
Information Agents That Learn to Understand
Each Other Via Semantic Negotiation

Salvatore Garruzzo and Domenico Rosaci

DIMET, Università Mediterranea di Reggio Calabria
Via Graziella, Località Feo di Vito

89060 Reggio Calabria, Italy
{salvatore.garruzzo, domenico.rosaci}@unirc.it

Abstract. A key issue in Distributed Applications, that widely use In-
formation Agents for implementing several typologies of services, is that
of making reciprocally understandable the meaning of terms contained
in the exchanged messages, in those cases where agents use different, het-
erogeneous ontologies. A possible way for facing this issue is offered by
the semantic negotiation, a framework in which agents try to understand
each other by negotiating the semantic of the terms. Several models and
protocols of semantic negotiation have been proposed in the last years.
However, most of these approaches are not able to support semantic ne-
gotiation without requiring agents either to share knowledge or to use a
global common ontology, and none of them provides a semantic negotia-
tion protocol that allows the whole agent community to contribute to the
semantic understanding process between each agent pair. In this work,
we propose the HIerarchical SEmantic NEgotiation (HISENE) protocol,
based on the idea that an agent a should be able to partition the set
of the other agents on the basis both of their personal expertise of the
application domain, as well as on the particular capability that each of
them shows in understanding a. We also give an implementation of the
proposed protocol in the standard Java Agent DEvelopment Framework
(JADE).

1 Introduction

In human discussions, the meaning of terms contained in the statements are not
always reciprocally clear for both the interlocutors. Often, one of them uses a
term that the other one either does not understand or considers ambiguous. Gen-
erally, human beings try to solve these situations by negotiating the semantics of
the involved terms, where the negotiation implies several operations performed
by the two interlocutors as, for instance, a query that one of them could pose
for having a description of a non-understood term, a response provided by the
other interlocutor, containing the requested description, etc. This scenario, very
usual in human context, has today a counterpart in Distributed Applications
field, where distributed software entities, generally called information agents,
operates on the behalf of human beings to perform operations that would be

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 99–112, 2006.
c© IFIP International Federation for Information Processing 2006

100 S. Garruzzo and D. Rosaci

too onerous to be completed manually, as information searching, e-commerce
and e-learning activities, software exchanging and so on. On the one hand, each
information agent generally stores an internal representation, called ontology, of
the domain of interest for its human owner. On the other hand, agents communi-
cate between each other in a distributed Multi-Agent System (MAS) to perform
their activities. As an example, consider the case of an e-commerce scenario in
which an agent, operating on the behalf of a human customer, negotiates for
a product with another agent operating on the behalf of a human seller. This
communication is performed effectively in the case the two agents share the same
ontology, i.e. if both of them know the same terms and give the same meanings to
the terms. Otherwise, the problem arises for an agent interpreting some terms
unknown or ambiguous contained in messages arriving from the other agent.
It is important to consider that nowadays communications among agents have
become a key issue for the development of the whole Web, and not just some par-
ticular application domain as e-commerce and e-learning. A suitable example for
understanding this fact is represented by the general case of Web Services, that
can be viewed as (server) agents that provide services to other (client) agents. It
is necessary that, as Web Services become more prevalent, client agents should
be able to compose together disparate Web Services. However, in order to en-
able such compositions, it is not enough just agreeing on common protocols (e.g.
SOAP) but also the messages’ contents need to be mutually understandable: this
means that there should be an agreement on the semantics of the terms used in
the messages.

Although we have observed over the last years an important evolution towards
the standardization of agent communication languages (ACL’s), as KQML [5]
and FIPA ACL [6], it is worth to point out that the focus of these standards is
mainly on the syntax of messages and the semantics of performatives, while the
semantics of the content of a message is specified by the ontology which is used.
This means that, in order to correctly understand the content of a message,
the receiving agent has to understand the terms contained in the ontology of
the sending agent. In a MAS, this is possible if either all the agents share the
same ontology, or every agent knows each other’s ontology. However, none of
these situations are desirable, since: (i) every agent generally deals with its own
particular task and thus requires its own specialized ontology; (ii) making every
agent of an open MAS, whose size can quickly increase in time, always acquainted
with every other agent’s ontology would lead to a untenable situation.

