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Abstract. This paper presents an object recognition method based on
recursive neural networks (RNNs) and multiresolution trees (MRTs).
MRTs are a novel hierarchical structure proposed to represent both the
set of homogeneous regions in which images can be divided and the evo-
lution of the segmentation process performed to determine such regions.
Moreover, knowing the optimal number of regions that should be ex-
tracted from the images is not critical for the construction of MRTs, that
are also invariant w.r.t. rotations and translations. A set of experiments
was performed on a subset of the Caltech benchmark database, com-
paring the performances of the MRT and directed acyclic graph (DAG)
representations. The results obtained by the proposed object detection
technique are also very promising in comparison with other state-of-the-
art approaches available in the literature.

1 Introduction

In graphical pattern recognition, data is represented as an arrangement of ele-
ments, that encodes both the properties of each element and the relations be-
tween them. Hence, patterns are modeled as labeled graphs where, in general,
labels can be attached to nodes and edges.

In the last few years, a new connectionist model, that exploits the above de-
finition of pattern, has been developed [1]. In fact, recursive neural networks
(RNNs) have been devised to face one of the most challenging task in pattern
recognition: realizing functions from graphs to vectors in an automatic and adap-
tive way. The original RNN model and its evolutions were recently applied to
image processing tasks [2,3], obtaining interesting results. However, in order to
exploit RNNs, a crucial role is played by the graphical representation of patterns,
i.e. the way in which each image is represented by a graph. This choice affects
the performances of the whole process.

In this paper we propose a new graphical representation of images based on
multiresolution trees (MRTs), that are hierarchical data structures, somehow
related to other representations used in the past to describe images. MRTs are
generated during the segmentation of the images, like, for instance, quad–trees
[4]. Other hierarchical structures, so as monotonic trees [5] or contour trees [6],
can be exploited to describe the set of regions obtained at the end of the seg-
mentation process, representing the inclusion relationship established among the
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region boundaries. However, MRTs represent both the result of the segmenta-
tion, and the sequence of steps that produces the final set of regions. Moreover,
the construction of MRTs does not depend on a priori knowledge on the number
of regions needed to represent the images. Finally, MRTs combined with RNNs
allow us to develop efficient object detection and object recognition systems.

This paper proposes an object recognition method and evaluates its perfor-
mances on the Caltech benchmark dataset [7]. Two comparisons are presented:
first, the images are represented by MRTs and directed acyclic graphs (DAGs)
to assess which kind of structure allows to achieve better results; then the object
recognition technique is compared against the state of the art methods based on
vectorial representation and classical pattern recognition approaches [7,8,9,10].

The paper is organized as follows. In the next section, the RNN model is
described, whereas in Section 3 the algorithm to extract MRTs is defined. Section
4 collects the experimental results and, finally, Section 5 draws some conclusions.

2 Recursive Neural Networks

Recursive neural networks were originally proposed to process directed positional
acyclic graphs (DPAGs) [1,11]. More recently, an extended model, able to map
rooted nonpositional graphs with labeled edges (DAGs-LE) into real vectors, was
described [12]. This last RNN model is implemented based on a state transition
function which has not a predefined number of arguments and which does not
depend on the argument position. The different contribution of each child to the
state of its parents depends on the label attached to the corresponding edges.
At each node v, the total contribution Xv ∈ IRn of the states of its children is
computed as

Xv =
od[v]∑

i=1

Φ(Xchi[v], L(v,chi[v]), θΦ),

where od[v] is the outdegree of the node v, i.e. the number of its children, Φ :
IR(n+k) → IRn is a function depending on a set of parameters θΦ, Xchi[v] ∈ IRn

is the state of i-the child of node v, and L(v,chi[v]) ∈ IRk is the label attached
to the edge (v, chi[v]). The state at the node v is then computed by another
function f : IR(n+m) → IRn that combines the contribution of Xv with the node
label Uv ∈ IRm:

Xv = f(Xv, Uv, θf ),

being f a parametric function depending on the parameters θf . Moreover, at the
root node s, also an output function g is computed by another function g as

Ys = g(Xs, θg).

The functions Φ, f and g can be implemented by feedforward neural networks,
in which the parameters θΦ, θf and θg are connection weights (see Figure 1(b)).
As shown in Figure 1(c), the processing of an input graph is obtained by apply-
ing the recursive neural network (Figure 1(b)) recursively on the graph nodes,
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starting from the leaves. This processing scheme yields an unfolding network
whose structure depends on the topology of the input graph. The state Xv at
each node encodes a representation of the subgraph rooted at v.

