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Abstract. Prediction of transmembrane (TM) proteins from their se-
quence facilitates functional study of genomes and the search of potential
membrane-associated therapeutic targets. Computational methods for
predicting TM sequences have been developed. These methods achieve
high prediction accuracy for many TM proteins but some of these meth-
ods are less effective for specific class of TM proteins. Moreover, their
performance has been tested by using a relatively small set of TM and
non-membrane (NM) proteins. Thus it is useful to evaluate TM pro-
tein prediction methods by using a more diverse set of proteins and by
testing their performance on specific classes of TM proteins. This work
extensively evaluated the capability of support vector machine (SVM)
classification systems for the prediction of TM proteins and those of
several TM classes. These SVM systems were trained and tested by
using 14962 TM and 12168 NM proteins from Pfam protein families.
An independent set of 3389 TM and 6063 NM proteins from curated
Pfam families were used to further evaluate the performance of these
SVM systems. 90.1% and 86.7% of TM and NM proteins were correctly
predicted respectively, which are comparable to those from other stud-
ies. The prediction accuracies for proteins of specific TM classes are
95.6%, 90.0%, 92.7% and 73.9% for G-protein coupled receptors, envelope
proteins, outer membrane proteins, and transporters/channels respec-
tively; and 98.1%, 99.5%, 86.4%, and 98.6% for non-G-protein coupled
receptors, non-envelope proteins, non-outer membrane proteins, and non-
transporters/non-channels respectively. Tested by using a significantly
larger number and more diverse range of proteins than in previous stud-
ies, SVM systems appear to be capable of prediction of TM proteins
and proteins of specific TM classes at accuracies comparable to those
from previous studies. Our SVM systems – SVMProt, can be accessed
at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.

1 Introduction

Transmembrane (TM) proteins play important roles for signaling, transport,
recognition and interaction with extracellular molecules [1,2,3,4]. Many TM pro-
teins, such as G-protein coupled receptors and channels, have been explored as
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therapeutic targets [5,6,7]. Membrane-bound transporters are responsible for ab-
sorption and excretion of drugs as well as cellular molecules [8,9]. Thus prediction
of TM proteins is important for facilitating functional study of genomes, under-
standing molecular mechanism of diseases, and for searching new therapeutic
targets.

Although TM proteins can be determined by experimental methods such as
antibody-binding analysis and C-terminal fusions with indicator proteins [10,11],
the number of experimentally determined TM proteins is significantly smaller
than the estimated TM proteins in genomes [12,13,14]. Thus computational
methods have been developed for facilitating the prediction of TM sequences
[13,14,15,16,17,18]. These methods are capable of achieving high prediction ac-
curacy for TM proteins and they can satisfactorily distinguish between TM and
globular proteins and between TM and signal peptides. A study of 14 TM protein
prediction methods using 270 helical TM chains, 1,418 signal peptides and 616
globular proteins showed that ∼95% TM helices are correctly predicted as TM
proteins and ∼92% of globular proteins are correctly predicted as non-membrane
(NM) proteins by the best methods [13]. A more recent study showed that ∼95%
of the 125 TM proteins and ∼99% of the 526 soluble proteins can be correctly
predicted by using a modified algorithm [18].

These methods have been developed and tested by using a few hundred to
several hundred TM sequences and a slightly higher number of NM proteins.
Our search of Swissprot database http://www.expasy.ch/sprot (Swissprot release
44.1, [19]) showed that there are 18358 TM protein sequences and over 134,000
NM proteins. Thus these methods may preferably need to be more adequately
tested and trained by using a more diverse set of proteins. Previous studies
also revealed that some TM prediction methods tend to predict proteins with
more than 5 TM helices at a lower accuracy [13], which affects their prediction
capability for such therapeutically and biologically relevant TM proteins as G-
protein coupled receptors and certain types of channels and transporters [20].
Some methods have been found to be less capable of distinguishing between
signal peptides and membrane helices [13,14]. Therefore, it is useful to evaluate
the performance of TM protein prediction methods on specific therapeutically
and biologically important classes of TM proteins.

