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Abstract. The paper develops a new approach for robot self-
localization in the Robocup Midsize league. The approach is based on
modeling the quality of an estimate using an error term and numerically
minimizing it. Furthermore, we derive the reliability of the estimate an-
alyzing the error function and apply the derived uncertainty value to a
sensor integration process. The approach is characterized by high preci-
sion, robustness and computational efficiency.

1 Introduction

Autonomous robots need to know their position and heading to be able to solve
a given task like driving to a certain position. Especially in the Robocup Mid-
size league reliable position estimates are essential for higher level behavior like
path planning, strategy and multi-agent coordination. Since autonomous robots
cannot refer to global sensors which are fixed with respect to a global coordinate
system but all sensors are on-board they need a procedure of self-localization,
i.e. an algorithm to calculate their position and heading.

In this paper, we focus on a camera-based self-localization approach for the
Robocup Midsize league. Three main difficulties have to be faced: (a) the self-
localization process must be robust. The soccer field is not encircled by a board
that allows to distinguish objects inside and outside the field like spectators.
This may lead to misinterpretations of the visual information.

(b) Position estimates must be accurate: images of standard camera systems
exhibit a poor resolution of objects located more than a few meters away. Hence,
distance estimates are very noisy. Furthermore, the dynamics of the game with
large accelerations and collisions between robots leads to vibrations that further
affect the quality of self-localization (see fig. 1).

(c) The self-localization approach needs to be computationally efficient since
the robot control program must satisfy strict real time conditions: our goal is to
reduce the computation time to less than 15 milliseconds.

Mainly three approaches [10] have been used so far to solve the self-localization
task: (a) the use of colored landmarks combined with geometrical calculation, e.g.
[4], (b) the detection of white field markings combined with a Hough-transform,
e.g. [6], and (c) the detection of landmarks or field markings combined with a
sequential importance sampling [3] approach like Particle filtering [2].
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All of these approaches have some merits but none of them solves all objectives
of self-localization satisfactorily: approaches using landmarks are easily mislead
by colored objects outside the field. Secondly, the large size of the field (8×16m)
and the small number of landmarks restricts the use of landmarks.

Using the Hough-transform needs the calculation of a three dimensional ac-
cumulator array. Hence, a lot of calculation is done for positions of no interest
and any increase in precision implicates a heavy increase of computation time.

Monte Carlo approaches like Particle filtering also spend a lot of time in eval-
uating positions of no interest since they follow a blind search paradigm. In ex-
periments we made with a Particle filtering approach of our Robocup team [7] we
observed that approximately 98% of the examined positions did not contribute
to the final position estimate since positions are evaluated even if neighboring
places have already been evaluated as poor estimates.

We therefore want to propose a new algorithm for robot self-localization that
overcomes the problems stated before and that fulfills all requirements: robust-
ness, accuracy and efficiency. It is based on guided update steps modeling the
localization problem as an error minimization task and using an efficient numer-
ical minimizer. Additionally, we derive a measure of reliability of the calculated
position analyzing the structure of the error function so that we can apply a
stochastic sensor fusion process that increases the accuracy of the estimate.

An extension of the algorithm described in a further section also allows to
solve the global localization problem, i.e. to find a robot’s position without any
prior knowledge. Finally, we compare the new approach with an existing imple-
mentation of Particle filtering for self-localization.

We assume the robots being equipped with an omnidirectional color camera
on top that perpetually takes pictures from the field area around the robot.
We further assume the case of omnidirectional driving capabilities although the
calculations can also be done for a differential drive in simplified form.

2 Interpreting the Pictures from the Camera

2.1 Image Preprocessing

The pictures from the camera (fig. 1) are preprocessed using a detector of line
points based on an efficient search along pre-defined radial scanlines. A descrip-
tion of this approach can be found in [7]. The result of preprocessing is a list of
positions relative to the robot position and robot heading where scanlines inter-
sect white field markings that have been observed in the image. In the following,
we will call these points detected line points or, simply, line points.

