
X. Zhou et al. (Eds.): EUC Workshops 2006, LNCS 4097, pp. 302 – 311, 2006.
© IFIP International Federation for Information Processing 2006

Resource Requirement Analysis for a Predictive-Hashing
Based Multicast Authentication Protocol*

Seonho Choi1 and Yanggon Kim2

1 Department of Computer Science, Bowie State University, 14000 Jericho Park Rd.,
Bowie, MD 20715, U.S.A.

schoi@bowiestate.edu
2 Department of Computer & Information Sciences, Towson University,

Towson, MD 21252, U.S.A.
ykim@towson.edu

Abstract. A new multicast authentication scheme for real-time streaming
applications was proposed [28] that is resistant to denial-of-service attacks with
less resource usages (CPU and buffer) at receivers compared to previously
proposed schemes. This scheme utilizes prediction hashing (PH) and one-way
key chain (OKC) techniques based on erasure codes and distillation codes.
Detailed protocol description is presented at the sender and receiver sides, and a
worst-case resource (memory and CPU) requirement at the receiver-side is
obtained with an assumption of security condition.

Keywords: denial-of-service, multicast, authentication, protocol, resource
requirement, cryptographic hashing.

1 Introduction and Related Works

We developed an efficient multicast authentication scheme [28] for real-time
streaming applications that is resistant to denial-of-service attacks while consuming
less resources (CPU and buffer) at receivers compared to previously proposed
schemes. This scheme utilizes prediction hashing (PH) and one-way key chain (OKC)
techniques based on erasure codes [12, 13, 22, 23, 24] and distillation codes [10]. PH
and OKC techniques enable the receiver to significantly reduce the CPU overhead
and buffer requirements compared to other block-based solution approaches [8, 10,
15, 16, 17, 18]. Our scheme is based on block-based approach where the real-time
data stream is divided into blocks of packets and each block includes predictive
authentication information for the next block as well as original stream data from the
current block. Preliminary analysis conducted in the middle of this paper indicates
that this new scheme consumes much less CPU and buffer space than one of the
recently proposed denial-of-service (DoS) resistant multicast authentication schemes,
pollution resistant authenticated block streams (PRABS) [10], by a factor of more
than 5 for buffer requirement and 3 for CPU requirement as will be shown at the end
of Section 3.

* This work was supported by US Army Research Office grant 48575-RT-ISP.

 Resource Requirement Analysis for a Predictive-Hashing 303

Several solution approaches were proposed for multicast authentication [8, 10, 12,
13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 27]. However, all of the approaches are
vulnerable to denial-of service (DoS) attacks [10]. Hash graph protocols and the
Wong-Lam scheme are vulnerable to signature flooding attacks. An adversary
flooding the stream with invalid signatures will overwhelm the computational
resources of receivers attempting to verify the signatures. Additionally, in hash graph
protocols, adversarial loss patterns can cause denial of service. For example, if an
adversary causes the loss of all signature packets, nothing is verifiable. Also, erasure
codes based approaches have limitations: erasure codes are designed to handle only a
specific threat model: packet loss. Erasure codes assume that symbols are sometimes
lost but not corrupted in transit; this is the erasure channel model. Unfortunately, the
assumptions that underlie erasure codes are unrealistic in hostile environments.
Adversaries can pollute the message stream by injecting invalid symbols. If erasure
codes use an invalid symbol as input to its decoding algorithm, it will reconstruct
invalid data. We have to assume more realistic attack model: malicious end hosts and
routers can observe, inject, modify, delay, and drop messages in an erasure encoded
multicast stream [10].

Recently, distillation codes [10] were developed to address DoS attack issues in
erasure codes based authentication approach. The new block based authentication
protocol, named as pollution resistant authenticated block streams (PRABS), was
designed and presented in [10] to cope with pollution attacks. However, in PRABS,
receivers still need to use significant amount of buffer space, and the CPU overhead at
receiver is proportional to the number of attack partitions that may be launched
simultaneously.

We developed a new mechanism, which is based on Prediction Hashing (PH) and
One-way Key Chain (OKC), to overcome those limitations. The basic idea of
prediction hashing is that each block of packets convey authentication information
that will be used to authenticate (or predict) the next block packets instead of sending
the authentication information within the same block as in previous approaches [8, 10,
15, 16, 17, 18]. PH technique allows the receivers to save significant amount of buffer
space since only the authentication-related portions from each packet needs to be
saved for future packet authentication, while the message portions of arrived packets
are processed (or authenticated) immediately after each of them is retrieved from the
packet buffer. However, in our scheme, the sender side needs to keep the message
portions from two consecutive blocks in the buffer to calculate PH.
 Explanation on the proposed protocol is given in Section 2 along with attack types
considered and the feasibility condition of such attacks. In Section 3, resource
requirement analysis is conducted on CPU and memory requirements at the receivers
in the worst case scenario. Conclusion is given in Section 4.

