value of dout[0]

at time 1. The relevant inputs for refinement in iterations 5-7 were dwrite, daddr and
din[0], all at times 0 and 1, the initial values of all tag memory entries and of bit number
0 of all data memory entries. The final iteration yields a counterexample in which dwrite
at time 1 equals 1, daddr at time 1 equals taddr at time 0, and din[0] at time 1 is different
from D[0]. This counterexample stems from an erroneous specification. If new data is
written at time 1 to the data entry associated with

−−→
TAG, then dout at time 1 will be equal

to the new data. Note that only constraints relevant to this counterexample were added.
Assertion 3 is as follows: (tagin is

−−−→
TAG)∧(taddr is

−→
A)∧(twrite is 1)∧(datamem[−→A]

is
−→
D) ∧N((twrite is 0) ∧ (dwrite is 0)) ∧ N2((aread is 1) ∧ (tagin is

−−−→
TAG) ∧

Table 1. Automatic Refinement of CAM Assertions

Assertion Iteration Goal Added Constraint
1,2 1 hit,1 N(−−→TAG �= 0 → twrite is vtwrite,1)
1,2 2 hit,1 N((−−→TAG �= 0 ∧ vtwrite,1 = 1) → taddr is −→v taddr,1)

2 3 dout[0],1 N(−−→TAG = 0 → twrite is vtwrite,1)
2 4 dout[0],1 N((−−→TAG = 0 ∧ vtwrite,1 = 1) → −−→

taddr is −→v taddr,1)
2 5 dout[0],1 N(dwrite is vdwrite,1)
2 6 dout[0],1 N(vdwrite,1 = 1 → −−−→

daddr is −→v daddr,1)
2 7 dout[0],1 N(((vdwrite,1 = 1) ∧ (−→v daddr,1 = −→

A)) → din[0] is vdin[0],1)
3 1 dout[0],2 D[0] �= 0 → dwrite is vdwrite,0

3 2 dout[0],2 (D[0] �= 0 ∧ vdwrite,0 = 1) → −−−→
daddr is −→v daddr,0

3 3 dout[0],2 (D[0] �= 0 ∧ −→
A �= 0) → tagmem0 is −→v tagmem0,0

202 R. Tzoref and O. Grumberg

(twrite is 0) ∧ (dwrite is 0)) =⇒ N2((hit is 1) ∧ (dout is
−→
D)). This assertion should

fail since the tag memory may already hold at time 0 a tag that equals
−−→
TAG. Though

usually it is assumed that the CAM environment will not write the same tag to two
different entries, most CAM implementations do not assume so. AutoSTE generates a
counterexample after 3 refinement iterations. In the counterexample, tag entry 0 equals−−→
TAG, and the address

−→
A to which

−−→
TAG is written is different from 0. The data asso-

ciated with tag entry 0 appears in dout, rather than the one written to address
−→
A . This

assertion demonstrates the case in which there is a need for refinement of initial values
of latches (tagmem0 at time 0). Since our heuristics prefer inputs that influence control,
the constraint on tagmem0 was added after constraints were added on dwrite and

−−−→
daddr

at time 0.

Calculator Design. Calculator 2 design [14] shown in Figure 6 is used as a case study
design in simulation based verification. It contains 2781 latches, 157 inputs and 56960
combinational gates. The calculator supports 4 types of commands: add, sub, shift right
and shift left. none stands for no command. Any other command is invalid. It has two
internal arithmetic pipelines: one for add/sub and one for shifts. The first argument of
the command is sent at the same cycle as the command. The second argument is sent in
the next cycle. The tag is a unique identifer for each of the commands from each of the 4
ports. It is sent at the same cycle as the command. The commands may be executed out
of order. However, commands from the same port that use the same pipeline must return
in order. The response is 1 for good, 2 for underflow, overflow or invalid command, 3
for an internal error and 0 for no response. Reset is 1 for the first 3 cycles.

SHIFT PIPELINE

PIPELINE

ADD/SUB

reset

c_clk

req1_cmd_in[0:3]
req1_data_in[0:31]
req1_tag_in[0:1]

req2_cmd_in[0:3]
req2_data_in[0:31]
req2_tag_in[0:1]

req3_cmd_in[0:3]
req3_data_in[0:31]
req3_tag_in[0:1]

req4_cmd_in[0:3]
req4_data_in[0:31]
req4_tag_in[0:1]

out_resp1[0:1]

out_data1[0:31]
out_tag1[0:1]

out_resp2[0:1]
out_data2[0:31]
out_tag2[0:1]

out_resp3[0:1]
out_data3[0:31]

out_resp4[0:1]
out_data4[0:31]
out_tag4[0:1]

out_tag3[0:1]

Fig. 6. Calculator

We present the results of AutoSTE on 4
assertions. Figure 7 reports the final result,
number of refinement iterations, run-time in
seconds and peak BDD nodes for each asser-
tion. For lack of space, the description of as-
sertion 4 exists in [13]. Table 2 reports the
refinement goal and added constraint in each
refinement iteration for assertions 1-3.

Assertion 1 checks whether after reset, if
a port sends an add or sub command, and the
other ports send no command or a command
other than add and sub, then the port that
sent the add/sub command receives a good
response with the appropriate tag at the first
available time (4 cycles after the commands were sent). A vector

−→
P of symbolic vari-

ables is used to determine which port is sending the add or sub command.
In the counterexample, a data overflow occurs for an add command sent by port

1, which triggers an invalid response at cycle 7. The BCOI of out resp1[0] contains all
command, tag and data inputs of all ports at different times. However, the set of relevant
inputs contains only all entries of req1 data in at cycles 3 and 4. req1 data in[31] at
cycles 3 and 4 is the minimal subset that is suffice to produce a counterexample, and is
indeed the one chosen by our heuristics.