The performance of a statistical learning method, support vector machine
(SVM), for the prediction of TM proteins was evaluated in this work by using a
diverse set of TM proteins and NM proteins. It was also tested on specific classes
of TM proteins. SVM is a relatively new and promising algorithm for binary clas-
sification by means of supervised learning and it appears to be more superior
than other statistical learning methods [21]. SVM has been applied to the pre-
diction of TM proteins [15,17] and a specific TM class of G-protein coupled
receptors [22] as well as other proteins [23,24,25,26,27,28,29,30,31]. These SVM
TM protein prediction systems were not trained and tested by using a sufficiently
diverse set of TM and NM proteins. Therefore, in this work, a large number of
TM and NM proteins were used to train and test a SVM system. SVM systems
were also trained and tested for the prediction of therapeutically and biologically
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important individual classes of TM proteins including G-protein coupled recep-
tors, envelope proteins, outer membrane proteins, and transporters/channels.

Many of the proteins in these four classes either contain more than 5 TM he-
lices or have non-helix TM segments. For instance, G-protein coupled receptors
contain 7 TM helices as well as intracellular and extracellular domains. Envelope
proteins are located in viral lipoprotein membranes which form the outermost
layer of the virion in certain viruses. Outer membrane proteins are located in
the outer membrane of organelles like mitochondria, chloroplasts and some eu-
bacteria which are surrounded by a double membrane. Almost all TM transport
processes are mediated by integral TM proteins, sometimes functioning in con-
junction with extracytoplasmic receptors or receptor domains as well as with
cytoplasmic energy-coupling and regulatory proteins or protein domains. Thus
the four classes of TM proteins have their own characteristics and they are useful
for testing the performance of SVM classification.

2 Methods

2.1 Selection of Transmembrane Proteins and Non-membrane
Proteins

All TM proteins used in this study were from a comprehensive search of Swis-
sprot database (Swissprot release 44.1, TrEMBL release 27.1, [19]). A total of
18,358 TM protein sequences were obtained, which include 8,457 G-protein cou-
pled receptors, 450 envelope proteins, 1,492 outer membrane proteins, and 980
transporters and channels. All distinct members in each group were used to
construct positive samples for training, testing and independent evaluation of
SVM classification system. Multiple entries for a distinct protein were evenly
distributed to the training, testing, and independent evaluation set.

The negative samples, i.e. NM proteins, for training and testing our SVM
classification systems were selected from seed proteins of the more than 3886
curated protein families in the Pfam database [32] that have no TM protein as a
family member. Each negative set contains at least one randomly selected seed
protein from each of the Pfam families. For each sub-group of non-G-protein
coupled receptor, non-envelope protein, non-out membrane protein, or non-
transporter/non-channel, distinct members in the other four sub-groups were
added to the negative samples of each of the training, testing and independent
evaluation set. For instance, distinct members of envelope proteins, out mem-
brane proteins, transporters and channels are added into the negative samples
of the G-protein coupled receptors. It is expected that the number of negative
samples in each of these sub-groups may be higher than that in the group of
negative samples for all TM proteins.

Training sets of both positive and negative samples were further screened so that
only essential proteins that optimally represent each group are retained. The SVM
training system for each group was optimized and tested by using separate testing
sets of both positive and negative samples composed of all the remaining distinct
proteins of a group and those outside the group respectively. The performance of
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SVM classification was further evaluated by using independent sets of both posi-
tive and negative samples composed of all the remaining proteins of a group and
those outside the group respectively. No duplicate protein entry was used in the
training, testing and independent evaluation set for each group. For those with suf-
ficient number of distinct members, multiple entries were assigned into each set.
For those with less than three distinct members, the proteins were assigned in the
order of priority of training, testing and independent evaluation set.