(a) Input graph
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(c) RNN unfolding on the input graph

Fig. 1. The RNN processing scheme

RNNs can be trained to categorize images represented as graphs. Therefore
an object recognition system can be developed based on a pool of RNNs where
each network is specialized in recognizing a particular object class.

3 Multiresolution Trees

The neural network model proposed in Section 2 assumes to process structured
data. Therefore a preprocessing phase that allows to represent images by graphs
is needed, in order to exploit such model to perform any task on images (classifi-
cation, localization or detection of objects, etc.). In the last few years, some image
analysis systems based on RNNs and graph–based representation of images were
proposed [12,13,14]. In these approaches, images are segmented to obtain a set
of homogeneous regions that are subsequently represented by region adjacency
graphs (RAGs). Then, since RNNs can process only directed structures, while
RAGs are not, a further step is needed, to transform each RAG into a directed
acyclic graph (DAG) [14] or into a set of trees [2]. The transformation from
a RAG to a DAG can be obtained very efficiently, performing a breadth–first
visit of the RAG, until each node is visited once. However, during this process
each edge is transformed into a directed arc depending on arbitrary choices, in
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particular the starting node for the breadth–first visit. In fact, the assignment
of a direction to the adjacency relation changes the semantics of this relation,
that is naturally undirected. On the contrary, the mapping from a DAG to a set
of trees allows us to preserve the structural information, but it is particularly
time consuming. As a matter of fact, for each node belonging to the RAG, a
breadth–first visit must be performed to obtain a tree.

In this section, the representation of images based on MRTs is proposed. This
kind of structure presents two advantages: first MRTs can be processed directly
by RNNs without the need of any transformation; second they somehow reduce
the dependence of the representation from the choice of the number of regions
to be extracted in the segmentation process.

Nowadays, there is no a universal theory on image segmentation, and all the
existing methods are, by nature, ad hoc. Moreover, the determination of the
exact number of regions that should be extracted from a given image is a very
challenging task, and can affect the performances of the system that takes the
computed representation as input. MRTs allow us to ignore this information,
since they collect, at each level, a distinct segmentation of the input image,
obtained during a region growing procedure.

Since an MRT is generated during the segmentation, we need to describe how
a set of homogeneous regions is extracted from an input image. First, a K–means
clustering of the pixels belonging to the input image is performed. The clustering
algorithm minimizes the Euclidean distance (defined in the chosen color space) of
each pixel from its centroid. The number of clusters computed during this step
is determined considering the average texture of the input image, since such
a parameter provides useful information about the complexity of the depicted
scene. It is worth noting that the number of extracted regions is greater than the
number of clusters, since each cluster typically corresponds to several connected
components. At the end of the K–means, a region growing step is carried out to
reduce the number of regions, and, at the same time, to generate the MRT. The
region growing procedure is sketched in Algorithm 1.1. Actually, the proposed
method assumes to merge together groups of homogeneous regions, with the aim
of bounding the maximum outdegree of the MRT, and, consequently, its depth.
The algorithm takes as parameters the set of regions (Rset) obtained at the end
of the K–means, and maxGroupSize, the maximum number of regions that can
belong to a group. The goal of the algorithm is to reduce the number of regions,
and to compute the set of nodes V , and the set of edges E, that define the MRT.

Initially, the set V is updated exploiting the function createNode that creates
a new node and computes the node label (a set of visual and geometric features).
These nodes represent the leaves of the MRT. Then, for each region r belonging
to Rset, a region group g is created and stored in Gset, using the function cre-
ateGroup. The region r represents the seed of g. Moreover, each region adjacent
to r is added to the group that has r as its seed. When the number of adja-
cent regions is greater than maxGroupSize, the color distance between r and
its adjacent regions is computed, and only the maxGroupSize nearest adjacent
regions are added to g. Note that, after this step,

⋃|Gset|
i=1 gi = I, being I the
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whole image, but
⋂|Gset|

i=1 gi �= ∅, and then Gset must be rearranged with the
aim of obtaining a partitioning of the image, such that

⋂|Gset|
i=1 gi = ∅.