A possible way of facing the problem to solve the difficulties of an agent in
understanding the messages coming from other agents having different ontologies
is offered by the semantic negotiation. This is a process by which agents in an
agent community try to reach mutually acceptable definitions (i.e., mutually
acceptable agreements on terms).

Several models and protocols of semantic negotiation have been proposed in
the last years [2, 4, 7, 11, 12]. However, most of these approaches are not able to
support semantic negotiation without requiring agents either to share knowl-
edge or to use a global common ontology, and none of them provides a semantic

Information Agents That Learn to Understand Each Other 101

negotiation protocol that allows the whole agent community to contribute to
the semantic understanding process between each agent pair. In this work, we
introduce the idea that two agents involved in a communication process can re-
quire the help of other agents in order to solve possible understanding problems.
In this context, the notion of expertise of an agent introduces a measure of the
capability of the agent to explain non-understood terms to each other agent.
Moreover, we also define the notion of understanding capability of an agent a
with respect to another agent b, that measures the capability of a to explain
terms that b does not understand. Therefore, the expertise of an agent a is the
capability of a to effectively explain non-understood terms to the whole commu-
nity, while the understanding capability with respect to b is relative to the only
agent b. These two notions allow the possibility to introduce the synthetic mea-
sure of negotiation degree, defining the potential capability of a to negotiate the
semantic of terms belonging to b. Therefore, in our framework, an agent can ask
help to other agents for understanding a term on the basis of their negotiation
degree; for this purpose, he groups the agents in different partitions p1, p2, .., pn,
ordered by a decreasing level of negotiation degree. We propose a semantic ne-
gotiation protocol, called HIerarchical SEmantic NEgotiation (HISENE), that is
suitable to be applied for implementing such a semantic negotiation in the stan-
dard Java Agent DEvelopment Framework (JADE) [8]. An important advantage
that this protocol introduces is that each agent can contact the other agents in
different stages, by following the rational criteria of firstly negotiating with the
agents belonging to the partition p1, contacting agents of the partition p2 only
if none of the agents in p1 is able to positively answer, then contacting agents
of the partition p3 only if none of the agents in p2 succeeds, and so on. More-
over, each contacted agent can start, in its turn, another semantic negotiation,
in order to understand unknown term; however, in order to avoid the presence
of a loop, each term is processed only once by each agent. This leads to use in
an efficient way the network communication resources. The plan of the paper
is the following: Section 2 describes some related work; Section 3 gives some
preliminary notions on the JADE framework; Section 4 deals in detail with the
HISENE protocol, while Section 5 describes a simple example of how HISENE
works; Section 6 draws some final conclusions. The Appendix describes the JAVA
implementation of the main components composing the package HISENE, built
on top of the JADE framework.

2 Related Work

In a MAS, each agent is specialized in solving a particular task, so it requires its
own ontology. In order to allow agents having different ontologies to understand
each other, some approaches have proposed in the past the use of a common
shared ontology. As an example, the approach proposed in [11] provides the
agents with a set of shared concepts, in which they can express their private
knowledge. The communication vocabulary is formalized as an ontology, shared
by the entire MAS, and in which every private concept of each individual agent

102 S. Garruzzo and D. Rosaci

can eventually be defined. Concept names used in an agent’s private ontology,
are not understandable to other agents. However, their definitions in terms of
ground concepts are understandable. The use of definition terms, instead of the
concepts, enables optimal communications between agents.

Moreover, the approach presented in [2] introduces a computational frame-
work for the detection of ontological discrepancies between two agents in multi-
agent systems. In this method, presuppositions are extracted from the sender’s
messages, expressed in a common vocabulary, and compared with the recipient’s
ontology, which is expressed in type theory. Discrepancies are detected by the
receiving agent if it notices type conflicts, particular inconsistencies or ontologi-
cal gaps. Depending on the kind of discrepancy, the agent generates a feedback
message in order to establish alignment of its private ontology with the ontology
of the sender. The dialogue framework is based on a simple model of interaction.

