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Abstract. A new multicast authentication scheme for real-time streaming 
applications was proposed [28] that is resistant to denial-of-service attacks with 
less resource usages (CPU and buffer) at receivers compared to previously 
proposed schemes. This scheme utilizes prediction hashing (PH) and one-way 
key chain (OKC) techniques based on erasure codes and distillation codes. 
Detailed protocol description is presented at the sender and receiver sides, and a 
worst-case resource (memory and CPU) requirement at the receiver-side is 
obtained with an assumption of security condition.  

Keywords: denial-of-service, multicast, authentication, protocol, resource 
requirement, cryptographic hashing. 

1   Introduction and Related Works 

We developed an efficient multicast authentication scheme [28] for real-time 
streaming applications that is resistant to denial-of-service attacks while consuming 
less resources (CPU and buffer) at receivers compared to previously proposed 
schemes. This scheme utilizes prediction hashing (PH) and one-way key chain (OKC) 
techniques based on erasure codes [12, 13, 22, 23, 24] and distillation codes [10]. PH 
and OKC techniques enable the receiver to significantly reduce the CPU overhead 
and buffer requirements compared to other block-based solution approaches [8, 10, 
15, 16, 17, 18]. Our scheme is based on block-based approach where the real-time 
data stream is divided into blocks of packets and each block includes predictive 
authentication information for the next block as well as original stream data from the 
current block. Preliminary analysis conducted in the middle of this paper indicates 
that this new scheme consumes much less CPU and buffer space than one of the 
recently proposed denial-of-service (DoS) resistant multicast authentication schemes, 
pollution resistant authenticated block streams (PRABS) [10], by a factor of more 
than 5 for buffer requirement and 3 for CPU requirement as will be shown at the end 
of Section 3. 
                                                           
* This work was supported by US Army Research Office grant 48575-RT-ISP. 
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Several solution approaches were proposed for multicast authentication [8, 10, 12, 
13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 27]. However, all of the approaches are 
vulnerable to denial-of service (DoS) attacks [10]. Hash graph protocols and the 
Wong-Lam scheme are vulnerable to signature flooding attacks. An adversary 
flooding the stream with invalid signatures will overwhelm the computational 
resources of receivers attempting to verify the signatures. Additionally, in hash graph 
protocols, adversarial loss patterns can cause denial of service. For example, if an 
adversary causes the loss of all signature packets, nothing is verifiable. Also, erasure 
codes based approaches have limitations: erasure codes are designed to handle only a 
specific threat model: packet loss. Erasure codes assume that symbols are sometimes 
lost but not corrupted in transit; this is the erasure channel model. Unfortunately, the 
assumptions that underlie erasure codes are unrealistic in hostile environments. 
Adversaries can pollute the message stream by injecting invalid symbols. If erasure 
codes use an invalid symbol as input to its decoding algorithm, it will reconstruct 
invalid data. We have to assume more realistic attack model: malicious end hosts and 
routers can observe, inject, modify, delay, and drop messages in an erasure encoded 
multicast stream [10]. 

Recently, distillation codes [10] were developed to address DoS attack issues in 
erasure codes based authentication approach. The new block based authentication 
protocol, named as pollution resistant authenticated block streams (PRABS), was 
designed and presented in [10] to cope with pollution attacks. However, in PRABS, 
receivers still need to use significant amount of buffer space, and the CPU overhead at 
receiver is proportional to the number of attack partitions that may be launched 
simultaneously.  

We developed a new mechanism, which is based on Prediction Hashing (PH) and 
One-way Key Chain (OKC), to overcome those limitations. The basic idea of 
prediction hashing is that each block of packets convey authentication information 
that will be used to authenticate (or predict) the next block packets instead of sending 
the authentication information within the same block as in previous approaches [8, 10, 
15, 16, 17, 18]. PH technique allows the receivers to save significant amount of buffer 
space since only the authentication-related portions from each packet needs to be 
saved for future packet authentication, while the message portions of arrived packets 
are processed (or authenticated) immediately after each of them is retrieved from the 
packet buffer. However, in our scheme, the sender side needs to keep the message 
portions from two consecutive blocks in the buffer to calculate PH. 
    Explanation on the proposed protocol is given in Section 2 along with attack types 
considered and the feasibility condition of such attacks. In Section 3, resource 
requirement analysis is conducted on CPU and memory requirements at the receivers 
in the worst case scenario. Conclusion is given in Section 4. 

