A HMI Supporting Adjustable Autonomy of
Rescue Robots

Andreas Birk and Max Pfingsthorn

School of Engineering and Science
International University Bremen
Campus Ring 1, D-28759 Bremen, Germany
a.birk@iu-bremen.de

Abstract. Human rescue workers are a scarce resource at disaster sites.
But it is still a long way to go before fully autonomous rescue robots will
be fieldable. The usefulness of rescue robots will hence strongly depend
on the availability of user interfaces that enable a single first responder
to operate a whole set of robots. For this challenge, it is important to
preprocess and streamline the immense data flow from the robots and to
assist the operator as much as possible in the processes of controlling the
robots. This paper introduces an adaptive graphical interface supporting
adjustable autonomy of rescue robots. The design is based on insights
from the literature in this field where intensive surveys of the actual
needs in this domain were compiled.

1 Introduction

Rescue robots have a large application potential as demonstrated for the first
time on a larger scale in the efforts at the World Trade Center after the 9/11
event [Sny01]. For an overview of potential tasks of rescue robots and the related
research in general see for example [RMHO1]. One of the main challenges in
using robots in search and rescue missions is to find a good trade-off between
completely remotely operated devices and full autonomy. The complexity of
search and rescue operations makes it difficult if not impossible to use fully
autonomous devices. On the other hand, the amount of data and the drawbacks
of limited communication possibilities make it undesirable if not unfeasible to
put the full control of the robot into the hands of a human operator.

The goal of the IUB rescue robots team is to develop fieldable systems within
the next years. Since the beginning of its research activities in this field in 2001,
the team has participated in several RoboCup competitions to test its approaches
[Bir05, BCK04, BKR"02]. In addition to work on mapping [CB05] and adhoc-
networking [RB05], the development of the robots themselves based on the so-
called CubeSystem [Bir04] is an area of research in the team [BKP03, BK03].

As mentioned, one of the the main challenges for using rescue robots is to
find a good tradeoff between completely remotely operated devices and full au-
tonomy [BKO03]. Ideally, a single rescue worker supervises a multitude of semi-
autonomous robots that provide only the most crucial data to an operators

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNATI 4020, pp. 255 2006.
© Springer-Verlag Berlin Heidelberg 2006

256 A. Birk and M. Pfingsthorn

station. Here, we present an approach to this challenge in form of an adaptive
graphical human machine interface (HMI) supporting adjustable autonomy.

Adjustable Autonomy (AA) in general addresses the issue that, while au-
tonomous agents get more and more powerful, it is still impossible for a real
application to exclude the human operator from the loop of operations and re-
tain the same effectiveness. Using Adjustable Autonomy, an agent can behave
autonomously and dynamically change its level of independence, intelligence and
controlfreely placeable. The concept of Adjustable Autonomy is very broad and
does not only encompass robotics. It has been applied to many fields, such as
office automation [SPT03], desktop software [Mim98], military [FCGBO00], and
space exploration [SBAT03].

A way to achieve Adjustable Autonomy is to support multiple levels of au-
tonomy of the agent, e.g. fully autonomous, guided by the operator, and fully
controlled by the operator [BDM02, GJCPO1]. It is also conceivable to support
a continuous range of autonomy levels, e.g. by employing a continuous measure
of neglect and problem priorities [OG03].

For example, an ideal situation in Adjustable Autonomy would be the follow-
ing: A rescuer at a disaster site employs the help of a team of robots to survey
a part of a collapsed building. To be more effective, the rescuer commands the
robots to spread out and to explore, detecting and locating victims, but also
fire, etc. While the robots search the building, they may run into problems, like
getting stuck on stairs, not knowing how to avoid an obstacle best, etc. All those
problems are forwarded to the rescuer. That is the only time when the rescuer
really has to take care of individual robots. Once a robot has found an interesting
set of features indicating an object or event, the notice is also sent to the rescuer
and marked in a collaborative map. All sensor data of the respective robot is
made available to the rescuer to verify the findings of the robot. Once victims
are found and a safe path to them has been identified, rescue crews are deployed
to extract the victims from the building.

