
Policy Classes and Query Rewriting Algorithm
for XML Security Views�

Nataliya Rassadko

The University of Trento, via Sommarive 14, 38050 Povo(TN), Italy
rassadko@dit.unitn.it

Abstract. Most state-of-the-art approaches of securing XML documents
are based on a partial annotation of an XML tree with security labels
which are later propagated to unlabeled nodes of the XML so that the
resulting labeling is full (i.e. defined for every XML node). The first
contribution of this paper is an investigation of possible alternatives for
policy definition that lead to a fully annotated XML. We provide a clas-
sification of policies using different options of security label propagation
and conflict resolution. Our second contribution is a generalized algo-
rithm that constructs a full DTD annotation (from the the partial one)
w.r.t. the policy classification. Finally, we discuss the query rewriting
approach for our model of XML security views.

1 Introduction

In [1], we presented a generalized notion of XML security views. The intuition
behind XML security views is similar to that of multi-level security views for
a relational database [2]: views are virtual tables that are defined by multilevel
relational expressions over the multilevel relations and are evaluated each time
the view is used; view evaluation yields a derived multilevel relation.

In a hierarchical structure like XML, it is hardly possible to define accessibility
via a single query. Thus, for XML, we define a partial assignment of security
labels to XML nodes; then, a security policy is applied to these security labels so
that the partially annotated XML becomes fully annotated; finally, the latter is
“sanitized”, i.e. (some) nodes with negative authorizations are hidden (deleted
or encrypted), but their permitted children are revealed (e.g., moved up to a
permitted ancestor if a forbidden parent is deleted). This approach is used, for
example, in [3], [4], [5], [6]. The resulting XML tree is called authorized (TA).
Another approach to XML view calculation enforces security annotations on the
schema level. The result is a DTD schema of the permitted data (or in other
words, a DTD view Dv) as in [1], [7], [8]. Then, the materialized version of
XML document (TM) is constructed from the initial XML document by deleting
forbidden nodes w.r.t. Dv so that TA is isomorphic to TM .

� This work has been partially supported by MIUR under the project FIRB-ASTRO,
by PAT under the project PAT-MOSTRO and by the EU Commission under the
project EU-IST-IP-SERENITY.

E. Damiani and P. Liu (Eds.): Data and Applications Security 2006, LNCS 4127, pp. 104–118, 2006.
c© IFIP International Federation for Information Processing 2006

Policy Classes and Query Rewriting Algorithm for XML Security Views 105

PARTIALLY
ANNOTATED DTD

(DTD, ann)

CONFORMING
XML
(T)

FULLY
ANNOTATED DTD

ANNOTATE
VIEW

SCHEMA OF
ACCESSIBLE

DATA
(Dv)

BUILD VIEW

Hidden data
(σ-function)

M
A

T
E

R
IA

L
IZ

E
V

IEW

ACCESSIBLE XML
DATA
(TM)

Fig. 1. Schema of accessible data materialization

A diagram of the methodology to construct a schema for the accessible data
is shown in Fig. 1 (see [1] for details).

The construction of the fully annotated document, in which every node is
labeled, depends on the overall security policy [9] that is used. The first con-
tribution of this paper is an investigation of different alternatives for policy
definition and enforcement at the level of an XML tree. Our analysis shows
that not all combinations of policy options satisfy the properties of complete-
ness and consistency, i.e., result in a single fully annotated tree. We provide
a classification of policies using different options of security label propagation
and conflict resolution. The second contribution is a generic algorithm that con-
structs a fully annotated DTD DF (from the the partial one) according to the
policy classification so that DF reflects a full annotation of a corresponding XML
document.

The final phase of XML view construction is a computation of the document
TM which conforms to Dv, i.e. materialization of accessible data. However, the
user often wants to know only a small part of the materialized view, e.g., an
answer on some XPath query expressed in terms of Dv. In this case, the materi-
alization of the security view can be avoided by rewriting user queries over TM

conforming to Dv into queries over the original data, and then evaluating this
query. The third contribution of this paper is the description of an algorithm for
such a query rewriting.

The paper is organized as follows. First, in Sec. 2, we provide a classifica-
tion of XML security policies that can be used in construction of a fully anno-
tated XML from a partial one. Second, a general algorithm for calculation of
a fully annotated DTD is presented in Sec. 3. Next, we discuss query rewrit-
ing algorithm in Sec. 4. Finally, Sec. 5 presents related work and concludes the
paper.

106 N. Rassadko

2 Classification of Policies

We can classify security policies by completeness and consistency [9]. The former
handles unassigned values, and the latter is to handle conflicting assignments.

Definition 1. A policy is complete and consistent if every partially annotated
tree can be extend to a single fully annotated tree.

We list here several possible policies. These are variations of classical security
policies [9]:

Local Propagation (LP): “open”, “closed”, or “none”;
Hierarchy Propagation (HP): “topDown” (td), “bottomUp” (bu), or

“none”;
Structural Conflict Resolution (SC): “localFirst” (lf), “hierarchyFirst”

(hf), or “none”;
Value Conflict Resolution (VC): “denialTakesPrecedence” (dtp), “permis-

sionTakesPrecedence” (ptp), or “none”.

