
An Enhanced Dynamic Framed Slotted ALOHA

Anti-collision Algorithm�

Su-Ryun Lee1 and Chae-Woo Lee2

1Samsung Electronics, Suwon, Korea
2School of Electrical and Computer Engineering, Ajou University

San 5 Wonchon-dong Yeoungtong-gu, Suwon, Korea
srlee@ajou.ac.kr, cwlee@ajou.ac.kr

Abstract. In RFID system, one of the problems that we must solve is
the collision between tags that may occur when a reader attempts to
read a number of tags simultaneously. Most of the popular anti-collision
algorithms are based on the ALOHA-type algorithm, which are simple
and show good performance when the number of tags to read is small.
However, for ALOHA-type algorithms the time required to read the tags
generally increases exponentially as the number of tag increases. Thus,
they are not very efficient when the number of tags to read is large. In
the paper, we propose a new anti-collision algorithm called Enhanced
Dynamic Framed Slotted ALOHA (EDFSA) in which the time required
to read the tags increases linearly with the number of tags. The pro-
posed algorithm estimates the number of unread tags first and adjusts
the number of responding tags or the frame size to give the optimal
system efficiency. Simulation results show that the proposed algorithm
improves the reading rate of data of the tags by 85∼100% compared to
the conventional algorithms.

1 Introduction

Recently RFID (Radio Frequency IDentification) attracts attention as an alter-
native to the bar code in the distribution industry, supply chain and banking
sector. This is because RFID system reads data without close context to the
object it intends to read and stores more data than the bar code does. One of
the largest disadvantages in RFID system is its low tag identification efficiency
by tag collision especially when the number of tags in its readable range is large.
Tag collision is the event that the reader cannot identify the data of tag when
more than one tag occupy the same RF communication channel simultaneously.
For a solution to the problem, the existing methods have to increase data trans-
mission speed by extending frequency bandwidth or tag identification efficiency
by minimizing tag collision. However, it is impossible to extend a frequency

� This work was supported in part by the Ubiquitous Autonomic Computing and Net-
work Project, the Ministry of Information and Communication (MIC) 21th Century
Frontier R&D Program in republic of Korea.

X. Zhou et al. (Eds.): EUC Workshops 2006, LNCS 4097, pp. 403–412, 2006.
c© IFIP International Federation for Information Processing 2006

404 S.-R. Lee and C.-W. Lee

bandwidth because usable frequency bands are limited. Therefore we must re-
duce tag collision for increasing tag identification efficiency. So far, several tag
anti-collision algorithms have been proposed. Among them, the most widely used
are framed slotted ALOHA algorithm and binary search algorithm. Due to its
simple implementation, framed slotted ALOHA algorithm is used frequently [1].

The ISO/IEC 18000-6 describes the parameters for the air interface commu-
nications at 860MHz to 960MHz. This standard specifies two tag types; TYPE
A and TYPE B [2]. In the standard, the reader uses frequency hopping spread
spectrum. To read the data of TYPE A tag, a reader uses the ALOHA Protocol
as the tag anti-collision algorithm and PIE (Pulse Interval Encoding), which is
a kind of ASK (Amplitude Shift Keying), as the carrier modulation method. To
read the data of TYPE B tag, the reader applies Binary tree algorithm as the
tag anti-collision algorithm and Manchester coding as the carrier modulation
method. The tag transmits its data to the reader by modulating the incident
energy and reflecting it back to the reader.

The EPC Class 1 Generation 2 discribes the protocols of RFID system op-
erating in the 860∼960MHz frequency range [3]. The EPC Class 1 Generation
2 was adopted as ISO/IEC 18000-6 TYPE C standard. In this standard, the
reader uses frequency hopping spread spectrum method to occupy the channel.
The communication between the reader and tags in EPC Class 1 Generation 2
is similar to that of the ISO/IEC 18000-6 TYPE A. As the tag anti-collision
algorithm the reader uses Slotted Random anti-collision algorithm that is a kind
of ALOHA protocols and PIE as the carrier modulation method.