Fig. 1. The IUB rescue robots at RoboCup

A HMI Supporting Adjustable Autonomy of Rescue Robots 257

Previous approaches to a Graphical User Interface (GUT) for Adjustable Au-
tonomy encompass a wide variety of settings and intentions. Most interesting for
our interests is the investigation of designs by Goodrich and Olsen [GJCPO1],
Fong et al [FCTBO01, FTB01, FCGB00, FTB02, FT01], Backes et al [BNP]
and Bruemmer et al [BDMO02]. In addition, evaluations in terms of usability
are highly important as for example done by Olsen and Goodrich [OG03] and
Scholtz et al [SYDY04].

The approaches taken in the aforementioned papers roughly fall into two
classes. In the first one, a focus is made on direct control and portability of hard-
ware. In the second, task planning and data visualization is emphasized. A gen-
eral trend in this line of research is visible: Most rely on one main mode of direct
visualization of the robot’s state, either through a map generated by the robot or
a direct video stream. This coarse form of data visualization is especially useful
for gaining a quick understanding of the robot’s situation, referred to as Con-
text Acquisition [OGO03]. In addition, the presented interfaces offer multiple ways
of commanding the robot: through haptic and gesture manipulation [FCGB00],
direct vector input and choosing a location on a map [FCTBO01], and pure high-
level task planning [BNP*]. This process is referred to as Ezpression [0GO03].

In an attempt to combine the best of both, i.e., direct interaction with the
robot and data visualization, we attempt to merge both paradigms: to employ
intuitive data visualization and direct intuitive control methods in order to opti-
mize Context Acquisition and Ezpression time, exactly those deemed most costly
by Olsen and Goodrich [OGO03].

2 The Design Goals and Core Components

The main application target for the system are real-time, multi-robot tasks.
While the developed interface framework will allow for various uses, main design
arguments will be geared to the application in real-time environments. This
includes a bigger data visualization area and rather small control areas, since
most control is done via peripheral input devices.

Murphy and Rogers [MR96] pointed out inefficiencies in traditional teleoper-
ation interfaces that are supposed to be corrected with this new interface frame-
work. Those deficiencies include constant high-bandwidth demands, cognitive
fatigue due to too many tasks done at once, and poor displays. It is mentioned
that conservative teleoperation interfaces are inefficient because the operator
usually only handles one robot and that reduces work efficiency by a factor of
five to eight. Further important design guidelines were derived from the work of
Olsen and Goodrich [OG03] and of Scholtz et al [SYDY04], which is based on
an evaluation of existing human-robot interfaces.

Olsen and Goodrich hypothesize that the process of human-robot interac-
tion can be broken down into four parts: Subtask Selection (picking a robot to
service from a list), Context Acquisition (perceiving the robot’s current state
and problem), Planning (thinking of a way to solve the robot’s problem), and
Ezxpression (stating the plan in robot oriented commands). Scholtz et al
state from observations made during the World Championship Competition in

258 A. Birk and M. Pfingsthorn

RoboCup Robot Rescue 2004 in Padova, Italy, that successful interfaces should
include a representation for the global environment, display of the robot’s cur-
rent state, integrated display of sensor data, ability for self-diagnosis of the robot,
and contex-sensitive information display.

Based on these guidelines, we developed an interface that is divided into
three blocks, the Canvas, the Sidebar, and the Visibility Controller. Each core
component is described in detail in the following.

2.1 The Canvas

The Canvas is a drawing space for 3D representations of the world, using
OpenGL. Here, usually a map would be drawn and populated with robots. Due
to the extreme flexibility of the design, almost any kind of visualization is pos-
sible here. Even 2D displays, like status bars for all connected robots or video
displays are possible.

In the context of the above mentioned criteria, the Canvas represents a com-
mon ground for sensor data visualization. Therefore, a facility has been estab-
lished to support easy fusing of sensor data by the interface itself. For example,
both the map and the display of the robot and its state can be separate modules
both drawing themselves to this canvas. As a result, the data is merged auto-
matically, making it easier for the user to perceive the robot’s current situation.