The LP option is similar to traditional policies for access control: in the case
of “open” (“closed”), if a node is not labelled then it is labelled by Y (N); with
the “none” option, an unlabeled node is not assigned any label.

The HP option specifies annotation inheritance in the tree. In the case of “td”
(“bu”), an unlabelled node with a labelled parent (children) inherits the label
of the latter; “none” means that no hierarchy propagation is applied. Note that
the “bu” case can result in conflicts, and they should be addressed by the VC
option.

The SC option specifies whether the local or hierarchy rule takes precedence
(“lf” or “hf” respectively); in the case of “none”, both kinds of inheritance are
applied (if they are not “none”) resulting in more than one possible annotations
and the “winning” label is defined based on the VC option. The latter specifies
how to resolve conflicts for unlabelled nodes that are assigned different labels
by the preceding rules: N always has precedence over Y (“dtp”); Y always has
precedence over N (“ptp”), and no choice (“none”).

Finally, we also use most-specific-takes-precedence (MSTP) policy [9] that
prohibits propagation of labels on already labeled nodes.

We represent all the possible policy options in Table 1, where symbol “∗”
means “any”, i.e. any possible value from the appropriate set 1.

Definition 2. The policy is called a top-down/bottom-up/local/multilabel pol-
icy if it satisfies conditions in lines 1-2/3-4/5-6/7 of Table 1.

Proposition 1. The top-down, bottom-up, local, and multilabel policies are
complete and consistent.
1 Note that Table 1 indeed shows all 81 possible combination of security options, since

symbols ∗ and �= mean, respectively, three and two possible values for a corresponding
policy option.

Policy Classes and Query Rewriting Algorithm for XML Security Views 107

Table 1. Policy alternatives

HP LP SC VC additional condition
1 td �=none hf ∗ none
2 td none ∗ ∗ root is annotated
3 bu �=none hf �=none none
4 bu none ∗ �=none all leaves are annotated
5 ∗ �=none lf ∗ none
6 none �=none ∗ ∗ none
7 �=none �=none none �=none none
8 none none ∗ ∗ none
9 �=none �=none none none none
10 bu ∗ hf none none
11 bu none �=hf none none

All the other policies are classified as unresolvable since they do not result in
a unique fully annotated tree.

In the next section, we will show how to construct a full DTD annotation
(from the the partial one) for every specified policy class.

3 Construction of Security View

We start with the definition of a DTD.

Definition 3. A DTD D is a triple (Ele , P, root), where Ele is a finite set of
element types; root is the distinguished type in Ele called “root”; P is a function
defining element types such that for each A in Ele, P (A) = α, where α is a
regular expression, defined as follows:

α := str | Ele | ε | α + α | α, α | α∗

where str is a special type denoting PCDATA, ε is the empty word, and “+”,
“,”, and “∗” denote disjunction, concatenation, and Kleene star, respectively.
We refer to A → P (A) as the DTD production rule of A. For all element types
B occurring in P (A), we refer to B as a subelement type (or a child type) of
A and to A as a superelement type (or a parent type) of B.

We assume that DTD is finite and non-recursive, i.e., without cycles.

Definition 4. An authorization specification is a pair (D, ann), where D is a
DTD, ann is a partial mapping between adjacent DTD element types A and B:

ann(A, B) ::= Q[q] | Y | N

where [q] is a qualifier in some fragment of XPath. A special case is the root of
D, for which we define ann(root) = Y by default.

Every ann(A, B) defines a source element type A denoted as s, a destination
element type B denoted as d, and a generator of security label for B (or simply

108 N. Rassadko

generator) (A, B) denoted as g. A mapping from a source type A to a set of
destination types B is called an annotation production and is denoted Pann(A).
An annotation production rule is a mapping between A and Pann(A) denoted
A → Pann(A).

We consider that A and B are adjacent element types, i.e., form a DTD edge 2.
Since we put annotations on DTD edges, the idea behind our algorithm is to
“push” security labels from generators to destination types.

Definition 5. If ann(s, d) = a �= ∅, we say that s transmits (or propagates)
annotation a to d via g.

After obtaining an annotation, a destination type d becomes a source type and
may retransmit its annotation to generators where d is a source.

Remark 1. In the local policy, we suppose that ann(A, B) is an annotation be-
tween parent A and its child B, i.e., pushing security labels is performed in a
top-down manner that assures that there are not any conflicts at tree level since
every node B has only one parent A, i.e., only one generator. Hence, we consider
the local policy as a subset of the top-down policy.

Definition 6. The DTD document is called fully annotated if for every DTD
node A, there is a function anndata(A) ::= Y | N called full annotation of the
document DTD.

The notion of a full annotation was defined for XML documents which have a
unique full annotation provided a complete and consistent policy is given. At
the schema level, however, there may be several “paths” transmitting differ-
ent annotations to the same element type. Below we show how to resolve this
problem.

Definition 7. We denote the set of all generators of d as G(d). An element
type d with a generator g ∈ G(d) such that ann(g) = ∅ is called expecting.