As the most RFID systems use passive tags, frame sizes are limited in the
framed slotted ALOHA algorithm [1]. In the algorithm, a tag randomly selects
a slot number in the frame and responds to the reader using the slot number
it selected. In this method, when the number of tags is small, the probability
of tag collision is low. Thus the time used to identify the all tags is relatively
short. However, as the number of tags increases, the probability of tag collision
becomes higher and the time used to identify the tags increases rapidly. This
problem is inevitable if the number of tags that attempt to access the fixed
number of ALOHA slots increases. To solve this problem, we propose an algo-
rithm that limits the number of responding tags to the number that has the
maximum efficiency when there are large number of tags. Therefore, this algo-
rithm improves the efficiency of tag identification and then lineally increases the
required time for tag identification even if there are a number of tags.

The remainder of this paper is organized as follows. Section 2 introduces a
set of framed slotted ALOHA algorithms and points out their weakness. Section
3 proposes and analyzes new anti-collision algorithm called Enhanced Dynamic
Framed Slotted ALOHA (EDFSA). Section 4 compares the proposed algorithm
with existing algorithm. Finally, section 5 concludes the paper.

2 Previous Work

Slotted ALOHA algorithm is the tag identification method that each tag trans-
mits its serial number to the reader in the slot of a frame and the reader identifies

An Enhanced Dynamic Framed Slotted ALOHA Anti-collision Algorithm 405

the tag when it receives the serial number of the tag without collision. A time
slot is a time interval that tags transmit their serial number. The reader identi-
fies a tag when a time slot is occupied by only one tag. The current RFID system
uses variants of slotted ALOHA known as framed slotted ALOHA algorithms.
A frame is a time interval between requests of a reader and consists of a num-
ber of slots. This section briefly describes the existing framed slotted ALOHA
anti-collision algorithms and compare their performance.

2.1 Basic Framed Slotted ALOHA (BFSA)

The BFSA uses a fixed frame and does not change its size. The reader offers
information to the tags about the frame size and the random number which is
used to select a slot in the frame. Each tag selects a slot to access using the
random number [4].

Figure 1 is an example that shows how BFSA works. In the first read cycle,
Tag 1 and Tag 3 simultaneously transmit their serial numbers in Slot 1. Tag 2
and Tag 5 transmit their serial numbers in Slot 2. As those tags are collided each
other,Tag 1, 2, 3 and 5 must respond to the next request from the reader. The
reader can identify Tag 4 in the first reader cycle because there is only one tag
response in the time Slot 3. In the example, the frame size is set to three slots.

Since the frame size of the BFSA is fixed, its implementation is simple. How-
ever, the efficiency of tag identification is low. For instance, no tag may be
identified in a read cycle if there are too many tags because all the slots may be
filled with collision. Too many slots will be left idle if large frame size is used
when the number of tags is small.

2.2 Dynamic Framed Slotted ALOHA (DFSA)

The DFSA changes the frame size for efficient tag identification. To determine the
frame size, it uses the information such as the number of slots used to identify the
tag, the number of the slots collided and so on. The DFSA has several versions
depending on the methods changing the frame size. Among them, we will briefly
explain the two popular methods described in [1].

The first algorithm regulates the frame size using the number of the empty
slots, the slots with collision and the slots filled with one tag. When the probabil-
ity of collision is higher than the upper threshold, the reader increases the frame

Downlink

Uplink Collision

Tag1

Tag2

Tag3

Tag4

Tag5

Request

Collision 11110101 Collision 10110010 10110011

Request1 2 3 1 2 3

10110010

10110011

10100011

10111010

11110101

10110010

10110011

10100011

10111010

Frame

Fig. 1. The process of the BFSA

406 S.-R. Lee and C.-W. Lee

size. If the collision probability is lower than the lower threshold, the reader de-
creases the frame size. Because the reader starts a read cycle with the minimum
frame size, when the number of tag is small it can identify the tags efficiently
without increasing the frame size much. When the number of tags is large, the
reader changes its frame size so as to decrease the collision probability.