In addition, a camera implemented by the Canvas can be moved around in
an intuitive fashion (very much like a First Person game interface) to allow
viewing the depicted 3D environment from all angles. In addition, the camera
can be ”snapped” to the current robot’s position and orientation (pose) such
that it follows the movements of the robot. This gives rise to a separate viewing
method, known from racing games which should especially come in handy when
purely teleoperating the robot.

The Canvas enhances Context Acquisition as well as Subtask Selection, as all
robots are shown and their state can be evaluated at the same time. In Scholtz’s
terms, the Canvas addresses the first three points.

2.2 The Sidebar

The Sidebar constitutes a place to display control elements. As space is limited
on the screen, this part is kept to a minimum of size. This is because in general,
control is exerted via peripheral input devices, such as mouse, joystick or joypad,
and steering wheels. Only displaying their state is useful for even more direct
user feedback, as mentioned above.

The Sidebar also allows for the grouping of control elements. This gives a
clearer structure to the controlling side of the interface and thus decreases the
cognitive load necessary for the Fzpression process, as mentioned above.

In addition, the Sidebar has a built-in collapse and expand function. Each
group can be collapsed (hidden) or expanded (shown) by the request of the user.
This way, the user can choose which kind of control is supposed to be used. This
feature covers Scholtz’s last point.

A HMI Supporting Adjustable Autonomy of Rescue Robots 259

2.3 The Visibility Controller

The last and least visible part is the Visibility Controller. Almost completely
hidden to the user, other than a simple drop-down list to choose a visibility set-
ting, the Visibility Controller takes care of scaling, hiding and positioning single
elements that are displayed. It can handle both control and display elements.

The Visibility Controller is designed to store a vector of importances of
interface parts. When a certain mode of operation is assumed (compare
[GJCPO1, BDMO02]), the Visibility Manager will set the importances of all el-
ements. The elements then know how to adjust their own behavior, form, and
shape to reflect that importance value.

This concept of a Visibility Controller clearly addresses Scholtz’s last point
and Olsen and Goodrich’s concepts of Context Acquisition and Expression, since
it requires less time to choose an appropriate control from an already smaller list.

2.4 The Dynamics Aspects

As briefly described in the previous section, the interface presented also con-
sists of a so called Visibility Controller. This module manages importances of
single elements shown on the screen. According to these importances, the single
modules representing drawable items perform different actions.

For example, a control element can decide to hide itself and to stop producing
output if its importance falls beneath a certain threshold level, while a display
element might implement a form of scaling (e.g. for video displays) or fading (e.g.
for less importance of the map). Also rearrangement is possible, for example in
the case of video displays. As the importance of a video display increases, it can
change the arrangement of multiple video streams it is displaying, e.g. shifting
from a stack structure to a grid in order to distribute the available space in a
better way.

As Goodrich and Olsen [GJCPO01] and Fong et al [FCTBO1] point out in their
treatises, choosing different modes of autonomy is a highly desirable feature.
Especially, not only does the robot behavior change, but the interface should
reflect this change as well. This gives further motivation for the Visibility Con-
troller as it further addresses the problem of Context Acquisition, i.e., the mode
of operation can be inferred through the arrangement of the display [OG03] and
specifying context-sensitive information [SYDY04].

While it is reasonable to assume that such importances are changed dynam-
ically and automatically by choosing a mode of operation, this fact is quite
limiting for the user. During the Planning phase, optimal use has to be made
of the displayed information in order to create a plan how to circumvent the
robot’s current problem. This might require reading displays with a lower im-
portance. Hence, it is important to leave a chance of changing importances of
single displays and controls to the user both during missions planning as well as
on the fly.

For the interface and design presented, it does not make a difference how the
changing of importances is implemented. However, the tools used to implement
the whole interface already provide adequate ways of doing so. For example, the

260 A. Birk and M. Pfingsthorn

OpenGL standard [SB]| defines four component colors, including an Alpha com-
ponent, which would make it easy to ”"fade” a display on the Canvas according
to some function of the importance. Also, OpenGL defines scaling functions in
all three directions. The Qt Toolkit [Tro], used to develop the standard GUI
components of the interface, already allows for dynamic hiding and resizing of
components.