An example of such a list is given by the gray circles in figure 4 (left). The de-
tected line points are not linked, i.e. the list does not preserve the neighborhood
relationship of line points that belong to the same line.

2.2 Matching Visible Information with Position Estimates

To find the position and heading of the robot with respect to the information
we get from image preprocessing we define an error function that describes the
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Fig. 1. Pictures taken by the omnidirectional camera. Left: a neat picture taken when
the robot was not moving. Right: a blurred picture affected by vibrations when the
robot was moving. All field markings are blurred and some of them occur twice.

fitness of a certain estimate. The idea is, that the detected line points and the
known field markings match as best as possible if we assume the true robot
position and robot heading. Hence, maximizing the fitness (=minimizing the
error) yields the best estimate.

Let (p, φ) be a pair of a possible robot position p = (px, py) and heading φ
in a global coordinate system. The list of detected line points is given relative
to the robot’s pose as vectors s1, . . . , sn (see fig. 2). Its position in world coordi-

nates therefore is given by p +
(

cosφ − sinφ
sinφ cosφ

)
si. Minimizing the error between

detected line points and true field markings means to solve:

minimize
p,φ

E :=
n∑
i=1

err (d(p +
(

cosφ − sinφ
sinφ cosφ

)
si)) (1)

The mapping d(·) gives the distance from a certain point on the field to the
closest field marking. It is continuous and piecewise differentiable and can be
calculated from the knowledge of the field markings that are defined in the
Robocup rules.

err is an error function that punishes deviations between detected line points
and the model lines. The squared error function e �→ 1

2e
2 which is standard for

many applications is not appropriate for the given task since it is not robust with

si

x

y

p
φ

world coordinate system

robot coordinate system

robot

detected line point

Fig. 2. Sketch of the fixed world coordinate system, the robot relative coordinate sys-
tem and a vector si pointing to a detected line point
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Fig. 3. Comparison of the squared error function (dashed line) and the more robust

M-estimator e �→ 1 − c2

c2+e2 (solid line)

respect to outliers [9]. Due to image noise and imperfect image preprocessing we
are faced with a substantial amount of erroneously detected line points that
would distort the estimate. Instead, we use the error function e �→ 1 − c2

c2+e2

with parameter c ≈ 250, see fig. 3. This error function is very similar to the
squared error function for errors e ≤ c and is bounded above by a constant for
larger errors, thus the influence of outliers onto the estimate is bounded.

Figure 4 (right) shows the error function for a certain set of detected line
points. Obviously, the error function exhibits a large number of local minima.
Due to the non-linearity of the minimization problem (1) we cannot analytically
calculate its solution but we need a numerical minimizer.

Since d is almost everywhere differentiable we can build its gradient almost
everywhere and interpolate the gradient at the non-differentiable places. Hence,
we can use gradient descent to solve (1). Due to quick convergence and high
robustness we use 10 iterations of RPROP to solve the minimization task [8].
RPROP was originally developed as learning rule for multi layer perceptrons but
it can also be used to solve other types of unconstrained optimization problems.

Fig. 4. Left: The set of line points (gray circles) and the field markings (solid lines) for
an optimal position estimate. The estimated robot position and heading is indicated by
the symbol “R”. Right: A graylevel plot of the error function for the same clipping as
in the left-hand figure. The 3D-error function was projected onto the two-dimensional
field assuming optimal heading of the robot. Dark areas indicate positions with large
error, bright areas positions with small error. The black circle indicates the optimal
position estimate. The error function exhibits a distinctive global minimum.
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Using the idea of error minimization we can realize the draft version of a
robot localization algorithm:

1. start with a known position estimate
2. calculate the movement of the robot since the latest update of the position

estimate and add it to the latest estimate
3. optimize the position applying the error minimization approach
4. repeat 2. and 3. every time a new camera image is received

2.3 Dealing with the Aperture Problem

Figure 4 shows a situation with a distinctive global minimum, i.e. the optimiza-
tion task is well-posed and all parameters can be estimated reliably. Unfortu-
nately, situations occur in which the optimization task is ill-posed due to a small
number of line points or a poor structure of the line points. Such a situation is
depicted in figure 5: the robot is located next to the touch-line of the field and
all line points refer to the touch-line. Hence, the distance to the touch-line, i.e.
the y-coordinate, can be estimated very reliably while the x-coordinate remains
vague. The error function is characterized by a long valley of similar small values.