2   Predictive Hashing with One-Way Key Chain 

We developed a new mechanism, which is based on Prediction Hashing (PH) and 
One-way Key Chain (OKC), to significantly reduce resource requirements by the 
receiver even in the presence of DoS attack packets flowing in. The basic idea of 
prediction hashing is that each block of packets convey authentication information 



304 S. Choi and Y. Kim 

that will be used to authenticate (or predict) the next block packets instead of sending 
the authentication information within the same block as in previous approaches [8, 10, 
15, 16, 17, 18]. PH technique allows the receivers to save significant amount of buffer 
space since only the authentication-related portions from each packet needs to be 
saved for future packet authentication, while the message portions of arrived packets 
are processed (or authenticated) immediately after each of them is retrieved from the 
packet buffer. However, in our scheme, the sender side needs to keep the message 
portions from two consecutive blocks in the buffer to calculate PH. 

One-way key chain technique is already used in other contexts such as in one-time 
password [11], TESLA [19, 20], etc. In our approach, the sender will obtain a hash 
chain by applying hash operations recursively to some seed value, and the obtained 
key values will be assigned to the blocks in backward order of their generation times. 
The sender will use the assigned key to calculate Message Authentication Codes 
(MAC) images of the prediction hashes/signature information for the next block, and 
attach them (along with other authentication related information) to the current block 
packets. Also, each block packet reveals the key used in the previous block to let the 
receivers use it in authenticating the previous block packets (or partitions) without 
applying erasure decoding and signature verifications in most of the cases. These 
mechanisms are combined with erasure codes and distillation codes to develop a 
multicast authentication protocol which is very resistant to Denial-of-Service attacks 
and resource-efficient. Figure 1 shows the overview of our approach at sender side. 
The receiver side operation is the reverse of the process shown in Figure 1.    

At the sender side, erasure codes are applied to the hashes/signature obtained from 
next block (Bi+1) to cope with packet losses during transmission. These erasure 
encoded symbols are, then, divided into n pieces denoted as E1, E2,…, En. Message 
authentication codes (MAC) are applied to these E1 through En with a key Ki to 
prevent a most sophisticated DoS attack which is named as strong relay-attack1 in this 
paper. Note that the key used in this process will not be revealed until the next block 
packet is sent out. The output from these MAC codes are denoted as Γ1, Γ2, …, Γn. 
These <Ej, Γj> pairs attached to the packet are protected by attaching Dj obtained 
from the distillation codes. These Djs will allow the receiver to formulate candidate 
partitions by applying one-way accumulators based on Merkel hash trees. When a 
certain security condition (which will be introduced later) is met, the receiver doesn’t 
have to apply erasure decoding and signature verification operations, which are the 
most expensive operations in terms of CPU overhead, for each invalid partition. 
Applying only some hash operations will allow the receiver to filter out invalid 
partitions – due to prediction hashes and one-way key chain techniques. The sender 
side may choose a proper value of block period, p, to satisfy the security condition.  It 
will be shown that this condition is general enough in most of the cases as long as the 
real-time constraints are not very tight. Even when the security condition may not be 
satisfied for every case and receiver, it will be much more difficult to launch effective 
DoS attacks in our scheme due to the restrictions imposed by PH and OKC techniques 
on adversaries.   

                                                           
1 This will be formally defined later in this section. 
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Fig. 1. Overview of our scheme with PH and OKC at the sender 

For the purpose of analysis, the following attack types are introduced and used in this 
paper. 

Relay-Attack: An adversary may eavesdrop authentic packets and spoof (and send) 
packets with invalid authentication-related attachments (while preserving the 
authentic message portions in each packet) in such a way that the receiver will receive 
at least n-t spoofed packets earlier than n-t authentic packets in the same block.  
Strong Relay-Attack: If an adversary has the following capabilities, he/she can 
launch strong relay-attacks: 
o Adversary can eavesdrop at least n-t authentic packets in Bi and at least one 

authentic packet in Bi+1. 
o Adversary copies authentic message portions from Bi packets into (at least) n-t 

spoofed packets, and uses a disclosed key Ki (from Bi+1 packet) to come up with 
modified Ej and Γj in each spoofed packet. 

o Adversary sends all these at least n-t spoofed packets in such a way that at least n-t 
of them will be received before a receiver receives n-t authentic packets in Bi. 