Another approach using a common knowledge is that presented in [12], where
authors introduce a machine learning methodology and algorithms for multi-
agent knowledge sharing and learning in a peer-to-peer setting. Agents can use
a set of shared concepts in which they can express their private knowledge.

The work [7] proposes to consider the use of shared keys to solve the problem of
using different names for the same object; in particular, a probabilistic matching
approach is introduced. Semantic negotiation is described as a process by which
a client and a service can negotiate mutually shared references.

There are some other approaches that do not require the use of a shared
ontology. As an example, in [4], to allow agents to interoperate, authors have
developed a matchmaking system that, rather than requiring agents to share on-
tologies, exploits an agent-independent, domain-specific ontology, called a global
ontology. Besides the global ontology, the proposed system, when an agent joins
the platform, applies an information-extraction engine to the agent’s code to
extract useful information, that includes recognized names of concepts the agent
uses (e.g. class names, parameter names, etc.). Instead of having a shared on-
tology, the proposed system maintains a mapping of the local ontologies of all
agents to the independent global ontology. The main difference between this ap-
proach and a shared ontology approach is that an agent’s programmer does not
need to know anything about any other agent’s local ontology, nor he does need
to know about the global ontology, but it is the system that does the necessary
mapping.

The main difference between the approaches described above and that one we
propose in this paper is that in our approach, agents do not need to share either
a common ontology or to maintain a global ontology, in order to understand
each other, but they try to solve their understanding problems availing the help
of other agents that are considered experts in the involved domain and that have
similar ontologies. Obviously, by using this approach, the understanding can be
obtained only by waiting that the agent community evolves in time, allowing the
formation of expert agents and understanding relationships among agents, due
to the continuous interaction. The main advantage that our method presents is
that the mutual understanding among agents is not statically related to a global

Information Agents That Learn to Understand Each Other 103

ontology, but it can dynamically improve by following the agent interactions and
monitoring the agent communications.

Other approaches exist in the literature, that we consider alternative to our
one. As an example, in [3], the problems brought by the schema heterogeneity
in Digital Libraries are discussed. The proposed architecture integrates the on-
tology, agent and P2P technologies together to support the schema mapping.
The goal is to allow agents embedded in different libraries to communicate se-
mantically. As another example, in [1], authors present a technique to generate
elementary speech act sequences in a dialogue game between an electronic as-
sistant and a computer user. The work focuses on the conversational process of
the understanding of the meaning of a vocabulary shared by two dialogue par-
ticipants, where the computer interface is considered to be a cooperative agent.
Another proposal is that contained in [10]. In this work, agents in an open agent
system jointly agree on an axiomatic semantics for the agent communications
language utterances they will use to communicate. This work assumes that the
agents involved all start with a common semantic space, and then together as-
sign particular locutions to specific points in this space. Such a structure would
not appear to permit an incremental construction of the semantic space itself.

3 Preliminaries

Agents in a multi-agent system can communicate by means of messages. Infor-
mation inside a message is represented as a content expression consistent with
a proper content language and encoded in a proper format. Taking into account
that agents have their own way of internally representing the information, it is
quite clear that the representation used in a content expression is not suitable
for the inside of an agent. For this reason, agents need to convert their internal
representation into a content expression representation, and vice versa. More-
over, the problem of different ontology explained in Section 1 determines the
impossibility of message understanding.

JADE is a software framework fully implemented in Java language to realize
distributed multi-agent systems complied with the FIPA specifications. JADE
offers a number of advantages such as: (i) each agent “lives” in a runtime en-
vironment on a given host; (ii) communications are held by means of ACL
messages; (iii) information can be represented as an instance of an application-
specific class (a Java object). Moreover, the support for content languages and
ontologies provided by JADE is designed to automatically perform all the above
conversion operations, thus allowing developers manipulating information within
their agents as Java objects.

