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Abstract. A Bayesian multinet classifier allows a different set of independence 
assertions among variables in each of a set of local Bayesian networks composing 
the multinet. The structure of the local network is usually learned using a joint-
probability-based score that is less specific to classification, i.e., classifiers based 
on structures providing high scores are not necessarily accurate. Moreover, this 
score is less discriminative for learning multinet classifiers because generally it is 
computed using only the class patterns and avoiding patterns of the other classes. 
We propose the Bayesian class-matched multinet (BCM2) classifier to tackle both 
issues. The BCM2 learns each local network using a detection-rejection measure, 
i.e., the accuracy in simultaneously detecting class patterns while rejecting 
patterns of the other classes. This classifier demonstrates superior accuracy to 
other state-of-the-art Bayesian network and multinet classifiers on 32 real-world 
databases. 

1   Introduction 

Bayesian networks (BNs) excel in knowledge representation and reasoning under 
uncertainty [1]. Classification using a BN is accomplished by computing the posterior 
probability of the class variable conditioned on the non-class variables. One approach 
is using Bayesian multinets. Representation by a multinet explicitly encodes 
asymmetric independence assertions that cannot be represented in the topology of a 
single BN using a several local networks that each represents a set of assertions for a 
different state of the class variable [2]. Utilizing these different independence 
assertions, the multinet simplifies graphical representation and alleviates probabilistic 
inference in comparison to the BN [2]-[4]. However, although found accurate at least 
as other BNs [3], [4], the Bayesian multinet has two flaws when applied to 
classification. The first flaw is the usual construction of a local network using a joint-
probability-based score [4], [5] which is less specific to classification, i.e., classifiers 
based on structures providing high scores are not necessarily accurate in classification 
[4], [6]. The second flaw is that learning a local network is based on patterns of only 
the corresponding class. Although this may approximate the class data well, 
information discriminating between the class and other classes may be discarded, thus 
undermining the selection of the structure that is most appropriate for classification. 

We propose the Bayesian class-matched multinet (BCM2) classifier that tackles 
both flaws of the Bayesian multinet classifier (BMC) by learning each local network 
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using a detection-rejection score, which is the accuracy in simultaneously detecting 
and rejecting patterns of the corresponding class and other classes, respectively. We 
also introduce the tBCM2 which learns a structure based on a tree-augmented naïve 
Bayes (TAN) [4] using the SuperParent algorithm [7]. The contribution of the paper is 
three fold. First is the suggested discrimination-driven score for learning BMC local 
networks. Second is the use of the entire data, rather than only the class patterns for 
training each of the local networks. Third is the incorporation of these two notions 
into an efficient and accurate BMC (i.e., the tBCM2) that is found superior to other 
state-of-the-art Bayesian network classifiers (BNCs) and BMCs on 32 real-world 
databases. 

Section 2 of the paper describes BNs and BMCs. Section 3 presents the detection-
rejection score and BCM2 classifier, while Section 4 details experiments to compare 
the BCM2 to other BNCs and BMCs and their results. Section 5 concludes the work. 

2   Bayesian Networks and Multinet Classifiers 

A BN model B  for a set of n variables X={X1,…,Xn}, having each a finite set of 
mutually exclusive states, consists of two main components, B=(G,Θ). The first 
component G is the model structure that is a directed acyclic graph (DAG) since it 
contains no directed cycles. The second component is a set of parameters Θ that 
specify all of the conditional probability distributions (or densities) that quantify 
graph edges. The probability distribution of each Xi∈X conditioned on its parents in 
the graph Pai⊆X is P(Xi=xi| Pai)∈Θ  when we use Xi and Pai to denote the ith variable 
and its parents, respectively, as well as the corresponding nodes. 

The joint probability distribution over X given a structure G that is assumed to 
encode this probability distribution is given by [1] 

 

 
(1) 

where x is the assignment of states (values) to the variables in X, xi is the value taken 
by Xi, and the terms in the product compose the required set of local conditional 
probability distributions Θ quantifying the dependence relations. The computation of 
the joint probability distribution (as well as related probabilities such as the posterior) 
is conditioned on the graph. A common approach is to learn a structure from the data 
and then estimate its parameters based on the data frequency count. In this study, we 
are interested in structure learning for the local networks of a BMC. 