The second algorithm starts a read cycle with the initial frame size which
is either two or four. If no tag is identified during the previous read cycle, it
increases the frame size and starts another read cycle. It repeats this until at
least one tag is identified. If a single tag is identified it immediately stops the
current read cycle and starts to read another tag with the initial frame size.

DFSA can identify the tag efficiently because the reader regulates the frame
size according to the number of tags. However, the frame size change alone can
not reduce sufficiently the tag collision when there are a number of tags because
it can not increase the frame size indefinitely. In the second method, when the
number of tags is small, then it can identify all the tag without too much collision.
However, if the number of tags is large, it needs exponentially increasing number
of slots to identify the tags because it always starts with the initial minimum
frame size after identifying a tag, regardless how many tags are unread.

2.3 Advanced Framed Slotted ALOHA (AFSA)

The AFSA estimates the number of tags and determines a proper frame size that
improves the efficiency [7][8]. Thus it has better performance than the BFSA.

In the AFSA, the number of tags is estimated using the result of a read
cycle such as the number of empty slots, slots filled with one tag, and slots with
collision. To estimate the number of tags, The AFSA uses an estimation function
shown in Equation (1). According to Chebyshev’s inequality, the outcome of a
random experiment involving a random variable X is most likely somewhere
near the expected value of X . The estimation function uses this property. Thus
it measures the difference between the real results and the expected values to
estimate the number of tags for which difference becomes minimal [6].

The number of tags is estimated using both the frame size (N) used in the
read cycle and the results of the previous read cycle as a triple of numbers
< c0, c1, ck > that quantify respectively the empty slots, slots filled with one
tag, and slots with collision as Equation (1) [7][8].

εvd (N, c0, c1, ck) = min

∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎝

aN,n
0

aN,n
1

aN,n
≥2

⎞

⎟
⎠ −

⎛

⎝

c0

c1

ck

⎞

⎠

∣
∣
∣
∣
∣
∣
∣

(1)

In Equation (1), < aN,n
0 , aN,n

1 , aN,n
≥2 > are respectively the expected number of

the empty slots, slots filled with one tag, and slots with collision where N and
n respectively denote the frame size and the number of tags.

In the AFSA, it was assumed that the tags already read also respond to the
reader during other read cycle. Varying the frame size, the AFSA calculates how
many slots are need to read 99% of the tags. Then it selects the frame size which

An Enhanced Dynamic Framed Slotted ALOHA Anti-collision Algorithm 407

gives the smallest number of slots. Because the AFSA estimates the number
of tags and determines the frame size to minimize the collision probability, it
is more efficient than the other algorithms. However, the AFSA has the same
problem that it can not increase the frame size indefinitely as the number of
tags increases. Thus, this algorithm works well if the number of tags is relatively
small, however, if the number becomes large it begins to show poor performance
[7][8]. Furthermore, this method can not be applied to the tag that is deactivated
once it is read.

3 Enhanced Dynamic Framed Slotted ALOHA (EDFSA)

The previous framed slotted ALOHA algorithms change the frame size to in-
crease the efficiency of the tag identification. However, as the number of tags
becomes larger than the frame size, the probability of tag collision increases
rapidly [5][9]. This problem can not be solved without restricting the number
of responding tags approximately the same as the frame size as we will explain
later in this paper. In the following subsection, we propose Enhanced Dynamic
Framed Slotted ALOHA algorithm which solves this problem.

3.1 Description of the EDFSA

If we can estimate the number of unread tags, we can determine the frame size
that will maximize the system efficiency or minimize the tag collision probability.
In general, when the number of tags is large, we can reduce the probability of tag
collision by increasing the frame size. Because we can not increase the frame size
indefinitely, when the number of unread tags is too large to achieve high system
efficiency, we must somehow restrict the number of responding tags so that the
optimal number of tags responds to the given frame size. When the number of
unread tags is too small to achieve the optimal system efficiency, we must reduce
the frame size. The system efficiency is defined as the ratio of the slots filled with
one tag to the current frame size. If we know the number of unread tags and
the frame size, we can calculate the system efficiency. The estimated number of
unread tags can be obtained by Equation (1).