The number of positive and negative samples for each of the training, test-
ing and independent evaluation set for each group of TM proteins is given in
Table 1. The training set is composed of 2,105 TM and 2,563 NM proteins,
927 G-protein coupled receptors and 1,320 non-G-protein coupled receptors, 177
envelope proteins and 1,999 non-envelope proteins, 602 outer membrane pro-
teins and 1,539 non-outer membrane proteins, and 485 transporters/channels
and 3,511 non-transporters/non-channels. The testing set is comprised of 12,857
TM and 9,605 NM proteins, 4,998 G-protein coupled receptors and 13,216 non-
G-protein coupled receptors, 123 envelope proteins and 7,932 non-envelope pro-
teins, 547 outer membrane proteins and 8,385 non-outer membrane proteins, and
335 transporters/channels and 5,632 non-transporters/non-channels. The inde-
pendent evaluation set is made of 3,389 TM and 6,063 NM proteins, 2,532 G-
protein coupled receptors and 7,244 non-G-protein coupled receptors, 150 enve-
lope proteins and 4,952 non-envelop proteins, 343 outer membrane proteins and
4,948 non-outer membrane proteins, and 160 transporters/channels and 3,963
non-transporters/non-channels.

2.2 Feature Vector Construction

Construction of the feature vector for a protein was based on the formula for
the prediction of protein-protein interaction [33] and protein function prediction
[23,24,25,26]. Details of the formula can be found in the respective publica-
tions and references therein. Each feature vector was constructed from encoded
representations of tabulated residue properties including amino acids composi-
tion, hydrophobicity, normalized van der Waals volume, polarity, polarizability,
charge, surface tension, secondary structure and solvent accessibility.

There is some level of overlap in the descriptors for hydrophobicity, polar-
ity, and surface tension. Thus the dimensionality of the feature vectors may
be reduced by principle component analysis (PCA). Our own study suggests
that the use of PCA reduced feature vectors only moderately improves the ac-
curacy. It is thus unclear to which extent this overlap affects the accuracy of
SVM classification. It is noted that reasonably accurate results have been ob-
tained using these overlapping descriptors in various protein classification studies
[23,24,25,26,33,34,35,36].

2.3 Support Vector Machine

SVM is based on the structural risk minimization (SRM) principle from sta-
tistical learning theory [21]. SVM constructs a hyperplane that separates two
different classes of feature vectors. A feature vector xi represents the structural
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and physico-chemical properties of a protein. There are a number of hyperplanes
for an identical group of training data. The classification objective of SVM is to
separate the training data with maximum margin while maintaining reasonable
computing efficiency. SVM maps feature vectors into a high dimensional feature
space using a kernel function K(xi,xj) followed by the construction of OSH

in the feature space [36]. Gaussian kernel function: K(xi,xj) = e
−‖xi−xj‖2

2σ2 was
used in this work because it consistently gives better results than other kernel
functions [35]. Linear support vector machine is applied to this feature space
and then the decision function is given by:

f(x) = sign[
l∑

i=1

α0
i yiK(x,xi) + b], (1)

where the coefficients α0
i and b are determined by maximizing the following

Langrangian expression:

l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyjK(xi,xj), (2)

under conditions

αi ≥ 0 and
l∑

i=1

αiyi = 0. (3)

Positive or negative value from Eq.(1) indicates that the vector x belongs to
the positive or negative class respectively. To further reduce the complexity of
parameter selection, hard margin SVM with threshold was used in our own SVM
program SVM� [36].