2 Predictive Hashing with One-Way Key Chain

We developed a new mechanism, which is based on Prediction Hashing (PH) and
One-way Key Chain (OKC), to significantly reduce resource requirements by the
receiver even in the presence of DoS attack packets flowing in. The basic idea of
prediction hashing is that each block of packets convey authentication information

304 S. Choi and Y. Kim

that will be used to authenticate (or predict) the next block packets instead of sending
the authentication information within the same block as in previous approaches [8, 10,
15, 16, 17, 18]. PH technique allows the receivers to save significant amount of buffer
space since only the authentication-related portions from each packet needs to be
saved for future packet authentication, while the message portions of arrived packets
are processed (or authenticated) immediately after each of them is retrieved from the
packet buffer. However, in our scheme, the sender side needs to keep the message
portions from two consecutive blocks in the buffer to calculate PH.

One-way key chain technique is already used in other contexts such as in one-time
password [11], TESLA [19, 20], etc. In our approach, the sender will obtain a hash
chain by applying hash operations recursively to some seed value, and the obtained
key values will be assigned to the blocks in backward order of their generation times.
The sender will use the assigned key to calculate Message Authentication Codes
(MAC) images of the prediction hashes/signature information for the next block, and
attach them (along with other authentication related information) to the current block
packets. Also, each block packet reveals the key used in the previous block to let the
receivers use it in authenticating the previous block packets (or partitions) without
applying erasure decoding and signature verifications in most of the cases. These
mechanisms are combined with erasure codes and distillation codes to develop a
multicast authentication protocol which is very resistant to Denial-of-Service attacks
and resource-efficient. Figure 1 shows the overview of our approach at sender side.
The receiver side operation is the reverse of the process shown in Figure 1.

At the sender side, erasure codes are applied to the hashes/signature obtained from
next block (Bi+1) to cope with packet losses during transmission. These erasure
encoded symbols are, then, divided into n pieces denoted as E1, E2,…, En. Message
authentication codes (MAC) are applied to these E1 through En with a key Ki to
prevent a most sophisticated DoS attack which is named as strong relay-attack1 in this
paper. Note that the key used in this process will not be revealed until the next block
packet is sent out. The output from these MAC codes are denoted as Γ1, Γ2, …, Γn.
These <Ej, Γj> pairs attached to the packet are protected by attaching Dj obtained
from the distillation codes. These Djs will allow the receiver to formulate candidate
partitions by applying one-way accumulators based on Merkel hash trees. When a
certain security condition (which will be introduced later) is met, the receiver doesn’t
have to apply erasure decoding and signature verification operations, which are the
most expensive operations in terms of CPU overhead, for each invalid partition.
Applying only some hash operations will allow the receiver to filter out invalid
partitions – due to prediction hashes and one-way key chain techniques. The sender
side may choose a proper value of block period, p, to satisfy the security condition. It
will be shown that this condition is general enough in most of the cases as long as the
real-time constraints are not very tight. Even when the security condition may not be
satisfied for every case and receiver, it will be much more difficult to launch effective
DoS attacks in our scheme due to the restrictions imposed by PH and OKC techniques
on adversaries.

1 This will be formally defined later in this section.

 Resource Requirement Analysis for a Predictive-Hashing 305

Fig. 1. Overview of our scheme with PH and OKC at the sender

For the purpose of analysis, the following attack types are introduced and used in this
paper.

Relay-Attack: An adversary may eavesdrop authentic packets and spoof (and send)
packets with invalid authentication-related attachments (while preserving the
authentic message portions in each packet) in such a way that the receiver will receive
at least n-t spoofed packets earlier than n-t authentic packets in the same block.
Strong Relay-Attack: If an adversary has the following capabilities, he/she can
launch strong relay-attacks:
o Adversary can eavesdrop at least n-t authentic packets in Bi and at least one

authentic packet in Bi+1.
o Adversary copies authentic message portions from Bi packets into (at least) n-t

spoofed packets, and uses a disclosed key Ki (from Bi+1 packet) to come up with
modified Ej and Γj in each spoofed packet.

o Adversary sends all these at least n-t spoofed packets in such a way that at least n-t
of them will be received before a receiver receives n-t authentic packets in Bi.