Definition 8. We say that a subset G(d) of G(d) has a simultaneous impact
on anndata(d) if there exists an XML instance T conforming to a DTD schema
D such that every instance of type d has a set of either outgoing or incoming
edges that can be mapped to the set G(d). We call G(d) a set of simultaneous
impact (SSI).

Example 1. Consider a DTD:

A → (B, C); B → (D, E); C → (D|E); D → (str); E → (str).

Generators (B, D) and (C, D) belong to different SSIs on anndata(D) since a node
D has either B or C parent in any XML instance. Generators (D, B) and (E, B)
2 Note that an annotation production rule in this case A → Pann(A) may be either of

a top-down nature (i.e. every B ∈ Pann(A) is a child of A in the DTD schema) or of
a bottom-up nature (i.e. every B ∈ Pann(A) is a parent of A in the DTD schema).

Policy Classes and Query Rewriting Algorithm for XML Security Views 109

belong to the same SSI on anndata(B) because any node B has both D and E
children in any XML instance. Generators (D, C) and (E, C) belong to different
SSIs on anndata(C) as long as node C has either a D or an E child node in any
XML instance.

Definition 9. We say that d may obtain a preliminary full annotation (PFA)
from SSI G(d) denoted as anndata(d)G(d), if for every g ∈ G(d), ann(g) is the
same, non empty, and ann(g) is not a qualifier.

If ann(g) is the same for all g ∈ G(d) then anndata(d)G(d) = ann(g). Otherwise,
we use the VC resolution option if it is not “none” 3. From the analysis of policy
options follows that value conflict may arise only in the case of the bottom-up
policy class, because every XML instance usually has a node with more than
one child.

In Def. 9, we required that ann(g) �= Q[q]. Before explaining the case when
ann(g) = Q[q], we recall the meaning of ann(s, d) = Q[q]: “a node of type d is
visible from node of type s via generator (s, d) if child(s, d)[q] holds”, where
child(s, d) is a function that for generator (s, d) returns a child element type ch
(either s or d) w.r.t. a DTD structure 4. At the XML instance T conforming to
D, it means that condition q may evaluate to true for some node instances of
type child(s, d) = ch, while for the other ch instances, it may evaluate to false.
In the latter case, a node instance of type d is not visible. Thus, at the schema
level, we perform a splitting operation for element type d into dY (i.e. visible d)
and dN (i.e. hidden d). Basically, dY is the initial element d, while dN is its clone.
After that, we substitute d in P (s) with dY + dN.

The connection of dY and dN with other (not equal to s) sources/destinations
and parents/children of d as follows. (1) dY (dN) transmits Y (N) to destinations
d′ of d if ann(d, d′) = ∅; otherwise, it transmits ann(d, d′). This rule connects
dY and dN with all DTD parents (children) of d in the case of bottom-up (top-
down) propagation. (2) dY (dN) has the same set of children as an element type
d had. This rule connects dY and dN with all children in the case of any kind
of propagation. (3) After application of steps (1) and (2), the only connection
with parents p �= s in the case of top-down propagation is not defined. Here, dY

(dN) which is the initial d (the clone of d) should be connected with sources of
generators transmitting Y or nothing (N and nothing more).

An algorithmic description of the procedure of removing qualifiers is depicted
in Fig. 2. Lines 5, 6, 7 represents the rules for connecting dY and dN with non-
equal to s sources/destinations and parents/children of d.

Having removed qualifiers, we can define SSIs. Obviously, for the top-down
propagation, SSI contains only one generator (parent-child DTD edge), and the
number of SSIs is equal to the number of parents in DTD graph. However, the
situation is more complicated for the bottom-up policy. First of all, every des-
tination element type d may have several children transmitting their security
3 Otherwise, the policy is inconsistent.
4 In the same way we may introduce function parent(s, d) that returns parent element

type w.r.t. DTD structure for a pair (s, d).

110 N. Rassadko

Algorithm: Qualifier Removing
Input: Partially annotated DTD with qualifiers
Output: Partially annotated DTD without qualifiers
1: for every generator (s, d) such that ann(s, d) = Q[q] do
2: Create element types dY and dN;
3: In s → P (s), substitute d for dY + dN;
4: Set

σ(parent(s, dY), child(s, dY)) = child(s, d)[q]; σ(parent(s, dN), child(s, dN)) = child(s, d)[¬q];
ann(s, dY) = Y; ann(s, dN) = N;

5: Connect dY and dN with all destinations d′ of d:
σ(parent(d′, dY), child(d′, dY)) = σ(parent(d′, d), child(d′, d)) = σ(parent(d′, dN), child(d′, dN))
ann(dY, d′) = ann(d, d′) = ann(d, d′), if ann(d, d′) �= ∅;
ann(dY, d′) = Y; ann(dN, d′) = N, if ann(d, d′) = ∅;
// After step 5, the next step has the meaning only for bottom-up policy class

6: Connect dY and dN with all DTD children ch �= s of d setting:
σ(dY, ch) = σ(d, ch) = σ(dN, ch);
ann(ch, dY) = ann(ch, d) = ann(ch, dN);