As in the case of all discriminative methods [37], the performance of SVM clas-
sification can be measured by the quantity of true positives TP , true negatives
TN , false positives FP , false negatives FN , sensitivity SE = TP/(TP + FN),
specificity SP = TN/(TN + FP ), the overall accuracy (Q) and Matthews Cor-
relation Coefficient (MCC) [25] are given below:

Q = (TP + TN)/(TP + FN + TN + FP ), (4)

MCC =
TP • TN − FN • FP√

(TP + FN)(TP + FP )(TN + FN)(TN + FP )
. (5)

3 Results and Discussion

The number of training and testing proteins and prediction results of specific
class of TM proteins and the corresponding NM proteins are given in Table 1.
In this Table, TP stands for true positive (correctly predicted TM protein of
a specific TM class), FN stands for false negative (protein from a specific class
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of TM proteins incorrectly predicted as a non-class-member), TN stands for
true negative (correctly predicted non-class-member), and FP stands for false
positive (non-class-member incorrectly predicted as a member of a specific class
of TM proteins). The predicted accuracies for TM proteins, G-protein coupled
receptors, envelope proteins, outer membrane proteins, and transporters/channel
are 90.1%, 95.6%, 90.0%, 92.7% and 73.9% respectively. The predicted accuracies
for NM proteins, non-G-protein coupled receptors, non-envelope proteins, non-
outer membrane proteins, and non-transporters/non-channels are 86.7%, 98.1%,
99.5%, 86.4%, and 98.6% respectively.

Table 1. Prediction accuracies and the number of positive and negative samples in
the training, test, and independent evaluation set of transmembrane proteins (Tr),
G-protein coupled receptors (Gp), Envelope proteins (En), Outer Membrane proteins
(OM), and Transporters and Channels (TC). Predicted results are given in TP , FN ,
TN , FP , accuracy for positive samples SE, accuracy for negative samples SP , overall
accuracy Q and Matthews correlation coefficient MCC. The number of positive or
negative samples in the training set is P or N respectively. The number of positive or
negative samples in the test and independent evaluation sets is TP +FN or TN +FP
respectively. PF represents Protein Family.

Training Set Test Set Independent Set
PF P N TP FN TN FP TP FN TN FP SE SP Q MCC

(%) (%) (%)
Tr 2105 2563 11135 1722 8237 1368 3054 335 5254 809 90.1 86.7 87.9 0.749
Gp 927 1320 4993 5 13212 4 2421 111 7104 140 95.6 98.1 97.4 0.933
En 177 1999 112 11 7904 28 135 15 4927 25 90.0 99.5 99.2 0.867
OM 602 1539 547 0 8384 1 318 25 4276 672 92.7 86.4 86.8 0.499
TC 485 3511 331 4 5628 4 127 33 3909 54 73.9 98.6 97.8 0.735

A direct comparison with results from previous protein studies is inappro-
priate because of the differences in the specific aspects of proteins classified,
dataset, descriptors and classification methods. Nonetheless, a tentative com-
parison may provide some crude estimate regarding the level of accuracy of
our method with respect to those achieved by other studies. With the excep-
tion of and transporters/channels, the accuracies for various TM classes are
comparable to those of ∼95% obtained from previous studies [13,18]. The pre-
diction accuracy for transporters and channels is substantially lower primar-
ily because the collected proteins in this class are not sufficiently diverse to
adequately train the corresponding SVM classification system. There are 250
identified families of transporters and 115 families of channels, some of which
contain substantial number of distinct proteins [20]. Thus the collected 980
transporters and channels are not enough to fully represent all of the identified
families.

The prediction accuracy for the NM proteins and those of negative samples
of individual TM classes is comparable to the level of 92%∼99% obtained from
previous studies. Unlike that of the positive samples, the prediction accuracy
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for the negative samples of transporters and channels is comparable to those of
other classes and those from other studies. This is because the corresponding
SVM system was trained by using a diverse set of negative samples that include
all representative NM proteins and proteins from other TM classes.

4 Conclusion

SVM appears to be capable of prediction of MP proteins and proteins in spe-
cific TM classes from a large number and diverse range of proteins at accuracies
comparable to those from other studies. The prediction accuracy of SVM may
be further enhanced with the improvement of SVM algorithms particularly the
use of multi-class prediction models, more adequate training for distantly re-
lated proteins, and the use of the expanded knowledge about specific classes
of TM proteins such as transporters and channels. To assist their evaluation
and exploration, our SVM classification systems – SVMProt, can be accessed at
http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.
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