To tackle the aperture problem we have to recognize three possible situations:
(a) the error function exhibits a distinctive global minimum. Hence, we can
estimate p and φ reliably. (b) The error function is completely flat due to a
small number of line points. Thus, we cannot estimate any parameter. (c) The
error function exhibits a valley structure around the minimum. Here, we can
estimate parameters robustly which refer to a coordinate axis orthogonal to the
valley but we cannot estimate parameters that refer to a coordinate axis parallel
to the valley. E. g. in fig. 5 we can estimate py and φ but not px.

To determine the structure of the error function around the minimum we
propose the analysis of the second order derivatives of the error function: the
value of ∂2E

(∂px)2 is small in the case of a valley parallel to the x-axis and in a

Fig. 5. Aperture problem: The left hand figure shows the mapping of the line points
onto the known field markings while the right hand figure shows the error function in the
same way as in figure 4. The error function shows a valley of small error values. Hence,
the position estimate is very reliable with respect to the y-coordinate but unreliable
with respect to the x-coordinate.



Calculating the Perfect Match 147

completely flat case while it is large if E shows a distinctive minimum with
respect to the x-axis. Analogously we can analyze ∂2E

(∂py)2 and ∂2E
(∂φ)2 .

From a practical point of view the calculation of the second order derivatives
simplifies: The function d is build out of the line markings on the field. Most of
them are lines parallel to the coordinate axis, only the corner arcs and the center
circle are no straight geometrical objects. Hence, the function d is piecewise linear
in most parts of the field and its second order derivatives are zero in these areas.
Using this simplification we get:

∂2E

(∂px)2
≈

n∑
i=1

err ′′(si) · (∂d(si)
∂x

)2 (2)

∂2E

(∂py)2
≈

n∑
i=1

err ′′(si) · (∂d(si)
∂y

)2 (3)

∂2E

(∂φ)2
≈

n∑
i=1

(
err ′′(si) ·

(∂d(si)
∂x

(− sinφ − cosφ)si +
∂d(si)
∂y

(cosφ − sinφ)si
)2

+ err ′ · (∂d(si)
∂x

(− cosφ sinφ)si +
∂d(si)
∂y

(− sinφ − cosφ)si
))

(4)

where err ′ and err ′′ denote the first and second order derivative of err .
Unfortunately, the error function e �→ 1− c2

c2+e2 used in (1) is not completely
positive definite and therefore the curvature criterion may be mislead, i.e. the
second order partial derivative may be small also the minimum is distinctive.
However, this problem is caused only from outlying observations since the error
function is positive definite in the interval (− c√

3
, c√

3
). To avoid this problem we

adopt the following artifice: in (2)–(4) we replace the original error function by
the squared error function e �→ 1

2 ( ec )
2 and ignore outlying observations. Hence,

E becomes positive definite and the curvature criterion yields sound results.

3 Tracking and Smoothing

The approach described so far estimates the robot position and heading that
matches optimally to the information extracted from the camera image. Due to
vibrations of the robot, especially in the case of high velocity or due to collisions,
this position is affected by a reasonable amount of noise and inaccuracy (see fig.
1 (right)). The dotted line in figure 6 (left) shows an example of a trajectory
build out of the positions calculated only from the image information. Obviously,
the noise of the self-localization process is severe.

To reduce the noise we propose to evaluate the temporal dependency of posi-
tions estimated from subsequent images. Since subsequent positions of the robot
are neighbored and linked using some transition depending on the robot velocity
we can use a stochastic weighted averaging approach that is in fact a simplified
application of the Kalman filter (see e.g. [5]).