Algorithm 1.1. CreateMRT(Rset,maxGroupSize)

{
V←E←Gset←∅;
for each r ∈ Rset

V←V
�

{createNode(r)};
while(|Rset|≥ maxGroupSize) {

for each r ∈ Rset
Gset←Gset

�
{createGroup(r)};

Gset←cleanGroups(Gset,H());
for each g ∈ Gset{

newr←mergeGroup(g);
Rset←Rset - members(g)

�
{newr};

newn←createNode(newr);
V←V

�
{newn};

for each r ∈ members(g)
E←E

�
{(newn,getNodeAssociatedWith(r))};

}
Gset←∅;

}
root←createNode(

�|Rset|
i=1 ri);

V←V
�

{root};
for each r ∈ Rset

E←E
�

{(root,getNodeAssociatedWith(r))};
}

This phase is performed by the function cleangroups, that is described by Al-
gorithm 1.2. This function takes as input Gset and a homogeneity function H(),
that is used to compute the degree of similarity of the regions that belong to
a given group. The function H() is a parameter of the segmentation algorithm
and must be chosen such that a high value of H(g) corresponds to a high proba-
bility of merging g. First, the groups are sorted in descending order w.r.t. their
homogeneity. As a matter of fact, if a region r belongs to a group having high
homogeneity, the group that has r as its seed must be removed from Gset. Con-
sidering that adjacent(g) collects the set of regions that belong to g, except for
its seed, and the function getGroupBySeed(r) returns the group that has r as its
seed, the first iterative block of the algorithm performs the following steps. For
each group g, the set adjacent(g) is analyzed. For each region r in adjacent(g),
if r is the seed of a group that has lower homogeneity than g, then the group
is removed from Gset, otherwise r is removed from adjacent(g). However, the
goal of obtaining a partitioning of the original image is still not reached, because
the algorithm removed only whole groups, but some regions can belong to more
than one group. Then, the function cleanGroups scans again all the members of
the groups looking for regions that belong to two or more groups, and, if they
exist, removes them from the groups that have lower homogeneity.
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Algorithm 1.2. cleanGroups(Gset,H())
{

Gset←sort(Gset,H());
for each g ∈ Gset

for each r ∈ adjacent(g)
if (H(g) ≥ H(getGroupBySeed(r)))

Gset←Gset - getGroupBySeed(r);
else

adjacent(g)←adjacent(g)-r;
for each g1 ∈ Gset

for each g2 ∈ Gset and g1 �= g2

for each r1 ∈ adjacent(g1)
for each r2 ∈ adjacent(g2)

if (r1 = r2)
if (H(g1) ≥ H(g2))

adjacent(g2)←adjacent(g2)-r2;
else

adjacent(g1)←adjacent(g1)-r1;
}

At the end of Algorithm 1.2, Gset collects a partitioning of the whole image
and Algorithm 1.1 merges together the regions that belong to the same groups.
The set of regions Rset is updated considering the new regions, and a new level
of the MRT is created. For each new region newr, a new node newn is created.
Finally, newn is linked to the nodes that are associated with the regions merged
to obtain newr.

The main loop of Algorithm 1.1 is repeated until the cardinality of Rset is
greater than maxgroupSize. At the end of the main loop, the root node is added
to the MRT and linked to all the nodes that correspond to the regions collected in
Rset. All the nodes in the MRT have a label that describes visual and geometric
properties of the associated regions, and also each edge has a label that collects
some features regarding the merging process.

The proposed technique presents some advantages. First, segmentation meth-
ods based on region growing generally produce results that depend on the order
in which the regions are selected during the merging process, and, as a side effect,
the final set of regions is not invariant w.r.t. rotations, translations, and other
transformations of the input image. Instead, the region growing method pro-
posed in Algorithm 1.1 is independent from rotations and translations, since the
regions are selected considering the order defined by the homogeneity function.

The main advantage of MRTs consists in being independent of the number of
regions needed to represent the image. Actually, a distinct segmentation, with
a different number of regions, is stored in each level of the tree. The key idea
consists in exploiting the capabilities of adaptive models, like RNNs, to discover
at which level the best segmentation is stored. Moreover, MRTs are invariant
w.r.t. rotations and translations of the images and do not describe directly the
topological arrangement of the regions, that however can be inferred consid-
ering both the geometric features associated to each node (for instance, the
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coordinates of the bounding box of each region can be stored in the node la-
bel) and the MRT structure. Finally, the region growing is performed merging
together groups of regions instead of pairs, to avoid the generation of binary
trees. As a matter of fact, the generation of binary trees implies the genera-
tion of deeper structures, and RNNs suffer in processing such structures, due to
the ”long-term dependency” phenomenon, that was originally investigated for
recurrent neural networks [15].