A BN entails that the relations among the domain variables be the same for all 
values of the class variable. In contrast, a Bayesian multinet allows different relations, 
i.e., (in)dependences for one value of the class variable are not necessarily those for 
other values. A BMC [2]-[5], [8], [9] is composed of a set of local BNs, {B1,…,B|C|}, 
each corresponds to a value of the |C| values of the class node C. The BMC can be 
viewed as generalization of any type of BNC when all local networks of the BMC 
have the same structure of the BNC [4]. Although a local network must be searched 
for each class, the BMC is generally less complex and more accurate than a BNC. 
This is because usually each local network has a lower number of nodes than the 
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BNC, as it is required to model a simpler problem. The computational complexity of 
the BMC is usually smaller and its accuracy higher than those of the BNC since both 
the complexity of structure learning and number of probabilities to estimate increase 
exponentially with the number of nodes in the structure [2]. 

A BMC is learned by partitioning the training set into sub-sets according to the 
values of the class variable and constructing a local network Bk for X for each class 
value C=Ck using the kth sub-set. This network models the kth local joint probability 
distribution ( )

kBP X . A multinet is the set of local BNs {B1,…,B|C|} that together with 

the prior P(C) on C classify a pattern x={x1,…,xn} by choosing the class 

[ ]1, KC K C∀ ∈ maximizing the posterior probability 

 

 
(2) 

where 

 
 

 

(3) 

In the Chow-Liu multinet (CL multinet) [4], the local network Bk is learned using 
the kth sub-set and based on the Chow-Liu (CL) tree [10]. This maximizes the log-
likelihood [4], which is identical to minimizing the KL divergence between the 
estimated joint probability distribution based on the network 

kBP and the empirical 

probability distribution for the sub-set k̂P [5], 

 

 
(4) 

Thus, the CL multinet induces a CL tree to model each local joint probability 
distribution and employs (2) to perform classification. Further elaborations to the 
construction of the CL tree may be found in [3]. Also we note that the CL multinet 
was found superior in accuracy to the naïve Bayes classifier (NBC) and comparable to 
the TAN [4]. Other common BMCs are the mixture of trees model [9], the recursive 
Bayesian multinet (RBMN) [8] and the discriminative CL tree (DCLT) BMC [5]. 

3   The Bayesian Class-Matched Multinet Classifier 

We suggest the Bayesian class-matched multinet (BCM2) that learns each local network 
using the search-and-score approach. The method searches for the structure maximizing 
a discrimination-driven score that is computed using training patterns of all classes. 
Learning a local network in a turn rather than both networks simultaneously has 
computational benefit regarding the number of structures that need to be considered. 
First we present the discrimination-driven score and then the tBCM2 that is a classifier 
based on the TAN [4] and searched using the SuperParent algorithm [7]. 
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The BCM2 Score. We first make two definitions: (a) a pattern x is native to class Ck  
if x∈Ck and (b) a pattern x is foreign to class Ck if x∈Cj where j∈[1,|C|] and j≠k. We 
partition the dataset D into test (Dts) and training (Dtr) sets, the latter is further divided 
into internal training set T used to learn candidate structures and a validation set V 
used to evaluate these structures. Each training pattern in Dtr is labeled for each local 
network Bk as either native or foreign to class Ck depending on whether it belongs to 
Ck or not, respectively. In each iteration of the search for the most accurate structure, 
the parameters of each candidate structure are learned using T in order to construct a 
classifier that can be evaluated using a discrimination-driven score on the validation 
set. After selecting a structure, we update its parameters using the entire training set 
(Dtr) and repeat the procedure for all other local networks. The derived BCM2 can be 
then tested using (2).  

The suggested score evaluates a structure using the ability of a classifier based on 
this structure in detecting native patterns and rejecting foreign patterns. The score Sx 
for a pattern x is determined based on the maximum a posteriori probability, i.e., 

 

 
(5) 

where k
nx and 

k
fx  are native and foreign patterns to Ck, respectively. The first line in 

(5) represents correct detection (classification of a native pattern to Ck) or correct 
rejection (classification of a foreign pattern to a class other than Ck), whereas the 
second line represents incorrect detection of a native pattern or incorrect rejection of a 
foreign pattern. By identifying TP (true positive) as the number of correct detections 
and TN (true negative) as the number of correct rejections made by a classifier on all 
the |V| validation patterns in V, we define the detection-rejection measure (DRM) 
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That is, for each local network and each search iteration, we select the structure that 
the trained classifier based on this structure simultaneously detects native patterns and 
rejects foreign patterns most accurately. Both correct detection and correct rejection 
contribute equally to the score although any other alternative is possible. 