2.1   Feasibility of Strong Relay Attacks 

Security condition can be obtained under which the adversaries cannot launch strong 
relay-attacks. Once the system parameters such as block period (p), block size (n), 
redundancy level (related to t), etc., are chosen to satisfy this condition, then such 
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attacks may not be launched by any adversary, thus maximizing the efficiency of our 
scheme in terms of buffer and CPU usages. Figure 2 shows a diagram for obtaining 
such condition. If we set the period, p, to be larger than δ = d +(n-t-1) (p/n) where d 
represents the maximum delay from the sender to the receiver, then it would not be 
possible for any attacker to launch strong relay-attacks. 

p > d·n/(t+1)                                                  (1) 

Security Condition 

 

Fig. 2. Security Condition 

3   Resource Requirement Analysis 

3.1   CPU Overhead 

We will estimate the CPU overhead in terms of how many erasure decoding, 
signature verification, and hash operations are needed in each block for our extended 
scheme. If we assume that a safe period value is chosen from formula (2) in such a 
way that no strong relay-attacks may be launched, then the CPU overhead may be 
specified as follows: 

 Number of erasure decoding and signature verification operations: Only one erasure 
decoding and one signature verification operations are needed for each block. This 
is because, in our algorithm (Figure 3) – step (4), only those partitions in 
SymbolBuffer which have Γj matching to Ej in a chosen member will be 
decoded/verified in steps (4-1) and (4-2). If any attacker can’t launch strong relay-
attacks, any invalid partition stored in SymbolBuffer will not have Γj matching to Ej 
in all its members.   

S

A

R

Bi Bi+1

At least n-t strong 
relay-attack packets need to 
be delivered by this time. 

Attacker needs to wait (at 
least) until this point before 

launching strong relay-attack 

At least n-t
strong relay-attack 

packets must be 
delivered within this 

time frame. 

maximum 

Worst-case: this 
delay=0 

period, p



 Resource Requirement Analysis for a Predictive-Hashing 307 

 

Fig. 3. Detailed Algorithm at a Receiver 

o One case we need to consider is when the receiver couldn’t obtain any authentic 
packet in Bi, and, as a result, no hashes/signature information will be stored in 
SymbolBuffer. And, when the authentic packets in Bi+1 arrive later, the receiver 
can’t authenticate message portions, however, the hashes/signature information 
contained in Bi+1 packets will be stored in SymbolBuffer for Bi+2 message 
authentication. Also, it needs to check Hash(Hash(Ki)) == Ki-2 since the receiver 
will not have the authentic key Ki-1.  Even when this happens, the receiver still  
needs to carry out only one erasure decoding and one signature verification 
operation when the first authentic packet in Bi+2 is received. 

 Number of cryptographic hash operations: Hash operations are applied in steps, (2), 
(4), (6), and (10).  

o At step (2), the worst case occurs when all the attack packets have different keys 
included except for authentic packets. Note that these hash operations are applied 
even before Distillation Decoding is applied. In this worst case, the number of 
hash operations needed in one block is 1(for authentic partition)+fn (for attack 
packets) = 1+fn. Another extreme case is when all the attack partitions are of size 
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n-t packets – this case triggers the highest CPU overhead in PRABS. In this case 
the number of hash operations is equal to the number of partitions with at least n-
t members, which is floor(fn/(n-t)). In other cases, the number of hash operations 
is in between these two extremes. 

o At step (4), the maximum number of hash operations needed in one block is 
equal to 1+floor(fn/(n-t)) since only one hash operation is required for each 
attack partition which has at least n-t members arrived.  

o At step (6), the number of hash operations needed in one block is (f+1)n in the 
worst case when all the attack packets are launched from relay-attacks and have 
valid key included in them (but, with invalid Ej and Γj). Also, message portions 
form authentic packets need to be hashed, too. 

o At step (10), the number of hash operations needed in one block is (f+1)n ·log n 
in the worst case when attack partitions have n-t members each and all the attack 
packets are launched from relay-attacks and have valid message portions and 
valid keys included in them (but, with invalid Ej and Γj). Also, distillation 
decoding needs to be performed for authentic packets, too. 

o Hence, the total number of hash operations in the worst case is: 

       1+fn+1+ floor(fn/(n-t)) + (f+1)n +(f+1)n ·log n = 2+(2f+1)n + floor(fn/(n-t)) +  
(f+1)n ·log n                                                                  (2) 

From this formula, if we subtract the number of hash operations in Prediction 
Hash based approach (or PRABS), then we get 2+fn+floor(fn/(n-t)) ≈ O(fn).  