3 The Framework Structure and Its Implementation

3.1 Qt Toolkit

The Qt Toolkit by Trolltech [Tro] is a very easy-to-use, cross-platform GUI
toolkit with some more support for cross-platform development, like threading,
file handling and the like. Qt employs their own model of event-driven program-
ming, namely “signals” and “slots”. Those are dynamically callable interfaces to
events such as “clicked” for buttons and “activated” for combo boxes.

Qt abstracts windowing operations very nicely and it is as easy to construct
an application out of ready made components as to implement a very special-
purpose “widget”, i.e. a custom-made component of the GUI. Also, Qt offers
a straight-forward interface to mouse events and even to OpenGL, so the Qt
Toolkit was the first choice as the underlying windowing library for this project.

3.2 FAST Robots

As the interface has to rely on an infrastructure to be able to communicate with
controlled robots, the HMI is based on the FAST Robots framework (Framework
Architecture for Self-Controlled and Teleoperated Robots) [KCPT03]. This mid-
dleware used for high-level sensor abstraction and communications employs a
strong generalization for sending any type of serializable data over a network.
Initially, the framework was designed for remote data collection for virtual ex-
periments, but progressed to being a very extensible architecture for rapid pro-
totyping in robotics.

In Figure 2 on the left, the basic structure of the architecture can be seen.
Communications flow starts at the level of the sensor as it is queried in regular
time intervals by the owning “experiment”. The experiment reads the data and
sends it on via its network link. On the other side of the network link, the
corresponding “monitor” reads the information, and due to a stored ID number,
forwards the data to the right “display”. In the case of control data flow, the
situation is reversed: The “control” is given data by the user and, due to the
asynchronous nature of Graphical User Interfaces, queries the monitor to forward
its data via its network link. The corresponding experiment receives the data
and, employing a similar distribution scheme like the monitor did for sensor
data, forwards the control data to the right “actuator”.

The right side of figure 2 shows a depiction of the relationship between a
sensor and a display implementation. Such a pairing shares another class: A
NetworkData subclass implementing the specific way data from this sensor is

A HMI Supporting Adjustable Autonomy of Rescue Robots 261

Robot Operator Station

Platform
1

NetworkData

2\

0..n p..n 0..n P..n
[Sensor| [Actuator| [Display] [Control]

TemperatureDisplay
TemperatureNData

Fig.2. The structure of FAST Robots (left) and the Sensor/Display/NetworkData
triple (right)

serialized and deserialized to a form suitable for transportation over the network.
It is conceivable to implement different NetworkData subclasses for a single type
of sensor/display pair as different compression algorithms might be used, e.g.
JPG, PNG or even Wavelet compression for pictures.

While the design of FAST Robots is very general and platform-independent,
the current implementation heavily uses the Qt Toolkit mentioned above for
various subtasks, such as threading, concurrency, data serialization and the GUI
of the ”Command”. Lately, efforts have been made to port FAST Robots to
other architectures and libraries.

3.3 Interface Framework

The interface presented focuses on the Controller side of the schematic shown in
Figure 2 and will thus be called "FAST Commander”. In simple words, a new
front end for FAST Robots applications was to be developed. Hence, the new
interface should be as flexible and as extensible as possible in order to be as
versatile as FAST Robots.

The UML diagram shown in Figure 3 shows the structure of the design. There
are four main components:

— The RobotList, which manages all Robots connected and ensures forwarding
of data. Also, the current robot is chosen here and data coming from the
current robot is forwarded through a special channel. If a certain type of
data from a robot is important it is also forwarded while the robot is not the
current robot. In addition, specific types of data can be muted, i.e. they do
not get forwarded at all. Most importantly, the Robot maps robot-specific
sensor IDs to application wide keys, e.g. from ’1’ to ”video0” meaning that
sensor 1 on this robot is the first video sensor.