In order for JADE to perform the proper semantic checks on a given content
expression it is necessary to classify all possible elements in the domain of dis-
course (i.e. elements that can appear within the content of an ACL message)
according to their generic semantic characteristics. This classification is derived
from the ACL language defined in FIPA which requires that the content of each
ACLMessage must have a proper semantics according to the performative of the

104 S. Garruzzo and D. Rosaci

ACLMessage. The JADE content reference model considers only four types of
elements which can be used as meaningful content of an ACL message, namely:

Predicates, that are boolean expressions saying something about the status
of the world. As an example, the expression

(studies − in (Student : name Jim)(University : name MIT))
states that “the student Jim studies in the University MIT”. Generally, inside

predicates there are referenced some expressions called concepts, that indicate
entities with a complex structure e.g. (Student : name Jim : age 21).

Agent Actions, indicating actions that can be performed by some agents,
e.g. (sell (Book : title “AnnaKarenina′′) (Person : name Jim))

states that the person Jim sells the book “Anna Karenina”.
Identifying Relational Expressions (IRE), that are expressions that

identify the entities for which a given predicate is true, e.g. (all ?x (studies− in
?x (University : nameMIT) identify all the students for which the predicate
(studies − in (Student : name x)(University : name MIT)) is true.

ContentElement Lists, that are lists of elements of the above three types.
In the following, we introduce a technique for supporting semantic negotia-

tions among JADE agents that uses the ontology support libraries.

4 The HISENE Protocol

In our framework, we suppose that an integer coefficient ei, called expertise
coefficient (that we will call in the following e-coefficient, for shortly) of i, is
associated with any agent i of the MAS, representing the degree of expertise
that the whole agent community gives to i. Moreover, another integer coefficient
uij , called understanding capability coefficient (that we will call in the following
u-coefficient, for shortly) of j with regards to i, is associated with each pair of
agents (i, j), representing the degree of understanding that the agent j presents
with regards to the agent i. Each agent i stores all the u-coefficients in a local
database, called Understanding Coefficient DataBase (UCDBi), while all the e-
coefficients are stored in a global database called Expertise Coefficient DataBase
(ECDB), by means of a yellow pages service provided by a specific agent.

These two coefficients are used by each agent i of the MAS to determine a
partitioning in the set of the agents belonging to the MAS. We call ASi the
set of all the agents belonging to the MAS, except the agent i. We call ASk

i ,
k = 1, 2, .., pi, the k-th partition determined by the agent i in the agent set ASi.
The agent i decides how many partitions pi have to be considered; moreover,
the criterium for assigning each agent j, belonging to ASi, to a partition ASk

i ,
is represented by a function p(j) that receives the agent j as input and yields
as output, on the basis of the overall negotiation degree of j, the number of
the partition which j has to be assigned to. More in particular, the agent i as-
signs a weight wi

e (resp. wi
u) to the e-coefficient (resp. u-coefficient), representing

the importance the agent i gives to the expertise (resp. understanding capabil-
ity), defines a threshold parameter tk for each partition k = 1, 2, ..pi, and then

Information Agents That Learn to Understand Each Other 105

m

semanticUnderstanding

already_answered

S
N

_
Q

U
E

R
Y

yesSN_ALREADY_ANSWERED

n
o

understanding

semanticInstanceOf

understoodununderstood

S
e
m

a
n

t
i
c
N

e
g
o
t
i
a
t
i
o
n

SRequest

r

AS
2

x
AS

1

x
AS

k

x
.....

SReceive

solveSemantic
Ununderstanding

SUpdate

UCDB

ECDB

Agent x

Agent s

Create
Partitions

ununderstood
is empty?

yes
noSN_RESPONSE

SN
_R

ESPO
N

SE

S
N

_
Q

U
E

R
Y

Fig. 1. Semantic Negotiation’s Protocol

computes the negotiation degree nij of j as wi
e · ej + wi

u · uij . Then, the function
p(j) is calculated as: p(j) = z if tz+1 ≤ nij < tz .