2.1 Feasibility of Strong Relay Attacks

Security condition can be obtained under which the adversaries cannot launch strong
relay-attacks. Once the system parameters such as block period (p), block size (n),
redundancy level (related to t), etc., are chosen to satisfy this condition, then such

306 S. Choi and Y. Kim

attacks may not be launched by any adversary, thus maximizing the efficiency of our
scheme in terms of buffer and CPU usages. Figure 2 shows a diagram for obtaining
such condition. If we set the period, p, to be larger than δ = d +(n-t-1) (p/n) where d
represents the maximum delay from the sender to the receiver, then it would not be
possible for any attacker to launch strong relay-attacks.

p > d·n/(t+1) (1)

Security Condition

Fig. 2. Security Condition

3 Resource Requirement Analysis

3.1 CPU Overhead

We will estimate the CPU overhead in terms of how many erasure decoding,
signature verification, and hash operations are needed in each block for our extended
scheme. If we assume that a safe period value is chosen from formula (2) in such a
way that no strong relay-attacks may be launched, then the CPU overhead may be
specified as follows:

 Number of erasure decoding and signature verification operations: Only one erasure
decoding and one signature verification operations are needed for each block. This
is because, in our algorithm (Figure 3) – step (4), only those partitions in
SymbolBuffer which have Γj matching to Ej in a chosen member will be
decoded/verified in steps (4-1) and (4-2). If any attacker can’t launch strong relay-
attacks, any invalid partition stored in SymbolBuffer will not have Γj matching to Ej
in all its members.

S

A

R

Bi Bi+1

At least n-t strong
relay-attack packets need to
be delivered by this time.

Attacker needs to wait (at
least) until this point before

launching strong relay-attack

At least n-t
strong relay-attack

packets must be
delivered within this

time frame.

maximum

Worst-case: this
delay=0

period, p

 Resource Requirement Analysis for a Predictive-Hashing 307

Fig. 3. Detailed Algorithm at a Receiver

o One case we need to consider is when the receiver couldn’t obtain any authentic
packet in Bi, and, as a result, no hashes/signature information will be stored in
SymbolBuffer. And, when the authentic packets in Bi+1 arrive later, the receiver
can’t authenticate message portions, however, the hashes/signature information
contained in Bi+1 packets will be stored in SymbolBuffer for Bi+2 message
authentication. Also, it needs to check Hash(Hash(Ki)) == Ki-2 since the receiver
will not have the authentic key Ki-1. Even when this happens, the receiver still
needs to carry out only one erasure decoding and one signature verification
operation when the first authentic packet in Bi+2 is received.

 Number of cryptographic hash operations: Hash operations are applied in steps, (2),
(4), (6), and (10).

o At step (2), the worst case occurs when all the attack packets have different keys
included except for authentic packets. Note that these hash operations are applied
even before Distillation Decoding is applied. In this worst case, the number of
hash operations needed in one block is 1(for authentic partition)+fn (for attack
packets) = 1+fn. Another extreme case is when all the attack partitions are of size

308 S. Choi and Y. Kim

n-t packets – this case triggers the highest CPU overhead in PRABS. In this case
the number of hash operations is equal to the number of partitions with at least n-
t members, which is floor(fn/(n-t)). In other cases, the number of hash operations
is in between these two extremes.

o At step (4), the maximum number of hash operations needed in one block is
equal to 1+floor(fn/(n-t)) since only one hash operation is required for each
attack partition which has at least n-t members arrived.

o At step (6), the number of hash operations needed in one block is (f+1)n in the
worst case when all the attack packets are launched from relay-attacks and have
valid key included in them (but, with invalid Ej and Γj). Also, message portions
form authentic packets need to be hashed, too.

o At step (10), the number of hash operations needed in one block is (f+1)n ·log n
in the worst case when attack partitions have n-t members each and all the attack
packets are launched from relay-attacks and have valid message portions and
valid keys included in them (but, with invalid Ej and Γj). Also, distillation
decoding needs to be performed for authentic packets, too.

o Hence, the total number of hash operations in the worst case is:

 1+fn+1+ floor(fn/(n-t)) + (f+1)n +(f+1)n ·log n = 2+(2f+1)n + floor(fn/(n-t)) +
(f+1)n ·log n (2)

From this formula, if we subtract the number of hash operations in Prediction
Hash based approach (or PRABS), then we get 2+fn+floor(fn/(n-t)) ≈ O(fn).