// After step 5, the next step has the meaning only for top-down policy class
7: Connect dY (dN) with other parents p �= s of d such that ann(p, d) = Y|∅ (ann(p, d) = N)

setting: σ(p, dY) = σ(p, d) (σ(p, dN) = σ(p, d));
ann(p, dY) = ann(p, d) (ann(p, dN) = ann(p, d));

Fig. 2. Algorithm Qualifier Removing

labels to d. Secondly, the number of SSIs and their components depend on the
presence of choices (α + α) in P (A) (see Def. 3). The intuition is the following:
we present every sequence (α, α) of P (A) as a conjunction (α ∧ α), and every
choice (α + α) of P (A) as disjunction (α ∨ α) in parenthesis. From the intro-
duced logical expression, we construct formula Δ by removing parenthesis. The
number of SSIs and their configuration is, respectively, the number of disjuncts
and configuration of conjuncts in every disjunct in Δ. For example, logical rep-
resentation of production rule A → ((B|C), D) is A = (B ∨ C) ∧ D which has
the following view after parenthesis removing: B ∧ D ∨ C ∧ D. Therefore, in the
case of bottom-up propagation, A has two SSIs: {B, D} and {C, D}.

Next, for every SSI, we calculate the PFA using VC option if necessary.

Definition 10. We say that anndata(d) is steady if for every G(d), anndata(d)G(d)
are the same and not empty. Otherwise, anndata(d) is alternating.

An alternating annotation means that d may obtain different annotations de-
pending on the SSI at the XML level, while a steady annotation for d means that
d always has the same label wherever d occurs in XML document. To deal with
alternating annotations, we split node as in Qualifier Removing connecting
dY (dN) with SSI of generators transmitting Y (N).

Definition 11. We say that destination type d, such that anndata(d) �= ∅, is
closed if for every destination type d′ ∈ Pann(d), ann(d, d′) �= ∅. Otherwise, d is
open and for ∀d′ ∈ Pann(d) such that ann(d, d′) = ∅, d retransmits annotation
anndata(d) to d′ via generator (d, d′). Thus, we rename d as s and d′ as d.

We assume that every initially annotated DTD element type e (e.g., root or all
leaves for bottom-up propagation) automatically retransmits its annotation to
all generators g = (e, d′) such that ann(g) = ∅.

The generic algorithm Annotate View is shown in Fig 4. It starts with a
preprocessing procedure which is needed only for the local policy to define and

Policy Classes and Query Rewriting Algorithm for XML Security Views 111

Algorithm: Split
Input: DTD element type d having generators with different annotations
Output: dN
1: Create element types dY and dN;
2: for every SSI Gk(d)(k = 1, n) having sources

{
s1, . . . , smk

}
and resulting in a PFA Y (N) of d

do
3: Connect source si of every generator gi ∈ Gk(d), i = 1, mk with dY (dN) setting:

σ(parent(si, dY), child(si, dY)) = child(si, d) = σ(parent(si, dN), child(si, dN))
ann(si, dY) = ann(si, d)(= Y); ann(si, dN) = ann(si, d)(= N);

4: for every generator g′ = (d, d′) where d is a source do
5: Connect dY and dN with d′ setting:

σ(parent(d′, dY), child(d′, dY)) = child(d′, d) = σ(parent(d′, dN), child(d′, dN))
ann(dY, d′) = ann(d, d′) = ann(dN, d′);

6: return dN;

Fig. 3. Algorithm Split

Algorithm: Annotate View
Input: Partially annotated annotated DTD D
Output: Fully annotated DTD
1: Preprocessing;
2: Qualifier Removing;
3: Create empty queue, initialize it with all DTD element types;
4: while queue is not empty do
5: d :=Dequeue(queue);
6: if anndata(d) = ∅ then
7: if d is not expecting then
8: Calculate SSIs

{
G1(d), G2(d), . . . , Gn(d)

}
;

9: for every Gi(d) do
10: Calculate anndata(d)Gi(d) (applying value conflict resolution policy option if

not for all g ∈ Gi(d) ann(g) is the same);
11: if anndata(d) is steady then
12: Assign any anndata(d)Gi(d) to anndata(d);
13: else if ann(d) is alternating then
14: dclone :=Split(d);
15: Enqueue(queue, dclone);
16: if d is not splitted and d is open then
17: For every d′ ∈ Pann(d) such that ann(d, d′) = ∅, set ann(d, d′) = anndata(d);
18: else
19: Enqueue(queue, d);

Fig. 4. Algorithm Annotate View

apply a default labeling for non-annotated generators. After the preprocessing
and qualifier removing steps, we invoke labeling iterations via queue [10]: if the
next considered element type d has a full annotation anndata(d), there is no need
to process it; otherwise, the if clause at line 2. If all generators of d have a defined
annotation, then anndata(d) is defined. If not, place d back to queue (step 19),
thus delaying definition of a full annotation of d (i.e. d is expecting).

Finally, we remove the N-labeled nodes from the fully annotated DTD. This
algorithm is identical to that in [1].