TAN-Based BCM2. We propose a TAN-based BCM2 (tBCM2) that utilizes the DRM 
and SuperParent algorithm searching the TAN space. The SuperParent (SP) algorithm 
has reduced computational cost compared to hill-climbing search (HCS) and it 
expedites the search [7]. In each iteration, we determine the best edge to add to a 
structure by finding a good parent and then the best child for this parent. 

Following [7] we define: (a) an Orphan is a node without a parent other than the 
class node, (b) a SuperParent (SP) is a node extending edges to all orphans 
simultaneously (as long as no cycles are formed) and (c) a FavoriteChild (FC) of an 
SP is the orphan amongst all orphans that when connected to the SP provides a 
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structure having the highest value of the DRM. We initialize the search for each local 
network using the NBC structure and employ the value of DRM it provides as the 
current DRM value. Each iteration of the search comprises of two parts. First, we 
make each node an SP in turn and choose the SP that if added to the structure would 
provide the highest value of the DRM. Second, we find the FC for this SP and add the 
edge between them to the structure if this edge increases the current value of the 
DRM. We update the current value of the DRM and continue the search as long as the 
DRM value increases and more than one orphan remains unconnected to an SP. Since 
in each iteration we connect one variable at the most, the maximum number of 
iterations and edges that can be added to the initial structure is n-1 (yielding the TAN 
structure). We repeat this procedure for all |C| local networks terminating with the 
tBCM2, as is exemplified in the following pseudo code: 

 

Although both the CL multinet and tBCM2 learn a multinet based on the TAN, the 
two algorithms differ in a several main issues. First, the CL multinet is learned using a 
constraint-based approach [11] based on the CL tree algorithm [10] or an extended 
version of this algorithm [3], while the tBCM2 is learned by employing the search-
and-score approach [11]. Second, the former algorithm establishes for each class a CL 
tree that maximizes a joint-probability-based measure, whereas the latter algorithm 
employs a discrimination-driven score for structure learning. Third, the CL multinet 
utilizes only the class patterns for learning each local network, whereas the tBCM2 
utilizes all patterns. Fourth, the CL multinet always adds n-1 edges even when some 
variables are completely independent, while the tBCM2 stops adding edges when 
there is no improvement in the score of a local network. 

Finally we note that the worst case computational complexity of the tBCM2 
(excluding the cost of parameter learning) is O(3⋅|C|⋅|V|⋅n3/2), which incurs if the 
algorithm does not end before finding the maximum possible number of SPs [12]. 
As an example, Figure 1 demonstrates the four local networks learned by the 
tBCM2 for the UCI repository Car database [13] along with the corresponding DRM 
values. 

1. For k=1:|C|  // index of the local network Bk 
1.1 Start with the NBC structure as the current structure of the kth local network. In 

all stages, use T to learn the structure and V to calculate the structure DRM. 
1.2 For g=1:n-1  // index of iteration 
1.2.1 Find the SP yielding the structure having the highest DRM. 
1.2.2 Find the FC for this SP. 
1.2.3 If the edge SP FC→  improves the DRM value of the current structure, update 

the structure with this edge and employ the structure as the current structure.  
Else: Return the current structure as the kth local network and go to 1. 

1.3 Return the current structure as the kth local network and go to 1. 
2. Calculate the parameters of each local network using Dtr and return the tBCM2. 
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4   Experimental Results 

Between the DRM and Classification Accuracy. Since the DRM is measured for 
each local network separately and using the validation set and the classification 
accuracy is measured for the tBCM2 and the test set, we studied the relation between 
the two scores. We started the search for each local network with the NBC structure 
and identified an iteration by the addition of an edge between an SP and its FC. 
Whenever all the local networks had completed an iteration, we computed the values 
of DRM they achieve, the average DRM value and the test accuracy of the tBCM2 that 
used these networks. We repeated this procedure until all local networks completed 
learning (i.e., all final structures were found). Networks that completed learning 
before their counterpart networks, contributed their final DRM values to the 
calculation of the average DRM in each following iteration. Figure 2a presents the 
relation between the average DRM value of the local networks and the classification 
accuracy of the tBCM2 for increasing numbers of iterations of the SP algorithm and 
the UCI repository Nursery database [13]. This database is large (i.e., providing 
reliable results) and has relatively many variables that introduce numerous possible 
edge additions in each search iteration, thereby the database enables testing structure 
 