 The total CPU processing time may be represented as follows:

[2+(2f+1)n + floor(fn/(n-t)) + (f+1)n ·log n]·CH+CE+CS . (3)

3.2 Buffer Requirement

There are three different buffer spaces maintained by the receiver, Raw Packet Buffer,
SymbolBuffer, and HashBuffer. Again, for the purpose of simplicity, it is assumed
that strong relay-attacks cannot be launched by any attacker. Under this simplified
assumption, let’s find out the amount of buffer spaces needed:

 Raw Packet Buffer: The worst case scenario occurs when the receiver receives the
first authentic packet in each block. In this case, all the steps in the algorithm will
be executed from step (1) to (10), including one erasure decoding, one signature
verification, and 1+log n hash operations (for steps (7) and (10)). The other cases
which require the second longest processing times are when the steps (5) though
(10) are executed with steps (2) through (4) are skipped. In this case, at most 1+log
n hash operations are needed for processing each packet (steps (7) and (10)).
Hence, the total buffer space needed for storing raw packets is:

M[(f+1)R× (CE+ CS +CD + (1+log n)CH) - 1] (4)

 SymbolBuffer: The maximum space is needed when the receiver receives the first
authentic packet in the current block with the smallest delivery delay from the
sender, and the last authentic packet in the next block at its latest time instant with
the largest delivery delay. This is because even when only one authentic packet
(e.g., last one) in the next block arrives, the hashes/signature may have to be

 Resource Requirement Analysis for a Predictive-Hashing 309

extracted and verified from the SymbolBuffer to verify the authenticity of the
received packet.

r2·(2p + d)(f+1) (5)

 Here, d is the maximum delay that can be experienced by the receiver. And, r2 is
the byte arrival rate (bytes/sec) for Ej and Γj that need to be stored in SymbolBuffer.

 HashBuffer: This buffer is needed for storing authentic hashes/signature once they
are authenticated at step (4-2). One set of authentic hashes/signature will no longer
be required when the possibility of packet arrivals for the next block is none. Also,
while the hashes/signature in HashBuffer are being used for verifying the next
block packets, their attached portions (in the next block packets) may be erasure
decoded and verified. Hence, double buffering type of technique needs to be used
for storing hashes/signature for two consecutive blocks at any time. Thus, the buffer
requirement is:

2r2· p(n-t)/n (6)

 Total Buffer space needed is:

M[(f+1)R× (CE+CS +(1+log n)CH) -1]+ r2·(2p+ d)(f+1)+2r2· p(n-t)/n (7)

Table 1. Buffer and Per-Block CPU requirements for Prediction Hash based approach
(including Prediction Hash with One-way Key Chain) and PRABS

 Buffer Requirement (Average) CPU requirement

PRABS (r1+r2+r3)(p+d)(f+1) +

M[(f+1)R × (f+1) (CE+ CS +CD) - (f+1)]

(n + n × log n)(f+1)CH+

(1+fn/(n-t))(CE+CS)

Predictiive Hash

r2·(2p + d)(f+1) + 2r2· p(n-t)/n +

M[(f+1)R× (CE+ CS + (1+log n)CH) - 1]

[2+(2f+1)n + floor(fn/(n-t))
+ (f+1)n ·log n]·CH+CE+CS

Example figures are obtained from the following realistic numbers [12, 29] and the
results are shown in Table 2.

p = 0.3, d= 0.1, f=10, n=8, t=4, M=500, r1=3120 bytes/sec, r2=400 bytes/sec,
r3=480 bytes/sec, CE=0.005, CS=0.005, CH=0.000125.

One hash is assumed to occupy 20 bytes. It is shown that our scheme with PH and
OKC improves the performance of the previous scheme with just PH technique, and
our scheme outperforms PRABS with significant improvements.

Table 2. Buffer and Per-Block CPU requirements for an example system

 Worst-case Buffer
Requirement

(Worst-case) Per-block CPU
time

PRABS 69905 bytes 0.254 seconds

Prediction Hash
with One-way Key Chain

11706 bytes 0.067 seconds

310 S. Choi and Y. Kim

4 Conclusion

We developed a new authentication scheme based on PH and OKC techniques on top
of erasure codes and distillation codes to provide enhanced resistance to DoS attacks
while consuming much less resources compared to other block-based multicast stream
authentication schemes. We also analyzed the worst-case resource requirements under
the assumption that the security condition is satisfied, and found out that much less
resources are needed compared to other protocols such as PRABS.

References

1. D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica. Taming IP packet flooding
attacks. In Proceedings of Workshop on Hot Topics in Networks (HotNets-II), Nov. 2003.