 The total CPU processing time may be represented as follows: 

[2+(2f+1)n + floor(fn/(n-t)) + (f+1)n ·log n]·CH+CE+CS .  (3) 

3.2   Buffer Requirement 

There are three different buffer spaces maintained by the receiver, Raw Packet Buffer, 
SymbolBuffer, and HashBuffer. Again, for the purpose of simplicity, it is assumed 
that strong relay-attacks cannot be launched by any attacker. Under this simplified 
assumption, let’s find out the amount of buffer spaces needed: 

 Raw Packet Buffer: The worst case scenario occurs when the receiver receives the 
first authentic packet in each block. In this case, all the steps in the algorithm will 
be executed from step (1) to (10), including one erasure decoding, one signature 
verification, and 1+log n hash operations (for steps (7) and (10)). The other cases 
which require the second longest processing times are when the steps (5) though 
(10) are executed with steps (2) through (4) are skipped. In this case, at most 1+log 
n hash operations are needed for processing each packet (steps (7) and (10)). 
Hence, the total buffer space needed for storing raw packets is: 

M[(f+1)R× (CE+ CS +CD + (1+log n)CH) - 1]     (4) 

 SymbolBuffer: The maximum space is needed when the receiver receives the first 
authentic packet in the current block with the smallest delivery delay from the 
sender, and the last authentic packet in the next block at its latest time instant with 
the largest delivery delay. This is because even when only one authentic packet 
(e.g., last one) in the next block arrives, the hashes/signature may have to be 
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extracted and verified from the SymbolBuffer to verify the authenticity of the 
received packet.  

r2·(2p + d)(f+1)                                        (5) 

    Here, d is the maximum delay that can be experienced by the receiver. And, r2 is 
the byte arrival rate (bytes/sec) for Ej and Γj that need to be stored in SymbolBuffer. 

 HashBuffer: This buffer is needed for storing authentic hashes/signature once they 
are authenticated at step (4-2). One set of authentic hashes/signature will no longer 
be required when the possibility of packet arrivals for the next block is none. Also, 
while the hashes/signature in HashBuffer are being used for verifying the next 
block packets, their attached portions (in the next block packets) may be erasure 
decoded and verified. Hence, double buffering type of technique needs to be used 
for storing hashes/signature for two consecutive blocks at any time. Thus, the buffer 
requirement is: 

2r2· p(n-t)/n                                                 (6) 

 Total Buffer space needed is: 

M[(f+1)R× (CE+CS +(1+log n)CH) -1]+ r2·(2p+ d)(f+1)+2r2· p(n-t)/n     (7) 

Table 1. Buffer and Per-Block CPU requirements for Prediction Hash based approach 
(including Prediction Hash with One-way Key Chain) and PRABS 

 Buffer Requirement (Average) CPU requirement 

PRABS (r1+r2+r3)(p+d)(f+1) + 

M[(f+1)R × (f+1) (CE+ CS +CD) - (f+1)] 

(n + n × log n)(f+1)CH+ 

(1+fn/(n-t))(CE+CS) 

Predictiive Hash 
 

r2·(2p + d)(f+1) +  2r2· p(n-t)/n + 

M[(f+1)R× (CE+ CS + (1+log n)CH) - 1] 

[2+(2f+1)n + floor(fn/(n-t)) 
+ (f+1)n ·log n]·CH+CE+CS 

Example figures are obtained from the following realistic numbers [12, 29] and the 
results are shown in Table 2. 

p = 0.3, d= 0.1, f=10, n=8, t=4, M=500, r1=3120 bytes/sec, r2=400 bytes/sec, 
r3=480 bytes/sec, CE=0.005, CS=0.005, CH=0.000125. 

One hash is assumed to occupy 20 bytes. It is shown that our scheme with PH and 
OKC improves the performance of the previous scheme with just PH technique, and 
our scheme outperforms PRABS with significant improvements. 

Table 2. Buffer and Per-Block CPU requirements for an example system 

  Worst-case Buffer 
Requirement 

(Worst-case) Per-block CPU 
time 

PRABS 69905 bytes 0.254 seconds 

Prediction Hash 
with One-way Key Chain 

11706 bytes 0.067 seconds 
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4   Conclusion 

We developed a new authentication scheme based on PH and OKC techniques on top 
of erasure codes and distillation codes to provide enhanced resistance to DoS attacks 
while consuming much less resources compared to other block-based multicast stream 
authentication schemes. We also analyzed the worst-case resource requirements under 
the assumption that the security condition is satisfied, and found out that much less 
resources are needed compared to other protocols such as PRABS.  
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