— The GLViewCanvas, which presents all GLCanvasltems to the user. Those
items are the main means of displaying sensor and other (e.g. mapping)
data. The GLViewCanvas implements general necessities, such as a freely
movable camera to change perspective of the display and processing mouse
events, which are forwarded to the associated GLCanvasltems. In addition,
the canvas also implements a sort of z-index for each GLCanvasltem, which

262 A. Birk and M. Pfingsthorn

Visibility ltem
—
e —

57

Robot GLCanvasltem

I | I |

: | : |
Rohotlist GLViewCanvas Visibilly Manager

I | [| I |

: | L | : |

CommanderMainWindow

ControlBox
L |
|

Fig. 3. The UML diagram of the framework provided

is used to sort the associated items. While mouse events are forwarded in
reverse z-order (top-most item first), the drawing is done in z-order (bottom-
most item first). Since sorting is only done during insertion, there is no
additional cost and a more natural feel is achieved for the mouse interaction.

— The ControlBox (previously called Sidebar), which holds QWidgets (the
most general GUI component class from the Qt Toolkit), is a container for
control components. Control components are grouped and may be hidden
(collapsed) or shown (expanded) as a group.

— The VisibilityManager, which implements dynamic aspects of the interface,
as described in section 2.4. Implementation wise, the Visibility Manager
does not only know what to do with Visibilityltem subclasses (i.e. how to
set their importance) but also what to do with QWidgets (e.g. hide them if
the importance drops beneath a certain threshold) and group names from
the ControlBox (same as for QWidgets).

All these components are always present in any instantiation of the FAST
Commander interface. Any additional components, e.g. a map canvas item, a
joystick control, a connection to a specific robot and its mappings, are added at
mission specification. This ensures high customizability and task independence.

3.4 The Basic Displays
Figure 4 shows a screenshot of the core displays:

— A Map Display, which draws a 3D map according to the robot’s sensor input.
Cells believed to be empty are drawn flat and in Green color, whereas cells
believed to be occupied are drawn in red with a height proportional to the
strength of the belief. Importance is implemented as a proportional fading.

— A Robot Display, which draws the current state and pose of a single robot
in a sensible position relative to the map. The robot may assume a 3D pose
and the display can also indicate if the robot is active. Additionally, two
gauges exist that can indicate an overall health status.

A HMI Supporting Adjustable Autonomy of Rescue Robots 263

Wi
isahilily Mode:
lmrectdriving | =
 Robols

Aclive Rul

£
Snap Cam Io Robi?

Fig. 4. Core displays shown in the GLViewCanvas (left) and controls grouped on an
example sidebar (right)

— A Video Display, which draws video streams as a stack of video pictures
starting from the lower left corner. Their size can vary dynamically and
scaling is applied for both resizing of the GLViewCanvas and reflecting the
importance level.

3.5 Core Controls

The first control is the Joystick control. Apart from standard controls such as a
component allowing to choose a robot for activation, changing the visibility ar-
rangement, and controlling the GLViewCanvas, specific controls are implemented
that allow further access to the display’s features, e.g., controlling the map. The
following controls are present in the interface (see Figure 4 for a picture of an
example sidebar):

— The VisibilityControl, which lets the user choose one of some preset arrange-
ment of importances geared toward a specific mode of operation. In this
example case, choices included “map-based driving” and “direct driving”.

— The RobotListControl, which offers a choice of all connected robots to change
focus to. Once a different robot is selected, all control messages are sent to
that robot.

— The JoystickControl, which gives direct feedback of the read joystick position
and button states. The red line on the bullseye on the right indicates the
current displacement of the joystick. The red bar on the left is divided into
segments representing all buttons on the joystick. When a button is pressed,
the corresponding segment turns green.

Fig. 5. An example of the Visibility Manager, where attention is directed by scaling a
video stream up

264 A. Birk and M. Pfingsthorn

Fig.6. An example of the GLViewCanvas and the RobotList, where it is possible to
either have a free moving camera (left) to get an overview or to snap the camera view
to a robot (right)

Fig.7. A test run with Papa Goose (Top: The control interface, Bottom: The robot
in the lab)

— The CanvasControl, which gives the single option of snapping the camera of
the canvas to the poses of the current robot. This option gives rise to the
earlier mentioned “race car”-like driving experience.

4 Conclusion

An adaptive human machine interface (HMI) for rescue robots was presented.
The HMI supports adjustable autonomy by automatically changing its display
and control functions based on relevance measures, the current situation the
robots encounter, and user preferences. The according parameters and rules can
be specified during mission planning before the actual run as well as on the
fly. The design follows general guidelines from the literature, based on intensive
surveys of existing similar systems as well as evaluations of approaches in the
particular domain of rescue robots.