Example 2. The left part of Fig. 5 represents an initial annotation of a DTD
schema. We use top-down propagation to obtain a full annotation which is shown
on the central part of Fig. 5. In particular, solid and dashed lines are generators
transmitting Y and N respectively; labels on (B, CY) and (B, CN) generators
are corresponding σ-functions; for the other generators, σ(x, y) = y. Finally, the

112 N. Rassadko

A

B D E

C

K F

Y
Y

N

Q[q]

Y

A

B D E

CY

K FY

C[q]

CN

C[¬q]

CN

FN

A

B D

C

K F

C[q]
C[¬q]/K

E/C/KB
D

C

K
F

Fig. 5. View construction example

right part of Fig. 5 is the DTD after deletion of N-labeled nodes. Labels on edges
represent corresponding σ-functions.

4 Query Rewriting Algorithm Description

In this section we show the algorithm for query rewriting. The query language is
that of the CoreXPath of Gottlob et al. [11] augmented with the union operator
and atomic tests and which is denoted by Benedict et al. [12] as X .

Definition 12. An XPath expression in X is defined by the following grammar:

〈path〉 ::= 〈step〉 (‘/‘ 〈remaining path〉)?
〈remaining path〉 ::= 〈path〉

〈step〉 ::= θ(‘[‘ 〈qual〉 ‘]‘)∗ | 〈path〉 ‘ ∪ ‘ 〈path〉
〈qual〉 ::= A | ‘ ∗ ‘ | op c |

〈qual〉 and 〈qual〉 | 〈qual〉 or 〈qual〉 |
not 〈qual〉 | ‘(‘ 〈qual〉 ‘)‘ | 〈path〉

where θ stands for an XPath step specification (axis :: label, where label is either
label A or symbol ∗), c is a str constant, op stands for one of =, �=, <, >, ≤,
≥; qual is called qualifier (or filter) and is denoted by q.

The algorithm for query rewriting has two phases: query parsing and further
translation of the parsed query into σ-functions. Query parsing phase implies
that user query is represented as a tree of subqueries (parse tree) according to
the grammar that we have shown in Def. 12.

The translation of the parsed query starts from the leaves of the parse tree and
moves up to the root 〈path〉. In particular, for each subquery p and an element
A, the algorithm calculates QR(p,A) using Query Rewrite(pi, Bj), where pi is
a direct subquery (child in a parse tree) of p and Bj is a node reachable from A
via pi in Dv. At the same time, the algorithm calculates reach(p, A) representing
the set of nodes reachable from node A via the path p. To obtain a rewriting of
the initial user query q, we invoke Query Rewrite(q, root).

Policy Classes and Query Rewriting Algorithm for XML Security Views 113

Algorithm: Query Rewrite
Input: a subquery q (as a parsed XPath expression), a node A for which query rewriting is carried
Output: rewritten subquery q w.r.t. A node
1: if q is 〈path〉 then

// q = q1/q2 where q1 = firstStep, q2 = remainingSteps
2: QR(q,A) :=Query Rewrite(q1, A)/

⋃
v∈reach(q1 ,A)Query Rewrite(q2, v);

3: reach(q1/q2, A) := reach(q1/q2, A) ∪ ⋃
v∈reach(q1 ,A) reach(q2, v);

4: else if q is a union of paths 〈path〉 then
// q = p1 ∪ p2 ∪ . . . ∪ pn

5: QR(q,A) :=
⋃

pi
Query Rewrite(pi, A);

6: reach(q, A) = reach(q, A) ∪ reach(pi, A);
7: else if q is θ[〈qual〉] then

// q = q0[filter1] . . . [filtern] where q0 is nodeTest
8: QR(q,A) :=Query Rewrite(q0, A)

⋃
filteri

[
⋃

v∈reach(q0 ,A)Query Rewrite(filteri, v)];

9: reach(q, A) := reach(q0, A);
10: else if q is 〈qual〉 then

// q = 〈qual〉 from Def. 12
11: if q has no operands then
12: QR(q,A) :=Query Rewrite(q, A); // q is 〈path〉
13: else if q has one (not) operand then
14: QR(q,A) = not Query Rewrite(q0, A); // where q0 is the operand;
15: else if q has two operands then

// q1 is the first operand, q2 is the second operand; op2 is one of and, or, =, �=, ≥, ≤;
16: QR(q,A) :=Query Rewrite(q1, A) op2 Query Rewrite(q2, A);
17: else if q is θ then

// θ=axis :: label
18: if axis is ‘child’ or ‘parent’ then
19: QR(q,A) :=processChildParent(label,axis,A);// (Fig. 8)
20: else if axis is ‘descendant-or-self ’ or ‘ancestor-or-self ’ then
21: QR(q,A) :=processDescendAncest(label,axis,A);//(Fig. 7)
22: else if axis is ‘attribute’ then
23: if A has attribute label then
24: QR(q,A) := q;
25: else if (q is literal) or (q is number) then
26: QR(q,A) = q;
27: return QR(q,A);

Fig. 6. Algorithm Query Rewrite

The algorithm presented in Fig. 6 shows the translation procedure. Lines 1,
4, 7, 10, 17 distinguish whether the subexpression is 〈path〉, union of steps, node
with qualifiers θ[〈qual〉], qualifier 〈qual〉, and node test θ respectively.