The EDFSA estimates the number of unread tags first. If the number is much
larger than the maximum frame size, to improve collision performance, it divides
the unread tags into a number of groups and allows only one group of tags to
respond. In the algorithm once the number of tags that should respond is deter-
mined, we can calculate the ratio of the responding tags to the total unidentified
tags. With that ratio, the reader requests to respond to the all unidentified
tags having zero remainder after the modulo operation. In every read cycle, the
reader estimates the number of unread tags and calculates the number of groups
that gives the maximum throughput during next read cycle. If the frame size
is larger than the one that gives the optimal system efficiency, then the reader
starts to reduce the frame size so that it can achieve the optimal efficiency with
the estimated number of unread tags.

408 S.-R. Lee and C.-W. Lee

When the reader limits the number of responding tags, it transmits the num-
ber of tag groups and a random number to the tags when it broadcasts a request.
The tag that received the request generates a new number from the received ran-
dom number and its serial number and divides the new number by the number
of tag groups. Only the tags having the remainder of zero respond to the request.
When the number of estimated unread tags is below the threshold, the reader
adjusts the frame size without grouping the unread tags. It means the reader
broadcasts a read request with a frame size, a random number and the number
of tags groups of one in this case. After each read cycle, the reader estimates the
number of unread tags and adjust its frame size. This repeats until all the tags
are read.

3.2 Analysis of the EDFSA

Generally in the framed slotted ALOHA anti-collision method, the system effi-
ciency begins to increase as the the number of responding tags becomes larger
and it begins to decrease if the number of responding tags increases more than
a certain point. We will derive the optimum number of tags that should respond
if the frame size is given.

When the reader uses a frame size of N and the number of responding tags
is n, the probability that r tags exist in one given slot is a binomial distribution
as follows.

Bn, 1
N

(r) =
(

n
r

) (
1
N

) (

1 − 1
N

)n−1

(2)

The expected number of read tags during one read cycle is given as follows.

aN,n
1 = N · Bn, 1

N
(1) = N · n

(
1
N

) (

1 − 1
N

)n−1

(3)

where aN,n
r denotes the number of slots with r tags with the frame size of N and

n unread tags. Then the system efficiency is calculated as follows.

System Efficiency =
the number of slots filled with one tag

current frame size
= aN,n

1 /N (4)

We can obtain the number of tags that gives the maximum system efficiency by
differentiating Equation (3).

d(aN,n
1)

dn = (1 − 1/N)n−1 + n(1 − 1/N)n−1 ln(1 − 1/N)
= (1 − 1/N)n−1 {1 + n ln(1 − 1/N)}
= 0

(5)

Solving the above equation, we can derive the optimal number of responding
tags with the frame size of N as follows.

n =
⌈

− 1
ln(1 − 1/N)

⌉

(6)

An Enhanced Dynamic Framed Slotted ALOHA Anti-collision Algorithm 409

When the number of tags is n, the optimal frame size can be derived as follows.

N =
1

1 − e−
1
n

=
e

1
n

e
1
n − 1

(7)

When n is large, using Taylor series we can simplify the above equation as
follows.

N � 1 + 1
n

1 + 1
n − 1

= n + 1, n � 1 (8)

The above equation tells us that when the number of tags and the frame size
are approximately the same, the system efficiency becomes the maximum [5].

From Equation (8), we can conclude that if we restrict the number of respond-
ing tags similar to the frame size we can achieve maximum system efficiency. If
the number of unread tags is sufficiently large (i.e., larger than the frame size),
we can restrict the tag response by grouping the tags and allowing only one
group to respond and this can be done by Modulo operation. The number of
groups or the Modulo (M) is calculated as follows.

M =
⌈

The number of unread tags
N

⌉

(9)

where N denotes the maximum frame size.
In this paper, considering the implementation complexity we assume that

the EDFSA uses the power of two (2,4,8, · · ·) for grouping the tags. Then the
modulo operation can be simply done using the shift register. Figure 2-(a) shows
the system efficiency as the number of tags increase while the frame size is set
to N = 256. In the figure we can see that the maximum system efficiency can be
achieved when the number of unread tags and the frame size are approximately
the same and it is 36.8%.