2. T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet denial-of-service with
capabilities. In Proceedings of Workshop on Hot Topics in Networks (HotNets-II), Nov.
2003.

3. N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In Advances in Cryptology --EUROCRYPT ’97, volume 1233 of Lecture
Notes in Computer Science, pages 480–494, 1997.

4. M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs
practical. In Advances in Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes in
Computer Science, pages 470–484, 1997.

5. J. Benaloh and M. de Mare. One way accumulators: A decentralized alternative to digital
signatures. In Advances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture Notes
in Computer Science, pages 274–285, 1993.

6. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Advances in Cryptology – CRYPTO ’02, volume
2442 of Lecture Notes in Computer Science, pages 61–76, 2002.

7. V. Gligor. Guaranteeing access in spite of service-flooding attacks. In Proceedings of the
Security Protocols Workshop, Apr. 2003.

8. P. Golle and N. Modadugu. Authenticating streamed data in the presence of random packet
loss. In Proceedings of the Symposium on Network and Distributed Systems Security
(NDSS 2001), pages 13–22. Internet Society, Feb. 2001.

9. M. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed
cryptographic accumulator. In Proceedings of Information Security Conference (ISC
2002), volume 2433 of Lecture Notes in Computer Science, pages 372–388, 2002.

10. C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar, Distillation codes and applications to
DoS resistant multicast authentication, in Proc. 11th Network and Distributed Systems
Security Symposium (NDSS), San Diego, CA, Feb. 2004.

11. Leslie Lamport, "Password Authentication with Insecure Communication",
Communications of the ACM 24.11 (November 1981), 770-772

12. M. Luby. LT codes. In Proceedings of the 43rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’02), pages 271–282, 2002.

13. M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-
resilient codes. In Proceedings of 29th Annual ACM Symposium on Theory of Computing
(STOC ’97), pages 150–159, May 1997.

14. R. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE Symposium
on Research in Security and Privacy, pages 122–134, Apr. 1980.

 Resource Requirement Analysis for a Predictive-Hashing 311

15. S. Miner and J. Staddon. Graph-based authentication of digital streams. In Proceedings of
the IEEE Symposium on Research in Security and Privacy, pages 232–246, May 2001.

16. A. Pannetrat and R. Molva. Efficient multicast packet authentication. In Proceedings of the
Symposium on Network and Distributed System Security Symposium (NDSS 2003). Internet
Society, Feb. 2003.

17. J. M. Park, E. Chong, and H. J. Siegel. Efficient multicast packet authentication using
erasure codes. ACM Transactions on Information and System Security (TISSEC),
6(2):258–285, May 2003.

18. J. M. Park, E. K. Chong, and H. J. Siegel. Efficient multicast packet authentication using
signature amortization. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 227–240, May 2002.

19. A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Efficient and secure source authentication
for multicast. In Proceedings of the Symposium on Network and Distributed Systems
Security (NDSS 2001), pages 35–46. Internet Society, Feb. 2001.

20. A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authentication and signature of
multicast streams over lossy channels. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 56–73, May 2000.

21. A. Perrig and J. D. Tygar. Secure Broadcast Communication in Wired and Wireless
Networks. Kluwer Academic Publishers, 2002.

22. M. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. Journal of the ACM, 36(2):335–348, 1989.

23. I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society
for Industrial and Applied Mathematics, 8(2):300–304, 1960.

24. L. Rizzo. Effective erasure codes for reliable computer communication protocols. ACM
Computer Communication Review, 27(2):24–36, Apr. 1997.

25. T. Sander. Efficient accumulators without trapdoor extended abstracts. In Information and
Communication Security, Second International Conference – ICICS ’99, volume 1726 of
Lecture Notes in Computer Science, pages 252–262, 1999.

26. D. Song, D. Zuckerman, and J. D. Tygar. Expander graphs for digital stream authentication
and robust overlay networks. In Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 258–270, May 2002.

27. C. Wong and S. Lam. Digital signatures for flows and multicasts. In Proceedings on the
6th International Conference on Network Protocols (ICNP ‘98), pages 198–209. IEEE,
October 1998.

28. Seonho Choi, ''Denial-of-Service Resistant Multicast Authentication Protocol with
Prediction Hashing and One-way Key Chain,'' ism, pp. 701- 706, In Proceedings of the
Seventh IEEE International Symposium on Multimedia (ISM'05), 2005.

	Introduction and Related Works
	Predictive Hashing with One-Way Key Chain
	Feasibility of Strong Relay Attacks

	Resource Requirement Analysis
	CPU Overhead
	Buffer Requirement

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

