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Abstract. This abstract accompanying a presentation at S+SSPR 2006
explores the use of Support Vector Machines (SVMs) for predicting struc-
tured objects like trees, equivalence relations, or alignments. It is shown
that SVMs can be extended to these problems in a well-founded way,
still leading to a convex quadratic training problem and maintaining the
ability to use kernels. While the training problem has exponential size,
there is a simple algorithm that allows training in polynomial time. The
algorithm is implemented in the SVM-Struct software, and it is discussed
how the approach can be applied to problems ranging from natural lan-
guage parsing to supervised clustering.

1 Introduction

Over the last decade, much of the research on discriminative learning has focused
on problems like classification and regression, where the prediction is a single
univariate variable. But what if we need to predict complex objects like trees,
orderings, or alignments? Such problems arise, for example, when a natural lan-
guage parser needs to predict the correct parse tree for a given sentence, when
one needs to optimize a multivariate performance measure like the F1-score, or
when predicting the alignment between two proteins.

This abstract accompanies the presentation at S+SSPR 2006, discussing a
support vector approach and algorithm for predicting such complex objects. It
summarizes our recent work [TO202TITTIT2I9] on generalizing conventional clas-
sification SVMs to a large range of structured outputs and multivariate loss
functions, and connects these results to related work [ABBITITETITII23]. While
the generalized SVM training problems have exponential size, we show that there
is a simple algorithm that allows training in polynomial time. The algorithm is
implemented in the SVM-Struct Softwareﬁ, and it is discussed how the approach
can be applied to problems ranging from natural language parsing to supervised
clustering.

2 Problems That Require Structured Outputs

While many prediction problems can easily be broken into multiple binary clas-
sification problems, other problems require an inherently structured prediction.
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Fig. 1. Illustration of the NLP parsing problem

Consider, for example, the problem of natural language parsing. For a given sen-
tence x, the goal is to predict the correct parse tree y that reflects the phrase
structure of the sentence. This is illustrated on the left-hand side of Figure [l
Training data of sentences that are labeled with the correct tree is available
(e.g. from the Penn Tree Bank), making this prediction problem accessible for
supervised learning.

Compared to binary classification, the problem of predicting complex and
structured outputs differs mainly by the choice of the outputs y. What are
common structures that we might want to predict?

Trees: We have already discussed the problem of natural language parsing (see
e.g. [14]), where a prediction y € ) is a tree.

Sequences: A problem related to parsing is that of part-of-speech tagging (see
e.g. [14]). Given a sentence x represented as a sequence of words, the task is to
predict the correct part-of-speech tag (e.g. “noun” or “determiner”) for each
word. While this problem could be phrased as a multi-class classification
task, it is widely acknowledged that predicting the sequence of tags as a
whole allows exploiting dependencies between tags (e.g. it is unlikely to see
a verb after a determiner). Similar arguments also apply to tagging protein
or gene sequences.

Alignments: For comparative protein structure modelling, it is necessary to
predict how the sequence of a new protein with unknown structure aligns
against another sequence with know structure (see e.g. [§]). Given the cor-
rect alignment, it is possible to predict the structure of the new protein.
Therefore, one would like to predict the sequence alignment operations that
“best” aligns two sequences according to some cost model.

Equivalence Relation: Noun-phrase co-reference resolution (see e.g. [15]) is
the problem of clustering the noun phrases in one documents by whether
they refer to the same entity. This can be thought of as predicting an equiv-
alence relation, where training examples are the correct partitionings for
some documents. More generally, this problem can be thought of as super-
vised clustering [9] — training a clustering algorithm to produce the desired
kinds of clusters.
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While these application problems appear quite different, we will show that they
all can be approached in a similar way. In particular, the SVM algorithm we
describe in the following is able to address each of these problems.

3 An SVM Algorithm for Structured Outputs

Formally, we consider the problem of learning a function
h: X —Y

where X is the space of inputs, and ) is the space of (multivariate and structured)
outputs. In the parsing examples, X is the space of sentences, and Y is the space
of trees over a given set of non-terminal grammar symbols. To learn h, we assume
that a training sample of input-output pairs

S = ((X17y1)7-~-7(xn7Y7L>) € (X X y)"

is available and drawn i.i.d. from a distribution P(X,Y"). The goal is to find a
function h from some hypothesis space H that has low prediction error, or, more
generally, low risk

Rp(h)= | Aly,h(x)dP(x.y).
X XY

A(y,y) is a loss function that quantifies the loss associated with predicting y
when y is the correct output value. Furthermore, we assume that A(y,y) =
0 and A(y,y’) > 0 for y # y’. We follow the Empirical Risk Minimization
Principle [22] to infer a function h from the training sample S. The learner
evaluates the quality of a function h € H using the empirical risk R?(h) on the
training sample S.

RE(M) = 3 Alyihix)

Support Vector Machines select an h € H that minimizes a regularized Empirical
Risk on S. For conventional binary classification where Y = {—1,4+1}, SVM
training is typically formulated as the following convex quadratic optimization
problem [6122].

OP 1 (CLASSIFICATION SVM (PRIMAL))

1 C &
. T
min W W ;
w,b,E;>0 2 + n ;5’

st. Vie{l,..,n}: yi(wlx; +b)>1-¢;
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To generalize SVM training to structured outputs, we formulate an optimiza-
tion problem that is similar to multi-class SVMs [7] and generalizes the Per-
ceptron approach described in [4]. The idea is to learn a discriminant function
f:+ X x Y — R over input/output pairs from which we can derive a prediction
by maximizing f over all y € ) for a specific given input x.

hw(x) = argmax f, (x,y)
yey

We assume that fw(x,y) takes the form of a linear function

fu(xy) = w'¥(x,y)

where w € RV is a parameter vector and ¥(x,y) is a feature fector describing
the match between input x and output y. Intuitively, one can think of f,(x,y)
as a compatibility function that measures how well the output y matches the
given input x.