From the figure we can determine a specific number of tag groups which gives
better system efficiency than others. When the number of unread tags is near
or less than the frame size, we can achieve higher system efficiency if we do no
use the Modulo operation and decrease the frame size. Figure 2-(b) shows how
system efficiency changes when we vary the frame size.

The EDFSA chooses the frame size and the Modulo that give better perfor-
mance than any other combination of the two may provide. For example, as we
see in the figure, the number of tags that produces the same expected system
efficiency whether we apply Modulo 2 operation or Modulo 1 operation can be
obtained as follows.

a
256,n/2
1

256
=

a256,n
1

256
(10)

We can rewrite the above equation as follows.

n

2

(
1

256

) (

1 − 1
256

) n
2 −1

= n

(
1

256

) (

1 − 1
256

)n−1

(11)

410 S.-R. Lee and C.-W. Lee

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

The number of tags

S
ys

te
m

 e
ffi

ci
en

cy

The number of tag groups−1
The number of tag groups−2
The number of tag groups−4
The number of tag groups−8

(a) System efficiency vs. number of tags

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

The number of tags (n)

S
ys

te
m

 e
ffi

ci
en

cy

Frame size −16
Frame size −32
Frame size −64
Frame size −128
Frame size −256

(b) System efficiency vs. frame size

Fig. 2. System efficiencies

Therefore, we obtain
n = 354. (12)

If the number of unread tags is slightly larger than 354, to achieve the optimal
system efficiency we must divide the tags into two groups, and for the number of
unread tags slightly smaller than 354 we must let every unread tag respond. By
doing this, we can always obtain the expected system efficiency between 34.6%
to 36.8 %. Table 1 shows example values.

Table 1. The number of unread tags vs. optimal frame size and Modulo

The number of unread tags Frame Size Number of tag groups (M)

708 – 1416 256 4

355 – 707 256 2

177 – 354 256 1

82 – 176 128 1

41 – 81 64 1

20 – 40 32 1

4 Performance Analysis of the EDFSA

We compare the EDFSA with the BFSA and the first algorithm of the Increase
method of the DFSA. In the following, the first algorithm of the increase method
of the DFSA is just called ’the Increase method’. We assume that the maximum
frame size of each algorithm is 256 slots. We also assume that the BFSA uses
the fixed frame size of 256 slots and the Increase method increases frames size
from 16 slots to 256 slots. In the Increase method, we assume that the frame
size doubles when the number of slots with collisions is more than 70% of the
current frame size. We also assume that when the number of empty slots is more

An Enhanced Dynamic Framed Slotted ALOHA Anti-collision Algorithm 411

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

The number of tags (n)

T
he

 n
um

be
r

of
 s

lo
ts

 u
se

d

BFSA(frame size 256)
DFSA(Increase)
EDFSA

(a) Number of slots used to identify tags

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

The number of tags (n)

S
ys

te
m

 e
ffi

ci
en

cy

BFSA(frame size 256)
DFSA(increase)
EDFSA

(b) System efficiency vs. number of tags

Fig. 3. Simulation results

than 30% of the current frame size, the reader reduces the current frame size in
half. The EDFSA is assumed to have the initial frame size of 128 slots. When
no tag is read during a read cycle, we assume that all the tags have been read
and finished simulation.

From Figure 3, we can observe that as the number of tags increased, for both
the BFSA and the increase methods the number of slots needed to read the tags
increased exponentially while it increased linearly for the EDFSA. The system
efficiency for the BFSA and Increase algorithms were below 20% because most
of the slots were wasted by tag collision when the number of tags is large. When
the the number of unread tags is small, most of the slots are left idle.

In the figure, the Increase method showed better performance than the BFSA
because the Increase method can decrease the frame size when the number of
unread tags becomes small, while the BFSA maintains its initial frame size of
256 regardless of the number of unread tags.

