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Abstract. The WARP system defines a dissimilarity measure between
shapes described by their contours which is based on Dynamic Time
Warping of Fourier Descriptors based signatures. These signatures are
invariant to translation, scaling, rotation, and selection of the starting
point. However, identical shapes present ambiguous signatures and sim-
ilar shapes may yield significantly different signatures. Differences affect
rotation and starting-point of the signatures, which may lead to poor
performance in classification and shape retrieval tasks. We propose a dif-
ferent signature method to provide true rotation invariance and a Cyclic
Dynamic Time Warping dissimilarity measure to achieve true starting-
point invariance in shape comparisons.

1 Introduction

Content-based image retrieval is being increasingly demanded in many applica-
tions: digital libraries, broadcast media selection, multimedia editing, etc. [7].
In order to be effective in classification an retrieval tasks, shape descriptions,
combined with (dis)similarity measures, must be robust to noise and invariant
to transformations such as translation, scaling, and rotation.

Recently, Bartolini et al. have proposed a new Discrete Fourier Transform
based approach to represent and compare shapes: the WARP System [1]. The
normalized, low-frequency Fourier Descriptors (FDs) (including phase informa-
tion) are used to reconstruct the original shape. We will refer to the reconstructed
shape with the term signature. The signature is a good approximation to the
original shape and contains a small number of points. Moreover, it is a sequence
of complex values with a canonical starting point, which makes it amenable to be
compared to other signatures by means of standard sequence comparison meth-
ods. The WARP system uses Dynamic Time Warping (DTW) in order to com-
pare sequences [6]. In [1], some experiments on the SQUID Demo and MPEG-7
CE-Shape-1 databases show that the WARP system outperforms other index-
able curvature-based shape descriptors and FDs-based signatures that do not
take into account phase information.
� This work has been supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa
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The WARP system presents two drawbacks: (1) reconstructing the shape
contour from normalized FDs produces signatures with an ambiguity modulo
a rotation of π radians [2] (which also affects the starting-point selection); and
(2) perceptually similar shapes may have significantly different signatures (in
orientation and starting point selection), which leads to poor performance of
DTW-based comparisons. In order to solve these problems, we propose (1) a
different encoding of the shape contour (which is based on the derivative of the
reconstructed contour), and (2) to compare derivative-based signatures by means
of a Cyclic Dynamic Time Warping dissimilarity measure.

The paper is organized as follows: In Sect. 2, some notation is introduced. In
Sect. 3, the WARP system is reviewed and the observed drawbacks are pointed
out. A simple improvement to the WARP system which provides better rotation
invariance and a Cyclic Dynamic Time Warping procedure that provides starting
point invariance when comparing signatures are presented in Sect. 4. In Sect. 5,
experimental results on image retrievals tasks for the SQUID Demo and MPEG-7
CE-Shape-1 databases compare the different methods. Finally, some conclusions
are presented in Sect. 6.

2 Notation

Shapes can be coded as a cyclic sequence of points along the contour. A cyclic
sequence can be viewed as the set of sequences obtained by cyclically shifting a
representative sequence (i.e., by choosing different starting points).

Let C∗ be the closure of C, the field of complex numbers, under a concatena-
tion operator and let a = a0a1 . . . am−1 ∈ C∗ be a sequence of m points (complex
values) describing a (counter-clockwise) contour1. A cyclic shift σ of a is a map-
ping σ : C∗ → C∗ defined as σ(a0a1 . . . am−1) = a1a2 . . . am−1a0. Let σk denote
the composition of k cyclic shifts and let σ0 denote the identity. Two sequences a
and â are cyclically equivalent if a = σk(â) for some integer k. A cyclic sequence
is an equivalence class [a] = {σk(a) : 0 ≤ k < m}. Any of its members is a
representative (non-cyclic) sequence.

3 The WARP System

Dynamic Time Warping (DTW) of sequences of 2D points describing shapes is
sensitive to changes in position, scale, orientation of contours and to selection
of their starting points. Therefore, DTW does not lead to good dissimilarity
measures when the original, cyclic sequences describing shapes are used. The
WARP images retrieval system [1] is based on the DTW-based comparison of
compact, normalized signatures of shapes. These signatures are obtained by
applying the Inverse Discrete Fourier Transform (IDFT) to the shape’s Fourier
Descriptors (FDs) after a normalization procedure.