We thereto enclose all estimates with variances that model the degree of un-
certainty. We don’t use covariances to simplify the modeling. Let denote (rt, ψt)
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the estimate of the robot’s position and heading at time t and σ2
rx,t, σ

2
ry,t, σ

2
ψ,t the

respective variances. After a robot movement the position estimate and variances
are updated using the motion model of an omnidirectional robot with velocity
v and rotational velocity1 ω:

ψ̂t+τ = ψt + ω · τ (5)

r̂t+τ =

⎧⎪⎨
⎪⎩

rt + v · τ if ω = 0

rt + 1
ωRψt

(
sin(ωτ) cos(ωτ)−1

1−cos(ωτ) sin(ωτ)

)
R−ψtv if ω �= 0

(6)

with Rψ denoting the rotation matrix by the angle ψ. The velocity and rota-
tional velocity is measured by odometers. The update of the variances takes into
account the inaccuracy of the movement:

σ2
ψ̂,t+τ

= σ2
ψ,t + α(ψ̂t+τ − ψt)2 (7)

σ2
r̂x,t+τ = σ2

rx,t + α(r̂x,t+τ − rx,t)2 (8)

σ2
r̂y,t+τ = σ2

ry,t + α(r̂y,t+τ − ry,t)2 (9)

The parameter α > 0 controls the assumed accuracy of the movement.
In (8) and (9) we ignore the non-linear dependency between rotational and

translational movements of a robot. Ignoring it keeps the statistical model-
ing efficiently tractable while considering the dependency would require time-
consuming statistical techniques like e.g. sequential importance sampling. As
long as the frequency of updates remains high, the additional error made by the
assumption of independence remains small.

After receiving an image from the camera and calculating the optimal estimate
with respect to the image information (p, φ) we are able to calculate a smoothed
position estimate combining (p, φ) and (r, ψ). Therefore we introduce variances
for (p, φ) that model the uncertainty of the image-based estimator.

The reliability of the image-based estimator is influenced by several aspects:
the precision of the optical system, mechanical vibrations, camera calibration
errors, the accuracy of image preprocessing and the structure of detected line
points. While we can only make crude assumptions about the accuracy of the
former aspects we need to model the latter aspect, i.e. the structure of line
points, carefully to avoid erroneous estimates.

In section 2.3 we discussed the aperture problem recognizing that the estimate
may be reliable in some parameters and unreliable in others. This means, the
assumption of uncertainty is different for each of the parameters px, py and φ.
We therefore propose to use the curvature criterion to individually determine
the variance of each parameter: a small second order partial derivative should
be related to a large variance while a large second order partial derivative should
be related to a small variance. We use a heuristic function to map second order
partial derivatives onto variances. It was determined from a set of experiments
by visual inspection.
1 v and ω refer to the global coordinate system and describe the movement at time t.



Calculating the Perfect Match 149

The sensor fusion step consists of averaging two independent Gaussian distri-
butions. Denoting with σ2

φ the variance of φ we get:

ψt+τ =
σ2
φψ̂t+τ + σ2

ψ̂,t+τ
φ

σ2
φ + σ2

ψ̂,t+τ

(10)

σ2
ψ,t+τ =

σ2
φ · σ2

ψ̂,t+τ

σ2
φ + σ2

ψ̂,t+τ

(11)

The sensor fusion steps for rt+τ can be calculated analogously.
Using the filtered estimates helps to improve both, robustness and precision.

A single misleading camera image does not lead any more to a loss of track since
the filter does not allow to jump to a completely different position which would
be possible using the simple algorithm shown in section 2.2.

Additionally, the aperture problem is tackled appropriately: even if the image-
based estimate is unreliable with respect to some coordinate axis sensor fusion
leads to reliable estimates for all parameters. Moreover, the precision is increased
by the sensor fusion due to its implicit smoothing. Hence, erroneous image in-
formation do not have a strong impact on the final estimate.