Now, we describe the protocol (see Fig. 1) supporting the semantic negotiation
followed by an agent x that receives a message m from another agent s.

This message can be an ordinary ACL message (i.e., a message with performa-
tive INFORM, QUERY IF, PROPOSE, etc.) or a semantic negotiation message
(i.e., a message with either performative SN QUERY FOR, or SN RESPONSE,
or SN UNKNOWN or SN ALREADY ANSWERED). In the case of an ordi-
nary message, the message’s content is composed by a list of r content elements
e1, e2, .., er (see Section 3), where in the case of a semantic negotiation message
we have three possibilities: (i) the messages’s performative is SN QUERY: In
this case, the content is composed by an AID indicating the agent ia that is
interested to the query’s result (this agent could be different from the sender s
of the message, because the sender could simply be an agent that received in its

106 S. Garruzzo and D. Rosaci

turn the query from ia and, not being capable to answer the request, decided
to request the help of x); (ii) the message performative is SN RESPONSE: In
this case, the content of the message is a list of pairs (e1, sl1), (e2, sl2), .., (er, slr)
where ei is a content element in the ontology of x and sli is a list of content ele-
ments synonyms of ei in the ontology of the messages’s sender: these synonyms
could help x to understand ei; (iii) the message performative is SN UNKNOWN,
meaning that s says that it is unable to give an answer to a previous request of
x, or SN ALREADY ANSWERED, meaning that s has already answered to a
previous request of x: In this case, the content of the message is void.

In order to understand the content of the message m, the agent x executes a
semanticUnderstanding behaviour. This latter operates as follows:

1. If the message’s performative is SN QUERY, x first invokes the boolean
function already answered(m). This function returns true if all the content
elements belonging to the message’s content have already been processed in
response to previously received SN QUERY messages having as interested
agent the same one specified in m; otherwise (i.e. if there are only some
content elements already processed for that interested agent) these elements
are deleted from the message and the function returns false. If the function
already answered(m) returns true, the behaviour is completed and a mes-
sage with performative SN ALREADY ANSWERED is sent to s; otherwise,
it continues as follows: First, the function understanding(m) is executed.
This function, for each content element ei, i = 1, 2, .., r contained in m, de-
termines if ei is an instance of some schema Sk, k = 1, .., n belonging to the
x’s ontology. This check is performed by invoking, for each pair (ei, Sk),i =
1, .., r, k = 1, .., n the boolean function semanticInstanceOf(ei, Sk) that
returns true if ei is (semantically) an instance of Sk.

The function semanticInstanceOf performs a schema matching between
the schema of ei and Sk, and can be implemented by using one of the several
schema-matching methods existing in the literature as, for instance, those
proposed in [9]. The function understanding(m) for each content element ei

that matches with at least one of its schemas, inserts into a list understood
the pair (ei, sli), where slli is the l-th schemas of the x’s ontology matching
with ei, and inserts into another list ununderstood each element ei that does
not matches with any of its schemas Sk; then, if the list ununderstood is
empty, the behaviour semanticUnderstanding sends a message with per-
formative SN RESPONSE to the agent s, containing as content all the el-
ements of the list understood; otherwise, if some elements are present into
ununderstood, the behaviour semanticNegotiation is executed for trying to
understand the meanings of these elements.

2. When the semanticNegotiation behaviour is executed, another function
createPartitions is firstly invoked. This function reads the e-coefficients
(resp. u-coefficients) from ECDB (resp. UCDB) and, on the basis of the par-
tition weights set by the agent owner, determines the agent partitions. Then,
SRequest and SReceive behaviours are executed. SRequest is a OneShotBe-
haviour that, for each partition level k, sends a message r to each agent