1 Note that a0a1 . . . am−1 does not denote the product of m complex numbers, but
their concatenation to form a sequence.
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The Discrete Fourier Transform (DFT) of a sequence a = a0a1 . . . am−1 is an
ordered set of complex values A = (A−m/2, . . . , A−1, A0, A1, . . . , Am/2−1) where
Ai =

∑
0≤k<m ake−j2πki/m and j =

√
−1. These coefficients are the FDs and

model the contour of a shape as a composition of ellipses revolving at different
frequencies [2]. The main ellipse is centered at the contour centroid, A0, and
translation of the contour only affects this descriptor. Scaling by a factor α
scales the FDs by α. Rotating the shape by an angle θ yields a phase shift of θ
in the FDs. The cyclic shift σk(a) produces a linear phase shift of 2πki/m to Ai.

The A0 descriptor can be set to 0 in order to provide invariance to translation.
Let us consider the polar representation of the descriptors: Ai = rie

jθi . The value
of A1 is the length of the main axis of the basic (low frequency) ellipse; therefore,
dividing all the descriptors by r1 provides invariance to scale. Invariance to
rotation can be obtained by substracting (θ−1 + θ1)/2 (the orientation of the
basic ellipse) to each θi. Invariance with respect to the starting point can be
achieved by adding i(θ−1 − θ1)/2 to each θi. In principle, the shape can be
reconstructed to a canonical form (invariant to translation, scaling, rotation, and
starting point) by computing the IDFT. Noise in the contour can be reduced
by taking only M � m low frequency components before computing the IDFT.
The WARP system only uses the M = 32 lower frequency FDs before computing
the IDFT. The resulting shape is a more compact, canonical representation of
the original one: a signature.

Let a = a0a1 . . . am−1 and b = b0b1 . . . , bn−1 be two sequences. An alignment
between a and b is a sequence of pairs (i0, j0), (i1, j1), . . . , (ik−1, jk−1) such
that (a) 0 ≤ i� < m and 0 ≤ j� < n for 0 ≤ � < k; (b) 0 ≤ i�+1 − i� ≤ 1 and
0 ≤ j�+1−j� ≤ 1 for 0 ≤ � < k−1; and (c) (i�, j�) �= (i�+1, j�+1) for 0 ≤ � < k−1.
The pair (i�, j�) is said to align ai�

with bj�
. The weight of an alignment is defined

as
∑

0≤�<k δ(ai�
, bj�

), where δ is a “local dissimilarity” function that the WARP
system defines as δ(ai, bj) = |ai − bj |2. An optimal alignment is an alignment of
minimum weight.

The DTW dissimilarity measure D(a, b) is defined as
√

d(m − 1, n − 1), where
d(m − 1, n − 1) is the weight of an optimal alignment and is defined as2

d(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(a0, b0), if i = j = 0;
d(i − 1, j) + δ(ai, b0), if i > 0 and j = 0;
d(i, j − 1) + δ(a0, bj), if i = 0 and j > 0;

min

⎧
⎪⎨

⎪⎩

d(i − 1, j − 1),
d(i − 1, j),
d(i, j − 1)

⎫
⎪⎬

⎪⎭
+ δ(ai, bj), if i > 0 and j > 0.

(1)

This equation can be solved by Dynamic Programming in O(mn) time: the
problem is reduced to the computation of an optimal path in the warping graph,
a weighted, acyclic graph with O(mn) arcs. Fig. 1 depicts the complete WARP

2 The recursive equation in [1, page 144] contains a typo: the square root should be
applied only to d(m − 1, n − 1), and not to all d(i, j).
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DFT FD
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Fig. 1. The WARP system: shapes are compared by means of DTW on the IDFT of
normalized FDs

(a) (b) (c)

Fig. 2. (a) Original shape and its normalized version. (b) The same shape compressed in
the X axis and its normalized version, which has a different rotation and starting point.
(c) A bit more compressed shape and its normalized version, which is also different.

comparison procedure. The DTW computation in the WARP system is O(M2),
where M � m, n, since comparisons are performed on signatures.