4 Solving the Global Localization Problem

Section 3 discussed the problem of tracking a robot’s position starting with a
known initial position, i.e. to look for the locally optimal estimate. To solve the
global localization problem means to find the global minimum of the error E
from (1) even if no initial estimate is available. Certainly, it is not possible to
solve the global minimum search under hard real time constraint every cycle.

We therefore propose to apply the tracking approach several times in parallel
with random initial positions. The estimates converge very quickly to the next
local minima of E. Hence, we can compare the different estimates and choose
the best one as our main estimate while the sub-optimal estimates remain under
inspection as possible alternatives. By repeated random reinitialization of the
alternative estimates we successively scan the whole parameter space.

To avoid premature switches between main estimate and an alternative due
to random effects we introduced a discounted scoring system: the best estimate
in a cycle gets one point while the others don’t get any point. By comparing
the discounted sums of points we can evaluate which of the estimates is the
overall best one over a longer period of time. Switching the main estimate to an
alternative happens only if the score of the alternative becomes greater than the
score of the current main estimate.

5 Experiments and Comparison

5.1 Accuracy

All experiments explained here were made on the robots of the Brainstormers
Tribots team. The algorithms were implemented in C++ under Linux and ran
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on JVC sub-notebooks with 1GHz Pentium processor. We used a test field which
had the dimensions of the fields used in the Robocup 2004 competition.

We made experiments using the joystick to control the robot. In all cases
the self-localization approach worked fine. Figure 6 (left) shows a trajectory of
self-localization positions that were calculated while the robot drove on a curved
trajectory of 6m length. The trajectory based on the Kalman filtered positions is
very smooth. In contrast, the trajectory build out of the image-based estimates
without Kalman filtering exhibits deviations up to 43cm and erratic outliers
orthogonal to the direction of movement.

In figure 6 (right) we repeated the same experiment with a Particle filtering
based self-localization [7]. Both approaches worked on exactly the same input so
that they can be compared directly. Obviously, the Particle filter exhibits large
deviations from the curved trajectory that are even worse than the deviations
of the image-based trajectory in figure 6 (left). These examples show the high
precision of the new approach that clearly outperforms the hitherto used Particle
filter. In further experiments these results have been confirmed.

5.2 Computational Efficiency

We also measured the computation time and compared it to the Particle filter
with 200 and 500 particles. The average computation time is given in table 1.
The Particle filter needed four times (with 200 particles) and ten times (with
500 particles) as much computation time as the error minimizing algorithm. In
the given framework with hard real-time constraints this saving of time allowed
us to increase the number of camera images analyzed per second to 30 which
was far not possible with the Particle filtering approach.

Figure 7 shows the cumulative distribution function of the time needed by
the error minimizing self-localization algorithm. The computation time linearly
depends on the number of line points. It varied between none and 300 per cycle.
The maximal computation time was 11ms while the average was 4.2ms. One
possibility of restricting the maximal computation time is therefore to restrict

Fig. 6. Left: example of a robot driving with 2m
s

on a curved trajectory of 6m length.
The dotted line shows the trajectory of positions which are evaluated optimal consider-
ing the camera image. The solid line shows the smoothed trajectory using the Kalman
filter. Right: comparison of the error minimizing approach (solid line) with the Particle
filter with 500 particles (dotted line) on the same trajectory.
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Table 1. Computation time of different methods for self-localization in milliseconds

Approach Average computation time per cycle

Particle filter with 500 particles 48.3
Particle filter with 200 particles 17.9
Error minimizing self-localization 4.2

all line segments
maximal 100 line segments

maximal 50 line segments
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0.4
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0.8

 1

 0  2  4  6  8  10  12

Fig. 7. Cumulative distribution function of the computation time per cycle of self lo-
calization in milliseconds (x-axis). The solid line refers to the case of unlimited number
of line points while the dashed (dotted) line shows the case of a maximum of 100 (50)
line points per cycle.

the number of line points used. E.g. restricting the number of line points to 100
(50) yields a maximal computation time of 6ms (4ms) without reducing the
accuracy of estimates considerably.