The translation of 〈path〉, union of steps, θ[〈qual〉], and 〈qual〉 is quite straight-
forward, and we concentrate on a processing of node test θ. Since θ has a gen-
eral form axis :: label[filter1] . . . [filtern], we have the following possibilities for
rewriting:

1. label is a child of A in Dv: rewrite(q1, A) = σ(A, label);
2. label is a parent of A: rewrite(q1, A) = σ−1(label, A) (the definition of

σ−1(B, A) goes below);
3. label is a descendant (ancestor) of A: all the paths from A to label (from

label to A) in Dv should be rewritten w.r.t. σ (σ−1)-function.

We introduce two auxiliary functions: processChildParent (that captures
possibilities 1 and 2) in Fig. 8 and processDescendAncest (handling possi-
bility 3) in Fig. 7. The symbol ↓∗ (↑∗) is used to denote the subquery q =
descendant-or-self (ancestor-or-self).

114 N. Rassadko

Algorithm: processDescendAncest
Input: node label ∈ {str, ∗}, node axis ∈ {descendant-or-self, ancestor-or-self}, element node A of Dv

// p = axis::label; reach(↓∗, A) (reach(↑∗, A)) contain all descendants (ancestors) of A;
1: if axis = descendant-or-self then
2: q :=‘↓∗’;
3: else if axis = ancestor-or-self then
4: q :=‘↑∗’;
5: res :=

⋃
label∈reach(q,A) preRewrite(q, A, label);

6: reach(p, A) := reach(p, A) ∪ {label ∈ reach(q, A)}
7: return res;

Fig. 7. Algorithm processDescendAncest

Algorithm: processChildParent
Input: node label ∈ {str, ∗}, node axis ∈ {child, parent}, node A of Dv

// q = axis::label
1: reach(q, A) is a set of nodes that are in relation axis with A;
2: res :=

⋃
label∈reach(q,A) max

{
σ(A, label), σ−1(A, label)

}
;

3: return res;

Fig. 8. Algorithm processChildParent

For rewriting of descendant/ancestor relations, we use the data of the stati-
cally precomputed table preRewrite which contains all the rewritten paths from
A to all B descendants/ancestors. We use a simple deep-first-search algorithm
to find the union u of all paths pi from A to any B. After that, every pi of u is
rewritten by a call of Query Rewrite(pi, A). Thus, preRewrite(↓∗(↑∗), A, B)
is a union of rewritten paths pi.

Now, consider the meaning of σ−1(B, A). σ(B, A) is a collection of paths from
B to A in the initial DTD D such that B is a parent of A in Dv: σ(B, A) := ∪k

i=1pi

where each
pi = ci1 [fi1]/ci2 [fi2]/ . . . /cini−1 [fini−1]/cini

[fini
]

with ci1 as the child of B (since pi is applied to B), cini
is A, each cij is a child

of cij−1 , fij is a filter expression for the node cij . Then σ−1(B, A) is defined as
follows:

Definition 13. The reversed representation σ−1(B, A) of non empty σ(B, A) is
σ−1(B, A) := ∪k

i=1pi
−1 where each

pi
−1 = self :: cini

[fini
]/parent :: cini−1 [fini−1]/ . . .

/parent :: ci1 [fi1]/parent :: B[preRewrite(↑∗, B, root)]

is applied to the node A.

An expression self::cini
[fini

] ensures that σ−1(B, A) is applied to a permitted A
node. Analogously, parent::B is filtered by [preRewrite(↑∗, B, root)] to guaran-
tee that the user cannot reveal any additional information like in the following
example:

Example 3. Suppose, Dv contains a fragment B → (C, A), C → (D, A); the user
has an access to B and A, but C and D are visible only under some condition

Policy Classes and Query Rewriting Algorithm for XML Security Views 115

QC . The query //A/parent::C/D may leak sensitive information if we do not
restrict C with an expression [QC].

The algorithm of σ−1(B, A) calculation directly follows from Def. 13. We do not
show it here for the lack of the space.

The algorithm processChildParent is presented in Fig. 8. The expression
max

{
σ(A, B), σ−1(B, A)

}
in line 2 selects the non-empty element from σ(A, B)

and σ−1(B, A) (one of them is always empty, while the other is not).

Example 4. We use the security view of Example 2 to demonstrate our query
rewriting algorithm.