3.1 Drawbacks of the WARP System

It should be noted that subtracting (θ−1 + θ1)/2 to the orientation of all FDs
only provides rotation invariance modulo π radians [2]. The WARP system does
not consider this ambiguity. Anyway, let us consider that the rotation ambiguity
is not present. The basic idea of the WARP system is that, after normalization,
all shapes have a canonical version with a “standard” centroid, scale, rotation,
and starting point and thus, can be compared by means of the DTW dissim-
ilarity measure. But this is a flawed reasoning: invariance is only achieved for
different translations, scalings, rotations, and starting points of the same shape.
Different shapes (even similar ones) may differ substantially in their normalized
orientation and starting point. Fig. 2 shows three perceptually similar figures
(in fact, the second and third ones have been obtained from the first one by
slightly compressing the horizontal axis) whose normalized version are signifi-
cantly different in terms of orientation and starting point. This problem appears
frequently in shapes whose basic ellipse is almost a circle. Invariance to rotation
and starting point election should be provided by a different method.
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In the next section, we present an alternative signature which provides better
rotation invariance for similar shapes and a dissimilarity measure which is not
affected by the starting point of the signature.

4 Cyclic Dynamic Time Warping: A Rotation and
Starting-Point Invariance Comparison

We have seen that the signature of similar shapes may present different orienta-
tions (Fig. 2). True rotation invariance can be obtained by taking the derivative
of the normalized shape, i.e., replacing a′

i by a′
i − a′

(i−1) mod M . We need this
derivative signature to use the dissimilarity measure that is detailed next.

When two signatures have “equivalent” starting points, DTW provides a good
dissimilarity measure. However, we have seen that similar shapes can present
very different starting points. It is useful to consider the problem under the
framework of cyclic alignments, i.e., alignments between cyclic sequences.

Let [a] = [a0a1 . . . am−1] and [b] = [b0b1 . . . bn−1] be two cyclic sequences.
A cyclic alignment between [a] and [b] is a sequence of pairs (i0, j0), (i1, j1),
. . . , (ik−1, jk−1) such that, for 0 ≤ � < k, (a) 0 ≤ i� < m and 0 ≤ j� < n;
(b) 0 ≤ i(�+1) mod m − i� ≤ 1 and 0 ≤ j(�+1) mod n − j� ≤ 1; and (c) (i�, j�) �=
(i(�+1) mod m, j(�+1) mod n). The weight of a cyclic alignment (i0, j0), (i1, j1), . . . ,
(ik−1, jk−1) is defined as

∑
0≤�<k δ(ai�

, bj�
), where δ is the local dissimilarity

measure. An optimal cyclic alignment is a cyclic alignment of minimum weight.
The Cyclic Dynamic Time Warping (CDTW) dissimilarity measure D̂([a], [b])

is defined as the square root of the weight of the optimal cyclic alignment between
a and b. First, we are going to show that the optimal cyclic alignment can be
defined in terms of alignments between non-cyclic sequences, i.e., in terms of
D(·, ·); then, we will present an efficient procedure to compute it.

Lemma 1. If m, n > 1 and (i0, j0), (i1, j1), . . . , (ik−1, jk−1) is an optimal
alignment between two sequences a0a1 . . . am−1 and b0b1 . . . bn−1, there is at least
one � such that i� �= i(�+1) mod m and j� �= j(�+1) mod n.

Proof: Any alignment including (i�, j�), (i� + 1, j�), and (i� + 1, j� + 1) can be
“improved” by removing (i� + 1, j�), since δ(ai�+1, bj�

) ≥ 0. Analogously, any
alignment including (i�, j�), (i�, j� + 1), and (i� + 1, j� + 1) can be “improved”
by removing (i�, j� + 1). �

Lemma 2. The CDTW dissimilarity between [a] = [a0a1 . . . am−1] and [b] =
[b0b1 . . . bn−1], D̂([a], [b]), can be computed as min0≤k<m min0≤�<n D(σk(a),
σ�(b)).