5.3 Global Localization

In a third experimental setup we measured the time that was needed to glob-
ally localize the robot. Thereto we repeatedly activated a random reset of self-
localization and measured the time needed to find the robot’s position again.

The global localization approach used one main estimate and three alternative
estimates which were repeatedly reinitialized after between 100ms and 2000ms,
depending on their quality. Although in every iteration only four positions were
evaluated the self-localization found the global optimum in most cases quickly.
On average, it took 2.9 seconds. The time needed for global localization heavily
depended on the number of line points and their structure: it was far easier to
localize in the penalty area in front of a goal with lots of horizontal and vertical
field markings than next to the touch line where only a few line points of only a
single field marking could been detected.

6 Related Work

There are two different approaches that are closely related to the error mini-
mizing approach: the two-step approach of Cox [1] and the so-called MATRIX -
approach [11]. The work of Cox uses a range finder to detect walls instead of
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Table 2. Comparison of three approaches for robot self-localization

Cox MATRIX Error minimizer

sensory system range finder/walls omnidirectional cam-
era/field markers

omnidirectional cam-
era/field markers

principle 2-step force-field gradient descend
error function squared error ≈squared error M-estimator
deals with outliers remove in advance weighted observa-

tions
M-estimator

optimizer analytically/2-step ad hoc RPROP
variance estimation analytically, only for

straight lines
none analyzing the Hes-

sian
sensor integration fusion of Gaussians none fusion of Gaussians
global localization none exhaustive search at

beginning
randomized parallel
search

experiments 1
40

m
s

robot velocity,
frame rate of 1

8
Hz

none 3m
s

robot velocity,
frame rate of 30Hz

field markers. Self-localization is based on assigning every observed wall point
to the closest true wall and minimizing the squared error. Since this approach
does not consider curved walls solving the optimization problem can be done
analytically. Experiments are presented only for very slowly moving robots.

The MATRIX -approach models the task using an artificial force field which
resembles a gradient vector field for the squared error measure. This approach
does not consider the aperture problem. Experimental results are missing.

Comparing the error minimizing approach with both alternatives (see tab. 2)
shows that the new approach completes its alternatives: in contrast to MATRIX
it tackles the aperture problem and allows sensor integration while in contrast to
Cox’ approach it can even deal with noisier sensors like optical systems and with
higher robot velocities which cause slippage and imprecise odometer signals.

7 Summary

We proposed a new approach to efficiently solve the robot self-localization prob-
lem in the Robocup Midsize league. The approach is based on an efficient nu-
merical approach to find the locally best match between the camera image and
the model of the field. Additionally, a stochastic sensor fusion step similar to the
Kalman filter is used to link the position estimates calculated from subsequent
images and to smooth the trajectory.

This approach enables a low-noise tracking of a robot’s position. Experiments
comparing the new approach with an existing Particle filtering approach point
out the immense noise reduction. Position estimates become more reliable and
more precise. Hence, they are much better suited for further calculations like
path planning. Thus, using the error minimizing self-localization enables the
development of higher level capabilities of robot control and team play.
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While an increase in accuracy implicates an increase of computation time
using methods like Particle filtering and Hough transform the new approach is
very efficient. In experiments we could show that it needs only a tenth of the
computation time of a Particle filter. By restricting the number of line points it
was possible to restrict the maximal computation time to 4 milliseconds. Hence,
the new approach can be used even under hard real time constraints.

Although the basic modeling is not guaranteed to find the overall optimal
position we proposed an extension that also solves the global localization prob-
lem. We could show by experiments that the robot found its position on average
in only 2.9 seconds. Hence, even if the tracking approach is mislead by heavily
erroneous sensor information the robot is able to quickly find its position again.

The error minimizing algorithm for self-localization that is presented in this
paper is characterized by three properties: high accuracy, robustness and effi-
ciency. It outperforms Particle filtering in all of these aspects. It therefore is a
step towards a completely autonomous and robust soccer playing robot.
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