DRM=0.9297 DRM=0.9271 DRM =0.9531 DRM =0.9844

C1 C2 C3 C4

 

Fig. 1. The four local networks and associated DRM values of the tBCM2 for the Car database 

 

Fig. 2. (a) The relation between the average DRM and the tBCM2 classification accuracy for 
increasing numbers of iterations of the SP algorithm and the UCI Nursery database. (b) 
Learning curves for the tBCM2, CL multinet, TAN and NBC for the Waveform-21 database. 
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learning extensively. The figure shows that the classification accuracy increases 
monotonically with the average DRM value. 

Learning Curves. Figure 2b presents learning curves for the tBCM2, CL multinet, 
TAN and NBC for the large UCI repository Waveform-21 database [13]. Each of 
ten random replications of the database was partitioned into ten sets. One set was 
reserved for the test, and the other nine sets were added incrementally to the 
training set. Each classifier was trained using the increased-size training set and 
tested on the same test set following each increase. The accuracy was repeatedly 
measured for all data replications and averaged. Figure 2b demonstrates that the 
NBC and CL multinet have, respectively, the smallest and largest sensitivity to the 
sample size. The former classifier has lesser sensitivity since it needs to estimate 
only few parameters so even a small sample size provides the classifier its 
asymptotic accuracy. The tBCM2 is less sensitive than the CL multinet for two 
reasons. First, the tBCM2 may have fewer edges for each of its local networks than 
the CL multinet (Section 3) and therefore it needs to estimate less parameters. 
Second, the tBCM2 utilizes all the data whereas the CL multinet employs only the 
class data. In addition we note that except for a very small sample size, the tBCM2 
is superior to all other classifiers for this database. Similar conclusions are drawn 
for most of the other databases. 

Classification Accuracy. Table 1 demonstrates the superior classification accuracy of 
the tBCM2 in comparison to the NBC, TAN, CL multinet and RBMN for 32 
databases of the UCI repository. Out of the databases, the tBCM2 accomplishes higher 
accuracy than the CL multinet on 24 databases, identical accuracy on 3 databases and 
inferior accuracy on 5 databases. It achieves higher accuracy than the TAN on 28 
databases and inferior accuracy on 4 databases. The tBCM2 also outperforms the NBC 
on 90% of the databases. Twenty-two databases are tested using CV10 and the 
remaining (large) databases using holdout. On the former databases, the tBCM2 
reaches higher accuracy than the CL multinet classifier on 16 of the databases with 
statistical significance of 95% (t-test with α=0.05) on 12 of the databases and the CL 
multinet classifier achieves higher accuracy than the tBCM2 on 4 of the databases 
without statistical significance for none of them. Also for these 22 databases, the 
tBCM2 accomplishes higher accuracy than the TAN on 18 of the databases with 
statistical significance of 95% (α=0.05) for 13 of them and the TAN achieves higher 
accuracy than the tBCM2 on 4 of the databases with statistical significance of 95% 
(α=0.05) for 1 of the databases. 

In addition, Table 1 exemplifies the tBCM2 superiority to the RBMN [8] for 
those databases for which results are provided. Also, we compare the tBCM2 to the 
DCLT algorithm [5] for the only two databases for which results are given in [5]. 
We find for the Hepatitis database accuracies of 89.25% and 90.4% and for the 
Voting database accuracies of 92.18% and 93.97% for the DCLT and tBCM2 
classifiers, respectively. Finally, Table 1 presents also the average classification 
accuracies of the inspected methods over all 32 databases. The table shows that the 
tBCM2 (89.64%) is superior on average to the NBC (85.74%), TAN (87.41%) and 
CL multinet (87.45%). 
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Table 1. Classification accuracies of the tBCM2 and other classifiers on 32 databases from [13]. 
Bold font represents the highest accuracy for a database. 