4 Experimental Results

In order to evaluate the capability of MRTs to represent the contents of images,
some experiments were carried out, addressing an object recognition problem.
The experiments were performed using the Caltech Database1, since it represents
a popular benchmark for object class recognition. The Caltech database collects
six classes of objects: motorbikes, airplanes, faces, cars (side view), cars (rear
view), and spotted cats. Our experiments were focused on a subset of the dataset,
that consists only of images from the motorbikes, airplanes, faces, and cars (rear
view) classes.

Fig. 2. Samples of images from the Caltech database

For each class, three datasets were created: training, test, and cross–validation
sets. The training and test sets collect 96 images each, while 48 images belong
to the cross–validation set. For each set, half images correspond to positive ex-
amples, while the other images are examples of the negative class (i.e. images
from the other classes). All the images were selected randomly from the Caltech
database and segmented in order to obtain both MRTs and DAGs.

MRTs were obtained using Algorithm 1.1 and a maximum group dimension
equal to 7. The homogeneity function, that affects directly the segmentation and
the MRT generation, was chosen to be H(g) = 1

σ2 , being σ2 the color variance
of the group g in the image color space. The node labels in the MRTs collect
geometric and visual information, like area, perimeter, barycenter coordinates,
momentum, etc., while color distance, barycenter distance, and the ratio ob-
tained dividing the area of the child region by the area of the parent region, are

1 The Caltech database is available at http://www.robots.ox.ac.uk/∼vgg/data3.html
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Table 1. Results obtained representing images by DAGs or MRTs. The second column
shows the number of state neurons of the recursive network. The results are reported
using the average ROC equal error rate, obtained performing ten learning runs.

State neurons Airplanes Motorbikes Faces Cars(rear)
M 5 100 97.91 100 92.7
R 7 95.83 92.7 100 90.6
T 10 94.79 92.7 100 92.7
D 5 75 69.79 73.54 76.04
A 7 75 70.83 70.41 77
G 10 75 68.75 71.67 78.12

Table 2. Best results obtained using MRTs compared against results available in the
literature. The results are reported using the average ROC equal error rate.

RNNs and MRTs Zhang [8] Fergus [7] Opelt [9] Thureson [10]
Motorbikes 97.91 99 92.5 92.2 93.2
Airplanes 100 98.3 90.2 88.9 83.8

Faces 100 99.7 96.4 93.5 83.1

used as edge labels. With respect to the generation of DAGs, a modified version
of Algorithm 1.1 was exploited. The instructions related to the MRT genera-
tion were removed, and the main loop was halted when the number of regions
become smaller than the parameter that was used to determine the number of
initial K–means clusters. Finally, at the end of the region growing phase, the
DAG was generated following the steps described in [14]. The generated MRTs
collect 400 nodes and are composed by 8 levels, on average, whereas DAGs con-
tain about 70 nodes. For each class, several RNN classifiers were trained, using
both MRTs and DAGs, in order to determine the best network architecture.
The transition function f is realized by an MLP with n + 1 hidden units (using
the hyperbolic tangent as output function) and n linear outputs, being n the
number of state neurons. The function Φ, that combines the state of each child
with the corresponding edge label, is implemented by an MLP with a layer of
n+1 sigmoid hidden units and n linear outputs. Finally, the output network g is
an MLP with n inputs, n−2 sigmoid hidden units and one sigmoid output. The
obtained results are reported in Table 1. Even if the main goal of the experiments
is the comparison between MRTs and DAGs, Table 2 collects also a comparison
between the presented object recognition system and other methods known in
the literature, that were evaluated using the same benchmark database. The
method based on MRTs definitely outperforms the DAG–based representation.
Moreover, the comparison with the other methods reported in Table 2 shows
very promising results, even if our experiments were performed considering only
a subset of the Caltech database.

5 Conclusions

In this paper, we proposed a new hierarchical representation of images, based
on multiresolution trees. An MRT represents, in a unique structure, the result
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of image segmentation, and the sequence of steps that produces the final set of
regions. The performances of the proposed representation technique were eval-
uated addressing an object recognition task. A method based on RNNs and
MRTs was proposed and evaluated on the Caltech benchmark dataset, showing
promising results.
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