Proof: Trivial when m = 1 or n = 1. Let us consider that m, n > 1 and let
(i0, j0), (i1, j1), . . . , (ik−1, jk−1) be an optimal alignment. Let � be an index
such that i� �= i(�+1) mod m and j� �= j(�+1) mod n (by Lemma 1). The weight of
this cyclic alignment is D(σ(i�+1) mod m(a), σ(j�+1) mod n(b)), which is considered
by the double minimization. �
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According to Lemma 2, the value of D̂([a], [b]) can be trivially computed in
O(m2n2) time by solving mn recurrences like equation (1). Maes showed in [4]
that the Cyclic Edit Distance (CED), a related dissimilarity measure, can be
computed in O(m2n) time by performing cyclic shifts only on one of the se-
quences. This observation finally led to a O(mn lg m) time algorithm. Is it pos-
sible to perform cyclic shifts on only one of the sequences when computing the
CDTW? The answer is no: in general, D̂([a], [b]) is neither min0≤k<m D(σk(a), b)
nor min0≤k<n D(a, σk(b)), as the following counter-example shows: let z and w

be two complex numbers such that δ(z, w) = 1; the value of D̂([zwz], [wzw])
is 0, since D(zzw, zww) = 0, but D(zwz, wzw) = 3 and D(wzz, wzw) =
D(zzw, wzw) = D(zwz, zww) = D(zwz, wwz) = 1. Therefore, an equivalent of
Maes’ algorithm for the CED computation cannot be directly applied to CDTW
dissimilarity computation.

Theorem 1. The CDTW dissimilarity between cyclic sequences [a] and [b] can
be computed as D̂([a], [b]) = min0≤k<m

(
min(D(σk(a), b), D(σk(a)ak, b))

)
.

Proof: Each alignment induces a segmentation on a and a segmentation on
b. All the values in a segment are aligned with the same value of the other
cyclic sequence (Lemma 1). There is a problem when bn−p−1, bn−p, . . . bn−1 and
b0, b1, . . . bq, for some p, q ≥ 0, should belong to the same segment of b. In that
case, the optimal path cannot be obtained by simply shifting a, since bn−1 must
be aligned with the last value of σk(a) and b0 must be aligned with its first value,
i.e., they cannot belong to the same segment. The sequence σk(a)ak allows to
align bn−pbn−p+1 . . . bn and b0b1 . . . bq with the first value of σk(a), since ak also
appears at the end of σk(a)ak. �
The value of D(σk(a), b) and D(σk(a)ak, b), for each k, can be obtained by
computing shortest paths in an extended warping graph similar to the extended
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Fig. 3. (a) Extended warping graph for a = wwzz and b = zzzw, where z and w
are complex numbers such that δ(z,w) = 1. Arcs ending at node (i, j) are weighted
δ(ai, bj). The optimal alignment for [a] and [b] is the minimum weight path starting
from any colored node in the lower row and ending at a node containing the same color
in the upper row (all path candidates are shown with thick lines). (b) Optimal crossing
paths can be avoided: if the weight of the subpath q is greater than the weight of the
subpath q′, the black path can be improved by traversing q′ instead of q.
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Fig. 4. Divide-and-Conquer procedure to compute the CDTW dissimilarity between
the sequences of Fig. 3. First, the optimal alignment (path) between a and b and
between σ0(a)a0 and b is computed. The first optimal path is used as a left and right
frontier in the extended graph: only the white region must be explored to compute
the optimal alignment between σ2(a) and b and between σ2(a)a2 and b. This idea is
applied recursively to the computation of the other optimal alignments, but using also
the optimal alignment between σ2(a) and b as a new left or right frontier.

edit graph defined by Maes [4] (see Fig. 3 (a)). Since the non-crossing property
of edit paths also holds for alignment paths (see Fig. 3 (b)), the Divide-and-
Conquer approach proposed by Maes can be applied to CDTW. The reader is
addressed to [4] to obtain a complete description of the Divide-and-Conquer
procedure, which is depicted in Fig. 4. It should be taken into account that,
unlike in Maes’ algorithm, the optimal path starting at (k, 0) can finish either
at node (k + m − 1, n − 1) or (k + m, n − 1).

When applied to signatures, the running time of the algorithm is
O(M2 log M): each recursive step divides the search space in two halves and
all recursive operations at the same recursion level require total O(M2) time.

5 Experiments

In [1], the WARP system was tested on a labeled version of the SQUID Demo
database and the MPEG-7 Core Experiment CE-Shape-1 (part B). We have
performed comparative experiments with the same test sets.

The SQUID Demo database consists of 1100 contours of marine species and
is used as a demonstration application of the Shape Queries Using Image Data-
bases system [5]. The original database does not divide the contours into classes.
Bartolini et al. manually classified 252 images into 10 semantic categories3. They
3 Seahorses (5 images), seamoths (6), sharks (58), soles (52), tonguefishes (19), crus-

taceans (4), eels (26), u-eels (25), pipefishes (16), and rays (41).