References

[BCKO04] Andreas Birk, Stefano Carpin, and Holger Kenn. The IUB 2003 rescue
robot team. In D. Polani, B. Browning, A. Bonarini, and K. Yoshida, edi-
tors, RoboCup 2003: Robot Soccer World Cup VII, volume 3020 of Lecture
Notes in Artificial Intelligence (LNAI). Springer, 2004.

[BDMO02] David J. Bruemmer, Donald D. Dudenhoeffer, and Julie L. Marble.
Dynamic-autonomy for urban search and rescue. In Proceedings of the
2002 AAAI Mobile Robot Workshop, Edmonton, Canada, 2002.

[Bir04]

[Bir05]

[BKO3]

[BKP03]

[BKR'02]

[BNP]

[CBO5]

[FCGBOO]

[FCTBO1]

[FTO1]

[FTBO1]

[FTB02]

[GJCPO1]

A HMI Supporting Adjustable Autonomy of Rescue Robots 265

Andreas Birk. Fast robot prototyping with the CubeSystem. In Proceedings
of the International Conference on Robotics and Automation, ICRA’200.
IEEE Press, 2004.

Andreas Birk. The IUB 2004 rescue robot team. In Daniele Nardi, Mar-
tin Riedmiller, and Claude Sammut, editors, RoboCup 200/4: Robot Soccer
World Cup VIII, volume 3276 of Lecture Notes in Artificial Intelligence
(LNAI). Springer, 2005.

Andreas Birk and Holger Kenn. A control architecture for a rescue robot
ensuring safe semi-autonomous operation. In Gal Kaminka, Pedro U. Lima,
and Raul Rojas, editors, RoboCup-02: Robot Soccer World Cup VI, volume
2752 of LNAI, pages 254-262. Springer, 2003.

Andreas Birk, Holger Kenn, and Max Pfingsthorn. The iub rescue robots:
From webcams to lifesavers. In 1st International Workshop on Advances
in Service Robotics (ASER’03). 2003.

Andreas Birk, Holger Kenn, Martijn Rooker, Agrawal Akhil, Balan Ho-
ria Vlad, Burger Nina, Burger-Scheidlin Christoph, Devanathan Vinod,
Erhan Dumitru, Hepes loan, Jain Aakash, Jain Premvir, Liebald Ben-
jamin, Luksys Gediminas, Marisano James, Pfeil Andreas, Pfingsthorn
Max, Sojakova Kristina, Suwanketnikom Jormquan, and Wucherpfennig
Julian. The IUB 2002 rescue robot team. In Gal Kaminka, Pedro U.
Lima, and Raul Rojas, editors, RoboCup-02: Robot Soccer World Cup VI,
LNALI. Springer, 2002.

Paul G. Backes, Jeffrey S. Norris, Mark W. Powell, Marsette A. Vona,
Robert Steinke, and Justin Wick. The science activity planner for the
mars exploration rover mission: Fido field test results. In Proceedings of
the 2008 IEEE Aerospace Conference, Big Sky, MT, USA.

Stefano Carpin and Andreas Birk. Stochastic map merging in rescue en-
vironments. In Daniele Nardi, Martin Riedmiller, and Claude Sammut,
editors, RoboCup 200/4: Robot Soccer World Cup VIII, volume 3276 of Lec-
ture Notes in Artificial Intelligence (LNAI), page p.483ff. Springer, 2005.
Terrence Fong, Francois Conti, Sebastien Grange, and Charles Baur. Novel
interfaces for remote driving: gesture, haptic and pda. In SPIE Telemanip-
ulator and Telepresence Technologies VII, Boston, MA, November 2000.
Terrence Fong, Nathalie Cabrol, Charles Thorpe, and Charles Baur. A
personal user interface for collaborative human-robot exploration. In 6th
International Symposium on Artificial Intelligence, Robotics, and Automa-
tion in Space (iISAIRAS), Montreal, Canada, June 2001.