The number of slots used for the EDFSA to read the tags increased linearly
as the number of tags did. This is because the EDFSA can partition the tag
according to its maximum frame size when the number of unread tags was larger
that its maximum frame size and reduces its frame size when the number of
unread tags is smaller than the maximum frame size. Ideally the algorithm is
able to maintain the system efficiency between 34.6% and 36.8% on the average
regardless of the number of unread tags. In the simulation, the system efficiency
of the algorithm showed the system efficiency of around 33% which is slightly less
than the ideal, because of the initial frame size of 128 which was fixed regardless
of the number of tags.

From Figure 3 we can also observe that when the number of tags is 1000, the
EDFSA exhibits performance improvement of 100% and 85% compared with the
BFSA and the Increase methods respectively. If the number of tags is larger we
will be able to observe more dramatic performance improvement.

Though the simulation results use the number of slots as a performance metric,
we believe the overall results will be very similar to the actual time it takes to
read the tags because the reader generates a request just once every read cycle

412 S.-R. Lee and C.-W. Lee

and the time of the reader request is very small in the case of using a large
frame size [4].

5 Conclusions

In this paper, we proposed an enhanced ALOHA anti-collision algorithm that is
simple to implement but very efficient. The system efficiency becomes maximum
we we set the frame size and the number of unread tags equal. For the simplicity
of implementation, we used the power of two for the frame size and the number
of tag groups. Despite the restrictions, we were able to maintain the system
efficiency between 34.6 % and 36.8 %. This means that the number of slots
needed to read the tags always increases linearly as the number of tags does.
Theoretical maximum system efficiency is 36.8 % for framed slotted ALOHA. To
verify the effectiveness of our algorithm we ran simulations and found that when
the number of tags is 1000, our algorithm showed 85% to 100% the improvement
of the reading rate over the other two comparing anti-collision algorithms.

In the algorithm though we may improve the performance of the proposed
algorithm if we use natural numbers instead of the power of two when selecting
the frame size and the number of tag groups. However, the performance im-
provement is not significant. When we use the number with the power of two,
we are achieving the system efficiency of at least 34.6%, while we can do 36.8%
if everything is set to optimal. Thus, the algorithm we proposed is simple to
implement while achieving the performance close to theoretical maximum.

References

1. K. Finkenzeller.RFID handbook - Second Edition. JOHN WILEY & SONS, (2003)
2. ISO/IEC JTC 1/SC 32/WG 4:Information Technology automatic identification and

data capture techniques - Part 6: Parameter for air interference communications at
860MHz to 960MHz, ISO/IEC FDIS 18000-6, November (2003)

3. EPCglobal: EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF
RFID Protocol for Communications at 860MHz - 960MHz, Ver. 1.0.9, Jan. (2005)

4. PHILIPS Semiconductor. I-CODE1 System Design Guide: Technical Report. May
(2002)

5. R. Rom and M. Sidi. Multiple Access Protocols/Performance and Analysis. Springer-
Verlag, (1990) 47–77

6. W. A. Shewhart and S. S. Wilks. An Introduction to Probability Theory and Its
Application - Second Edition. Wiley publications, (1960)

7. H. Vogt.: Multiple Object Identification with Passive RFID Tags. 2002 IEEE Inter-
national Conference on Systems, Man and Cybernetics. vol:3, October (2002)

8. H. Vogt.: Efficient Object Identification with Passive RFID Tags. Proc. Pervasive
2002. (2002) 98–113.

9. J.E. Wieselthier, A. Ephremides, and L.A. Michels.: An Exact Analysis and Perfor-
mance Evaluation of Framed ALOHA with Capture. IEEE TRANSACTION ON
COMMUNICATIONS, vol:37 February (1989) 125–137

	Introduction
	Previous Work
	Basic Framed Slotted ALOHA (BFSA)
	Dynamic Framed Slotted ALOHA (DFSA)
	Advanced Framed Slotted ALOHA (AFSA)

	Enhanced Dynamic Framed Slotted ALOHA (EDFSA)
	Description of the EDFSA
	Analysis of the EDFSA

	Performance Analysis of the EDFSA
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