Information Agents That Learn to Understand Each Other 107

contained in the k-th partition, until either the list ununderstood becomes
empty or a timeout t1 is reached. r contains SN QUERY as performative and
the content element list ununderstood as content. SReceive is a CyclicBe-
haviour in which the agent x waits for messages containing a performa-
tive SN RESPONSE, arriving from the contacted agents belonging to the
AS1

x, AS2
x, .., ASk

x . As said above, each received message ma arriving from
an agent a has as content a list of pairs (e1, sl1), (e2, sl2), .., (eh, slh) where
ei is a content element belonging to ununderstood and sli is a list [s1

i , s
2
i , .., s

l
i]

of content elements synonyms of ei, thus they are l possible meanings for ei.
Therefore, the function solveSemanticUnunderstanding(ei, s

g
i), g = 1, 2,

.., l is called for each pair (ei, s
g
i): this function, if at least one sg

i is an
instance of some schemas belonging to the x’s ontology, performs two oper-
ations: (i) deletes ei from the list ununderstood, (ii) adds sg

i to the list sli
contained in understood.

Finally, the function SUpdate is called, that increases of one unit both
the u-coefficient uxa and the e-coefficient ea.

5 An Application Example: Agents That Buy and Sell

In this Section, we present an application of the semantic negotiation technique
we have previously described to the simple situation of a small e-commerce agent
community, composed by four agents, denoted by a1, a2, a3, a4. Figure 2 shows
the evolution of the community during three consecutive semantic negotiation
stages represented in subfigures 2.A, 2.B and 2.C. In each subfigure, the global
database ECDB is represented by a row vector containing the four expertise co-
efficients ea1, ea2, ea3, ea4, associated to a1, a2, a3 and a4, respectively, while the
four local databases UCDB are synthetically represented by a matrix UCDB
where each element UCDBij contains the u-coefficient uij . At the beginning,
both the understanding capability and expertise coefficients are equal to 0. We
also suppose that all the agents give the same importance both to the under-
standing capability and the expertise, therefore all the weights we and wu are
equal to 0.5. Furthermore, each subfigure represents each message sent by an
agent i to an agent j by an arrow oriented from i to j. A thin line is used to
represent ordinary messages, while a double line is exploited for the semantic
negotiation messages. Each arc is labelled with the message’s content. Due to
layout reasons, we omit to represent the negotiation messages with performative
SN UNKNOWN or SN ALREADY ANSWERED.

In Fig. 2.A, we see that the agent a1 sends a PROPOSE message to a2, con-
taining a predicate that says he desires to sell by auction a book having the title
“Anna Karenina”, with initial price equal to 13 US dollars, with a reservation
price (i.e., the lowest price a1 accepts for selling the book, that is obviously se-
cret), and with the possibility (represented by the element purchase now) for a
buyer to purchase immediately the book without participating to the auction,
paying a price equal to 15 US dollars. The agent a2 receives the message, but it
is unable to understand the terms reservation and purchase now, since they are

108 S. Garruzzo and D. Rosaci

a1 a2

(Sell (Book:title "Anna Karenina"
:price 13 :reservation yes :purchase_now 15))

a3 a4

re
se

rv
ati

on,

purc
has

e_
now

(re
se

rv
ati

on,

re
se

rv
e)

(purchase_now,

buy_now)

reservation,

purchase_now

a1

a2

a3

a4

a1 a2 a3 a4 UCDB

ECDB

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

110

a1 a2

(Buy (CD:title "Amarantine"

:author Enya))

a3 a4

a1

a2

a3

a4

a1 a2 a3 a4 UCDB

ECDB

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

210

reservation,

purchase_now

CD

(CD, CompactDisc)

a1 a2

(Buy (Book:title "Les Fleurs du Mal"
:author Beaudelaire :edition 1914))

a4

ed
iti

on

(e
diti

on, yea
r)

edition a1

a2

a3

a4

a1 a2 a3 a4 UCDB

ECDB

0

0

1

0

1

0

0

0

0

0

2

0

0

0

1

1

0

220

a1

a2

a3

a4

a1 a2 a3 a4 UCDB

ECDB

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000

a3

edition
(edition, year)

(A)

(B)