Shape Retrieval Using Normalized FDs Based Signatures and Cyclic DTW 215

conducted some precision (P) versus recall (R) shape retrieval experiments with
30 query images from the 10 semantic categories. For each query, images in the
same category were considered relevant and all the others were considered irrel-
evant. Since we do not know which query images were used, we have run queries
on the 252 labeled shapes.

Fig. 5 shows the precision/recall graph for 3 retrieval procedures: (i) WARP:
the standard WARP system; (ii) Derivative: derivative of the reconstructed con-
tour as a shape signature and DTW-based comparison; (iii) CDTW: derivative
of the reconstructed contour and comparison by means of the Cyclic Dynamic
Time Warping dissimilarity. It can be seen that the two methods proposed in
this work improve the WARP results. The signature based on the derivative
provides a better precision/recall curve, thus confirming that the WARP system
is sensitive to variation of orientation in the signatures of similar (but not iden-
tical) shapes. There is also a significant difference between CDTW-comparison
and the other methods.
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Fig. 5. Precision/Recall results on the SQUID Demo database

In [1], the WARP system was also compared to a Curvature Scale Space
(CSS) based image retrieval on the same MPEG-7 experiment presented in [3]. A
CSS-based query system obtained an average precision of 37.72% (the maximum
precision attainable in that experiment is 50%) and the WARP system obtained a
29.25% average precision. Bartolini et al. explain in [1] that the CSS system is an
approximate query processing algorithm that can easily lead to false dismissals
(filtering out best-matching images) by discarding shapes with an aspect ratio
greater than a user threshold. Other techniques with similar or slightly better
results are not suitable for efficient indexing and, thus, can only be used in
small-size databases. Using the derivative-based signature, the average precision
is 31.29%. The precision raises to 34.17% when the CDTW is used.

6 Conclusions

In this work, we have critically studied the WARP system, detected some draw-
backs, and presented several ways to improve its precision/recall behavior on
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shape-based image retrieval tasks: (a) using the original signatures derivative,
(b) using the signature derivative with a CDTW comparison. Proposal (a) pro-
vides better results than the WARP system and proposal (b) offers the best
precision/recall.

The CDTW dissimilarity has been defined and an algorithm to compute it in
O(M2 log M) for two signatures of length M has been presented. We have shown
that the Cyclic Edit Distance algorithm presented by Maes cannot be directly
extended to CDTW: two conventional DTW dissimilarities must be computed
for each cyclic shift of one sequence. Fortunately, one of these dissimilarities can
be obtained as a subproduct of the computation of the other.

Acknowledgments

The authors wish to thank S. Abbasi, F. Mokhtarian, and J. Kittler for making
the SQUID database publicly available and to I. Bartolini, P. Ciaccia, and M.
Patella for providing their labeled version of the SQUID database.

References

1. I. Bartolini, P. Ciaccia, and M. Patella. WARP: Accurate Retrieval of Shapes Using
Phase of Fourier Descriptors and Time Warping Distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(1):142–147, 2005.

2. A. Folkers and H. Samet. Content-based Image Retrieval Using Fourier Descriptors
on a Logo Database. In Proc of the 16th Int Conf on Pattern Recognition, pages
521–524, 2002.

3. J. Latecki, R. Lakämper, and U. Eckhardt. Shape descriptors for non-rigid shapes
with a single closed contour. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, pages 424–429, 2000.

4. M. Maes. On a Cyclic String-to-String Correction Problem. Information Processing
Letters, 35:73–78, 1990.

5. F. Mokhtarian, J. Kittler, and S. Abbasi. Shape queries using image databases.
http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html.

6. D. Sankoff and J. Kruskal, editors. Time warps, string edits, and macromolecules:
the theory and practice of sequence comparison. Addison-Wesley, Reading, MA,
1983.

7. T. Sikora. The mpeg-7 visual standard for content description – an overview. IEEE
Transactions on Circuits and Systems for Video Technology, 11(6):696–702, 2001.


	Introduction
	Notation
	The WARP System
	Drawbacks of the WARP System

	Cyclic Dynamic Time Warping: A Rotation and Starting-Point Invariance Comparison
	Experiments
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