Automatic Refinement and Vacuity Detection for Symbolic Trajectory Evaluation 203

Assertion 2 constrains the command sent by port i to add. The msb bits of the sent
data are constrained to 0 to avoid a possible overflow. The requirement is that the output
data for port i should match the expected data. No constraints exist on the commands
sent by other ports. In the counterexample, both ports 1 and 2 send an add command.
Port 1 is answered before port 2. The assertion fails due to an erroneous specification:
since port 1 has priority over port 2, port 2 may not receive a response at the first possible
cycle. Due to the implementation of the priority queue, the value of an additional port
had to be definite. The BCOI of (out resp2[0],7) contains cmd, data and tag inputs of all
ports at cycles 3 and 4. Out of them, only the cmd and data inputs are relevant inputs.

Assertion result Total Iter. Time BDD Nodes
1 fail 2 87 6241
2 fail 2 100 20134
3 fail 1 220 530733
4 pass 11 494 17323

Fig. 7. Automatic Refinement Performance on Cal-
culator Assertions

Assertion 3 presents the following
constraints: after reset, a port sends
an add or sub command, followed by
an add command with a certain tag
and data arguments, while limiting the
msb of the data to 0 to avoid a possible
overflow. All other ports do not send
an add or sub command during this
time. The requirements are: the port
that sent the add command receives a
response with the appropriate tag value and expected output data. There was one refine-
ment iteration. The BCOI of resp out1[0] includes all data and tag inputs of all ports.
However, only the tags of all ports at cycles 3-5 are relevant inputs. Our heuristics chose
the tag of port 1 at cycle 3. Choosing any other input would require additional iterations
in order to produce a counterexample. In the counterexample, the tag values of port 1
at cycles 3 and 4 are not consecutive. This counterexample stems from a planted de-
sign bug documented in [14]. There is supposed to be no restriction on tag ordering.
However, commands whose tags are out of order are treated as invalid.

Table 2. Automatic Refinement of Calculator Assertions

Assert. Iteration Goal Added Constraint
1 1 out resp1[0],7 N3−→P = 1 → req1 data in[31] is vreq1 data in[31],3

1 2 out resp1[0],7 N4−→P = 1 → req1 data in[31] is vreq1 data in[31],4

2 1 out resp2[0],7 N3−→P = 2 → req1 cmd in is −→v req1 cmd in,3

2 2 out resp2[0],7 N3(−→P = 2 ∧ −→v req1 cmd in,3 = (add ∨ sub)) →
req3 cmd in is −→v req3 cmd in,3

3 1 out resp1[0],9 N3−→P = 1 → req1 tag in is −→v req1 tag in,3

Acknowledgement. We thank Eli Singerman for introducing us to STE and to the Forte
environment.

References

1. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas. In CAV, 1997.

2. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In TACAS, 1999.

204 R. Tzoref and O. Grumberg

3. C-T. Chou. The mathematical foundation of symbolic trajectory evaluation. In CAV, 1999.
4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. In CAV, 2000.
5. S. Hazelhurst and C.-J. H. Seger. Model checking lattices: Using and reasoning about infor-

mation orders for abstraction. Logic journal of IGPL, 7(3), 1999.
6. R. P. Kurshan. Computer-Aided Verification of coordinating processes - the automata theo-

retic approach. 1994.
7. M. Pandey, R. Raimi, R. E. Bryant, and M. S. Abadir. Formal verification of content address-

able memories using symbolic trajectory evaluation. In DAC, 1997.
8. J.-W. Roorda and K. Claessen. A new SAT-based algorithm for symbolic trajectory evalua-

tion. In CHARME, 2005.
9. J.-W. Roorda and K. Claessen. SAT-based assistance in abstraction refinement for symbolic

trajectory evaluation. In CAV, 2006.
10. T. Schubert. High level formal verification of next-generation microprocessors. In DAC’03.
11. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of partially-

ordered trajectories. Formal Methods in System Design, 6(2), 1995.
12. C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. F. Melham, M. Aagaard, C. Barrett, and

D. Syme. An industrially effective environment for formal hardware verification. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 24(9), 2005.

13. R. Tzoref. Automatic refinement and vacuity detection for symbolic trajectory evaluation.
Master’s thesis, Department of Computer Science, Technion, Israel, 2006.

14. B. Wile, W. Roesner, and J. Goss. Comprehensive Functional Verification: The Complete
Industry Cycle. Morgan-Kaufmann, 2005.

15. J.C. Wilson. Symbolic Simulation Using Automatic Abstraction of Internal Node Values.
PhD thesis, Stanford University, Dept. of Electrical Engineering, 2001.

16. J. Yang, R. Gil, and E. Singerman. satGSTE: Combining the abstraction of GSTE with the
capacity of a SAT solver. In DCC, 2004.

17. J. Yang and A. Goel. GSTE through a case study. In ICCAD, 2002.
18. J. Yang and C.-J. H. Seger. Generalized symbolic trajectory evaluation - abstraction in action.

In FMCAD, 2002.
19. J. Yang and C.-J. H. Seger. Introduction to generalized symbolic trajectory evaluation. IEEE

Trans. Very Large Scale Integr. Syst., 11(3), 2003.

	Introduction
	Basic Definitions
	Choosing Our Automatic Refinement Methodology
	Selecting Inputs for Refinement
	Detecting Vacuity and Spurious Counterexamples
	Experimental Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