Path rewriting :A/B/K → A/σ(A, B)/σ(B, K) → A/B/C[¬q]/K;
Descendant rewriting : A//C → A/preRewrite(↓∗, A, C) → A/(B/C ∪ D/C) →

→ A/(σ(A, B)/σ(B, C) ∪ σ(A, D)/σ(D, C)) → A/(B/C[q] ∪ D/C);

Filter rewriting : A[B]/K → A[σ(A, B)]/σ(A, K) → A[B]/E/C/K;

Usage of σ−1 : A/B//K/parent::C → A/σ(A, B)/prerewrite(↓∗, B, K)/σ−1(C, K) →
→ A/B/(C[q]/K ∪ C[¬q]/K)/self::K/parent::C[preRewrite(↑∗, C, A)] →
the latter filter is rewritten as follows
preRewrite(↑∗, C, A) →Query Rewrite(parent::B/parent::A ∪ parent::D/parent::A, C) →
→ σ−1(B, C)/σ−1(A, B) ∪ σ−1(D, C)/σ−1(A, D)

The last expression is calculated according to Def. 13.

The closest approach to query rewriting is presented by Fan et al. in [8]. The
main differences are: the algorithm derives a security view without any dummy
element types which may be a source of sensitive information leakage. Therefore,
the σ-function used in our query rewriting has different semantics. An extended
XPath fragment has parent and descendant-or-self axes. Finally, Fan et al. use
dynamic programming so that QR(q,A) is calculated for every DTD element type
A; while we perform a rewriting of q w.r.t. to a subset of relevant element types
A of DTD in a recursive manner.

5 Related Work and Conclusion

The mapping between existing policy frameworks and our proposal is summa-
rized in Table 2. Note that our Y(N) label corresponds to “grant” (“deny”), +
(−) of other models. The comparison of some other access control parameters is
shown in Table 3.

The provisional access control model for XML documents [6] considers both
top-down and bottom-up propagation. Since the rule most specific takes prece-
dence (MSTP) is not used, arising conflicts are resolved by the VC option. In
the case of the presence of unresolved conflicts or unlabeled nodes, a special
default option (Y or N) is applied. The policy is evaluated at the stage of query
answering (we marked it in Table 3 as “policy evaluation” (PE)). If access to
the requested node is permitted, the user receives “weak” XML view, where
N-labeled nodes having Y-children are revealed without their attributes.

116 N. Rassadko

Table 2. Existing policy frameworks

Method HP LP SC VC MSTP default
Kudo et al. [6] ∗ none hf ∗ No Yes (�=none)

Murata et al. [13] td ind. ∗ ind. none dtp No Yes (closed)
Gabillon et al. [5] td ind. ∗ ind. none priority, order No Yes (�=none)
Damiani et al. [3] td ind. ∗ ind. none dtp Yes Yes (closed)
Bertino et al. [4] td ind. ∗ ind. none dtp Yes Yes (closed)
Cho et al. [14] td ind. ∗ ind. none dtp No Yes (open)
Fan et al. [8] td none �=lf none Yes No
Our method ∗ ∗ ∗ ∗ Yes No

Table 3. Existing XML access control frameworks

Method XML view DTD view Query asking over Query answering by
[6] Yes (weak) No initial XML policy evaluation (PE)
[13] No No initial XML/DTD rewriting, PE
[5] Yes (weak) No XML view XPath evaluation
[3] Yes (weak) Yes (loosened) XML/DTD view XPath evaluation
[4] Yes No XML view XPath evaluation
[14] No No initial XML/DTD rewriting, PE

Stoica et al. [7] No Yes - -
[8] No Yes DTD view safe rewriting

Our method Yes Yes DTD/XML view safe rewriting

The proposal of Murata et al. [13] defines for every XML node an individual
label which is propagated either in hierarchical (td) or in local manner (in the
Table 2, it is marked as “ind.”). An additional denial downward consistency
(DDC) policy is introduced: a subtree rooted at N-labeled node has only N-
labeled descendants. The method rewrites (using DTD if exists) the query q
posed over the initial XML/DTD so that to minimize the need in PE during
query answering.

Gabilon et al. [5] differs from [13] in that the VC resolution is based on a
priority associated with every access control rule. In the case of multiple rules
with the same priority, the last rule in XML Authorization Sheet (i.e., the list of
access rules) is elected. In this method, PE is used to construct an XML view.
Thus, the query evaluation is simply an XPath evaluation over the XML view.

Damiani’s et al. [3] proposal partially annotates the DTD schema or an XML
instance by Y|N labels which are, then, propagated. The notions of soft and
hard authorizations define the precedence of DTD label over XML label and
viceversa. However, this subtlety can be captured by qualifiers of our proposal.
Next, the fully annotated schema/instance is pruned. The method considers the
XML view in “weak” form and the DTD view in “loosened” form, i.e., every
forbidden element has cardinality “optional”.

A similar policy enforcement mechanism is used in Author-X system [4]. The
differences with the previous approach are (i) the absolute precedence of DTD

Policy Classes and Query Rewriting Algorithm for XML Security Views 117

labels over XML labels, (ii) the presence of an additional option ONE LEVEL
of the HP (td), and (iii) the construction of an XML view without any N-labeled
nodes. However, the DTD view is not available for user.

In [14], the DTD/XML is annotated by mandatory (i.e., all instances of the
element in XML tree must specify their security level, DTD may specify a de-
fault value), optional (instances may specify their security level) and forbidden
(instance labeling is inherited or Y) labels. We treat this framework in the fol-
lowing way: mandatory (optional) specification is Y|N (∗, respectively) label
with local propagation, forbidden specification is a label defined via HP (td)
propagation, and the default policy is “open”. Like in [13], the approach mini-
mizes the need in policy evaluation during query answering by a special query
rewriting.