The specific form of ¥ depends on the nature of the problem and special cases
will be discussed subsequently. Using natural language parsing as an illustrative
example, f,, can be chosen to be isomorphic to a Probabilistic Context Free
Grammar (PCFQG) (see e.g. [14]). Each node in a parse tree y for a sentence x
corresponds to grammar rule g;, which in turn has a score w;. All valid parse
trees y (i.e. trees with a designated start symbol S as the root and the words
in the sentence x as the leaves) for a sentence x are scored by the sum of the
w; of their nodes. This score can thus be written in the form of Eq. 1, where
¥ (x,y) denotes the histogram vector of how often each grammar rule g; occurs
in the tree y. This is illustrated on the right-hand side of Figure [l h (x) can
be efficiently computed by finding the structure y € ) that maximizes fw(X,y)
via the CKY algorithm (see e.g. [14]).

For training the weights w of the linear discriminant function, we general-
ize the standard SVM optimization problem as follows [I/I0/20021]. A similar
formulation was independently proposed in [16].

OP 2 (STRUCTURAL SVM (PRIMAL))
' 1 - C n
wip pwiw e, 2

st Vy € YV :wl(U(xi,y:)—¥(xi,y)) > Alyi,y)—&

The objective is the conventional regularized risk used in SVMs. The con-
straints state that for each training example (x;,y;) the score w' ¥(x;,y;) of
the correct y; must be greater than the score w” ¥(x;,y) of all incorrect y by a
difference of A(y;,y). A is an application dependent loss function that measures
how different the two structures y; and y are. Intuitively, the larger the loss,
the further should the score be away from that of the correct training label y;.
&; is a slack variable shared among constraints from the same example, since in
general the problem is often not separable. Note that > ¢&; is an upper bound
on the training loss R?(h).
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Input: S = ((x1,y1
K=0w=0,¢=
repeat
— Korg =K
— for i from 1 ton
e y=argmax,.y [A(yl-,y)—i—wTW(xi, )] # find most violated constraint
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0

Fig. 2. Cutting plane algorithm for training Structural SVMs

While the training problem is obviously still convex and quadratic, it typically
has exponentially many constraints. For most choices of ) (e.g. sequences and
trees), the cardinality of ) is exponential in the maximum size of x — and so is
the number of constraints in OPRl This makes solving OPZ intractable using off-
the-shelf techniques. However, it has been shown that the cutting plane algorithm
in Figure [2 can be used to efficiently approximate the optimal solution of this
type of optimization problem [2TJI2]. The algorithm starts with an empty set
of constraints, adds the most violated constraint among the exponentially many
during each iteration, and repeats until the desired precision € > 0 is reached. It
can be proved that only a polynomial number of constraints will be added before
convergence [2IIT2]. One crucial aspect of the algorithm, however, is the use of
an oracle that can find the most violated constraint among the exponentially
many possible constraints in polynomial time. That is, we need to compute

argmax[A(yi,y) + W' ¥(x;,y)]. (1)
yeY
For many ), feature mappings ¥, and the loss functions A, this problem can be
solved via dynamic programming. For trees, for example, the argmax in Eq. ()
can be computed using the CKY algorithm, if ¥ follows from a context-free
grammar and A is any loss function that can be computed from the contingency
table [21]. The running time of the overall learning algorithm is then polynomial
in the number of training examples, the length of the sequences, and e [21]12].
An alternative to the cutting plane algorithm is the algorithm proposed in
[19]. It applies when the loss function A decomposes linearly and the argmax in
Eq. @) can be computed using a linear program that is guaranteed to have an
integer solution.

4 Application Examples and Related Work

It has been shown for a range of application problems and structures ) that
SVM training is feasible and benficial. The work in [20/21] shows how struc-
tural SVMs can be applied to natural language parsing, sequence alignment,



6 T. Joachims

taxonomic classification, and named-entity recognition. More work on highly ex-
pressive models for parsing is given in [I7], and the use of structural SVMs for
protein threading is described in [I0J12]. An alternative approach to alignment is
[18]. Work on sequence tagging for natural language problems and OCR is given
in [I6/1]. Image segmentation is addressed in [2]. While traditional generative
training can and has been used for many structural prediction problems in the
past, the studies mentioned above have repeatedly shown that discriminative
training gives superior prediction performance.

Conditional Random Fields (CRFs) [I3] are the most popular alternative
discriminative training methods for structured prediction problems. Like large-
margin approaches, they also have shown excellent performance on a variety of
problems. Instead of optimizing a regularized empirical risk for a user-defined
loss function like in the SVM approach, CRF's optimize a regularized conditional
likelihood. While they can be applied to many of the problems mentioned above,
there is little direct comparison between SVM and CRF training yet.

Other training approaches for structured models include the perceptron algo-
rithm and reranking approaches [4[3/5]. The structural SVM approach extends
these. A very different approach to structured prediction is proposed in [23], im-
plementing the structured prediction as a multivariate regression problem after
mapping the structures into Euclidian space.

5 Summary

This paper provides a short summary of methods for Support Vector Machine
training with structured outputs. In particular, it shows how a cutting-plane
method can be used to solve the training problem efficiently despite an expo-
nential number of constraints. Pointers towards applications and further reading
provide a starting point for further exploration of this area of research.
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