T. Fong and C. Thorpe. Vehicle teleoperation interfaces. Autonomous
Robots, 11(1), July 2001.

Terrence Fong, Charles Thorpe, and Charles Baur. Advanced interfaces
for vehicle teleoperation: Collaborative control, sensor fusion displays, and
remote driving tools. Autonomous Robots, 11(1), July 2001.

Terrence Fong, Charles Thorpe, and Charles Baur. Robot as partner:
Vehicle teleoperation with collaborative control. In Multi-Robot Systems:
From Swarms to Intelligent Automata. Kluwer, 2002.

Michael A. Goodrich, Dan R. Olsen Jr., Jacob W. Crandall, and Thomas J.
Palmer. Experiments in adjustable autonomy. In Autonomy, Delegation,
and Control: Interacting with Autonomous Agents. IJCAI workshop, 2001.

266 A. Birk and M. Pfingsthorn

[KCP 03]

[Mim98]

[MRO6]
[0G03]

[RBO5]

[RMHO1]

[SB]

[SBAT03]

[Sny01]

[SPT03]

[SYDYO04]

[Tro]

Holger Kenn, Stefano Carpin, Max Pfingsthorn, Benjamin Liebald, Ioan
Hepes, Catalin Ciocov, and Andreas Birk. Fast-robotics: a rapid-
prototyping framework for intelligent mobile robotics. In Proceedings of
the 2003 IASTED International Conference on Artificial Intelligence and
Applications, pages 76-81, Benalmadena, Malaga, Spain, 2003.

Yoshiaki Mima. Bali: A live desktop for mobile agents. In Proceedings
of the 1998 IEEE Third Asian Pacific Computer and Human Interaction,
Kangawa, Japan, July 1998.

R. Murphy and E. Rogers. Cooperative assistance for remote robot super-
vision, 1996.

Dan R. Olsen and Michael A. Goodrich. Metrics for evaluating human-
robot interactions. In Proceedings of PERMIS 2003, September 2003.
Martijn Rooker and Andreas Birk. Combining exploration and ad-hoc
networking in robocup rescue. In Daniele Nardi, Martin Riedmiller, and
Claude Sammut, editors, RoboCup 2004: Robot Soccer World Cup VIII,
volume 3276 of Lecture Notes in Artificial Intelligence (LNAI), pages
pp-236-246. Springer, 2005.

M. Micire R. Murphy, J. Casper and J. Hyams. Potential tasks and research
issues for mobile robots in robocup rescue. In Tucker Balch Peter Stone
and Gerhard Kraetszchmar, editors, RoboCup-2000: Robot Soccer World
Cup IV, Lecture keywordss in Artificial Intelligence 2019. Springer Verlag,
2001.

SGI and Architectural Review Board. The OpenGL Standard. Available
at: http://www.opengl.org/.

Maarten Sierhuis, Jeffrey M. Bradshaw, Alessandro Acquisti, Ron van
Hoof, Renia Jeffers, and Andrzej Uszok. Human-agent teamwork and ad-
justable autonomy in practice. In Proceedings of the 7th International
Symposium on Artificial Intelligence, Robotics and Automation in Space:
i-SAIRAS 2003, NARA, Japan, May 2003.

Rosalyn Graham Snyder. Robots assist in search and rescue efforts at wtc.
IEEE Robotics and Automation Magazine, 8(4):26-28, December 2001.
Paul Scerri, David V. Pynadath, and Milind Tambe. Towards adjustable
autonomy for the real world. Journal of AArtificiallntelligence Research,
17:171-228, 2003.

Jean Scholtz, Jeff Young, Jill L. Drury, and Holly A. Yanco. Evaluation
of human-robot interaction awareness in search and rescue. In Proceedings
of the International Conference on Robotics and Automation, ICRA’200.
IEEE Press, 2004.

Trolltech. The Qt Graphical User Interface Toolkit. Available at:
http://www.trolltech.com/.

	Introduction
	The Design Goals and Core Components
	The Canvas
	The Sidebar
	The Visibility Controller
	The Dynamics Aspects

	The Framework Structure and Its Implementation
	Qt Toolkit
	FAST Robots
	Interface Framework
	The Basic Displays
	Core Controls

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