The method of Stoica et al. [7] takes as an input a fully annotated DTD from
which the DTD view is derived. There is no discussion of policy propagation and
conflict resolution in [7], thus we do not introduce this method in Table 2. In
addition, neither XML view nor query evaluation is considered.

The proposal of Fan et al. [8] has the similar notion of the initial DTD an-
notation as in this paper. However, the range of policies is restricted to the
top-down policy. Moreover, the paper does not consider XML view construction,
but discusses a safe query rewriting when the query over the DTD view is trans-
lated into the equivalent query over the initial DTD and the rewritten query is
evaluated over the initial XML data. Hence, policy evaluation is used for DTD
view construction instead of query answering. Furthermore, the safe rewriting
of queries excludes system answers “access denied” which are presented, for ex-
ample, in [6], [13], [14]. Thus, the information leakage is diminished.

As it may be seen from Table 3, our proposal comprises both the XML view
(not “weak”) and the DTD view (not “loosened”). Moreover, we use safe query
rewriting to eliminate denial of service. In addition, we provide an extended
range of policy classes (see Table 2). However, there are directions for future
work. First of all, we plan to investigate the compatibility of our proposal with
others. For example, one of the closest policy framework is that of Kudo et al. [6].
Hence, we plan to investigate whether XML security views can be integrated into
Provisional Authorization Architecture. Secondly, XML access control models
of [13], [5], [3], [4] showed a possibility of an individual policy configuration,
i.e. for every node. Next, in this paper, we have introduced a notion of gener-
ator, i.e., a DTD edge which, in essence, may by generalized to a path in an
undirected graph isomorphic to a given DTD graph. However, we leave this gen-
eralization for future work as well. Finally, an extended experimental evaluation
is required.

Acknowledgments

I would like to thank Gabriel Kuper and Fabio Massacci for encouragement
and many useful discussions, and Gabriel Kuper, in particular, for checking my
English.

118 N. Rassadko

References

1. Kuper, G., Massacci, F., Rassadko, N.: Generalized XML security views. In:
SACMAT ’05: Proceedings of the tenth ACM symposium on Access control models
and technologies, New York, NY, USA, ACM Press (2005) 77–84

2. Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R.: The SeaV-
iew security model. IEEE Trans. Softw. Eng. 16(6) (1990) 593–607

3. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-
grained access control system for xml documents. ACM Trans. Inf. Syst. Secur.
5(2) (2002) 169–202

4. Bertino, E., Braun, M., Castano, S., Ferrari, E., Mesiti, M.: Author-X: A Java-
based system for XML data protection. In: Proceedings of the IFIP TC11/WG11.3
Fourteenth Annual Working Conference on Database and Application Security,
Deventer, The Netherlands, The Netherlands, Kluwer, B.V. (2001) 15–26

5. Gabillon, A., Bruno, E.: Regulating access to XML documents. In: Proceedings
of the IFIP TC11/WG11.3 fifteenth annual working conference on Database and
application security, Norwell, MA, USA, Kluwer Academic Publishers (2002) 299–
314

6. Kudo, M., Hada, S.: XML document security based on provisional authorization.
In: CCS ’00: Proceedings of the 7th ACM conference on Computer and communi-
cations security, New York, NY, USA, ACM Press (2000) 87–96

7. Stoica, A., Farkas, C.: Secure XML views. In: Proceedings of the IFIP
TC11/WG11.3 Sixteenth International Conference on Data and Applications Se-
curity. Volume 256., Kluwer (2003) 133–146

8. Fan, W., Chan, C.Y., Garofalakis, M.: Secure xml querying with security views.
In: SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, New York, NY, USA, ACM Press (2004) 587–598

9. Samarati, P., De Capitani di Vimercati, S.: Access control: Policies, models, and
mechanisms. In: FOSAD ’00: Revised versions of lectures given during the IFIP
WG 1.7 International School on Foundations of Security Analysis and Design on
Foundations of Security Analysis and Design, London, UK, Springer-Verlag (2001)
137–196

10. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.
McGraw-Hill Higher Education (2001)

11. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. ACM Trans. Database Syst. 30(2) (2005) 444–491

12. Benedikt, M., Fan, W., Kuper, G.M.: Structural properties of XPath fragments. In:
ICDT ’03: Proceedings of the 9th International Conference on Database Theory,
London, UK, Springer-Verlag (2002) 79–95

13. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. In: CCS ’03: Proceedings of the 10th ACM conference on Computer and
communications security, New York, NY, USA, ACM Press (2003) 73–84

14. Cho, S., Amer-Yahia, S., Lakshmanan, L., Srivastava, D.: Optimizing the secure
evaluation of twig queries. In: VLDB ’02: Proceedings of the 28th International
Conference on Very Large Data Bases. (2002) 490–501

	Introduction
	Classification of Policies
	Construction of Security View
	Query Rewriting Algorithm Description
	Related Work and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