Database NBC TAN CL multinet RBMN tBCM2 
Adult 83.61 85.83 85.11 NA 87.33 

Australian 85.36 (±2.14) 84.15 (±2.17) 85.22 (±2.09) 85.21 88.38 (±2.32) 
Balance 91.85 (±2.54) 85.44 (±2.07) 84.63 (±1.81) NA 90.88 (±1.03) 
Breast 97.51 (±0.94) 96.12 (±1.99) 96.34 (±1.00) 95.75 98.24 (±1.14) 

Car 85.71 (±2.33) 89.81 (±1.89) 94.10 (±0.98) 93.06 93.92 (±0.81) 
Cmc 51.66 (±2.97) 52.00 (±1.10) 50.85 (±1.82) NA 52.85 (±1.65) 

Corral 85.06 (±4.59) 96.06 (±2.44) 99.23 (±2.93) NA 100.0 (±0.00) 
Crx 85.98 (±1.85) 85.67 (±2.72) 86.14 (±2.79) 90.05 88.89 (±2.59) 

Cytogenetic 77.94 81.14 80.30 NA 82.87 
Flare 79.82 (±1.66) 82.54 (±1.17) 82.55 (±0.94) 86.87 83.35 (±1.21) 
Hayes 81.88 (±4.25) 75.00 (±3.27) 63.13 (±4.86) NA 80.63 (±3.13) 

Hepatitis 85.23 (±1.27) 86.01 (±1.78) 86.54 (±2.00) NA 90.40 (±1.52) 
Ionosphere 91.16 (±2.34) 91.44 (±2.57) 93.92 (±2.01) NA 93.03 (±2.69) 

Iris 93.67 (±2.99) 93.33 (±2.16) 93.33 (±2.16) NA 95.83 (±2.21) 
Krkp (Chess) 87.32 92.31 93.02 94.18 95.03 

Led-7 74.41 73.76 73.10 NA 75.89 
Lymphography 83.19 (±3.93) 84.57 (±5.47) 79.81 (±5.05) NA 85.57 (±5.16) 
Mofn-3-7-10 85.05 (±1.80) 91.06 (±2.01) 90.63 (±2.46) 90.53 94.43 (±2.30) 

Monks 96.39 (±1.68) 98.73 (±1.41) 98.92 (±1.09) NA 98.92 (±1.09) 
Mushroom 97.40 99.47 99.47 NA 100 

Nursery 89.17 91.09 93.89 91.06 96.03 
Pendigit 85.72 94.32 96.62 NA 96.04 
Segment 91.34 (±0.83) 94.09 (±1.04) 94.42 (±1.23) 89.35 96.13 (±1.23) 
Shuttle 98.45 99.61 99.92 97.21 99.92 

Splice (DNA) 96.33 89.65 96.74 87.52 97.98 
Tic Tac Toe 69.62 (±1.96) 75.07 (±2.64) 73.07 (±2.41) NA 72.65 (±1.45) 

Tokyo 91.45 (±1.82) 92.01 (±2.19) 92.39 (±1.55) NA 93.94 (±1.98) 
Vehicle 62.42 (±2.67) 70.82 (±2.51) 69.93 (±2.91) 73.64 68.54 (±2.65) 
Voting 90.96 (±2.62) 93.99 (±2.16) 93.97 (±2.46) 96.55 93.97 (±2.46) 

Waveform-21 78.60 78.94 79.69 77.79 83.82 
Wine 98.27 (±1.65) 98.03 (±1.55) 98.27 (±1.65) NA 98.98 (±1.21) 
Zoo 92.00 (±4.66) 95.08 (±4.25) 93.09 (±5.03) NA 94.08 (±4.17) 

Average 85.74 87.41 87.45 --- 89.64 

5   Summary and Concluding Remarks 

We propose the tBCM2 which is a multinet classifier that learns each local network 
based on a detection-rejection measure, i.e., the accuracy in simultaneously detecting 
and rejecting, respectively, the corresponding class and other class patterns. The 
tBCM2 uses the SuperParent algorithm to learn for each local network a TAN having 
only augmented edges that increase the classifier accuracy. Evaluated on 32 real-
world databases, the tBCM2 demonstrates on average superiority to the NBC, TAN, 
CL multinet and RBMN classifiers. The advantage of the tBCM2 to the TAN is 
related to the facts that the former classifier is a multinet that is learned using a 
discrimination-driven score, and the advantage of the tBCM2 to the CL multinet is 
attributed to the score of the former and the facts that it usually learns a smaller 
number of parameters and use the whole data for training. 
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In further work, we will make parameter learning discriminative rather than 
generative and apply the BCM2 to less restricted structure spaces, such as augmented 
naïve and general Bayesian networks. 
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