(C)
12

0

edition

edition

1

1

2

Fig. 2. An example of Semantic Negotiation

not present in his ontology. Then, he decides to exploit the semantic negotiation
protocol and, since both the understanding capability and expertise coefficients
are equal to 0, the only agent partition that he can build is AS0

a2 containing all
the other agents a1, a3 and a4. Suppose that when the timeout of a2 is reached
(i) only a3 and a4 have sent a SN RESPONSE message (ii) a3 proposes, as a
synonym of reservation, the term reserve (iii) a4 provides the term buy now
for explaining the term purchase now. Now, suppose the ontology of a2 contains
both reserve and buy now: in this case, it is now able to completely understand
the message of a1 and to respond to it in an adequate way. Moreover, both the
u-coefficients ua2,a3, ua2,a4, and the e-coefficients ea3, ea4 become equal to 1.

The subfigure 2.B shows the agent a1 sending a PROPOSE message to a3,
saying that he desires to buy a CD having title “Amarantine” of the author
“Enya”. However, a3 does not understand the term CD and thus he decides
to exploit the semantic negotiation protocol. First, he builds the two partitions
AS0

a3 = {a4} and AS1
a3 = {a1, a2} since p(a4) = 0.5 · 1 + 0.5 · 0 = 0.5 and

p(a1) = p(a2) = 0. Then, a3 begins the semantic negotiation only with a4 and
receives a SN RESPONSE message by this latter that explains that a synonym
for CD is CompactDisc, that we suppose to be present in the ontology of a3.

Information Agents That Learn to Understand Each Other 109

Then, a3 can end the semantic negotiation process, since he is now able to
understand the message of a1. As a consequence of this process, the e-coefficient
ea4 becomes equal to 2 and the u-coefficient ua3,a4 becomes equal to 1.

In the subfigure 2.C is depicted the next situation, in which the agent a1 sends
to a2 a PROPOSE message, saying that he desires to buy a book with title “Les
Fleurs du Mal”, with author “Beaudelaire” and edition 1914. Since a2 does
not understand the term edition, he decides to exploit the semantic negotiation
protocol, and he first constructs the partitions AS0

a2 = {a4}, AS1
a2 = {a3} and

AS2
a2 = {a1}, since p(a4) = 0.5 · 1 + 0.5 · 2 = 1.5, p(a3) = 0.5 · 1 + 0.5 · 1 = 1

and p(a1) = 0. Then, a2 first asks the help of a4, but this latter is not able
to autonomously provide an explanation for the term edition, then he sends a
semantic negotiation message to both a1 and a3. The black circle labelled with
1 on the arc involved above means that all these arcs are related to the first
attempt of negotiation of a2. Suppose that both these messages do not arrive
to their destination due to a break of the connections a4-a3 and a4-a1. When
the timeout of a2 for a4 is reached, a2 begins a new semantic negotiation with
a3 that, in its turn, is not able to provide an explanation for the term edition,
and thus he requires the help of a1 and a4. a4 is not able to be reached, due
to the connection’s break, while a1 responds with a synonym year for edition.
This leads to set to 1 both the expertise ea1 and the understanding capability
ua3,a1. Now, a3 is able to send to a2 the explanation year for the term edition
and, supposing year to be in the ontology of a2, the semantic negotiation of a2
can be terminated. All the arcs involved in this second negotiation tentative of
a2 contains a black circle labelled with 2. As a consequence of the negotiation
process, both ea3 and ua2,a3 become equal to 2.

Now, observe the final situation represented in the tables UCDB and ECDB
of the subfigure 2.C. The most “expert” agents are a3 and a4, and this is com-
pletely justified by the fact that they have solved for two ways semantic under-
standing’s problems. The UCDB rows corresponding to agents a1 and a4 have
all their elements equal to 0, reflecting the fact that no other agents have helped
them to understand any terms. The agent a2 has been helped 2 times by a3 and
1 time by a4, and this is represented by the corresponding values in the UCDB
row of a2. The agent a3 has been helped once by a1, and this is represented by
the only one no zero coefficient in the UCDB row of a3.

6 Conclusions

Semantic negotiation is a powerful framework for solving understanding prob-
lems among agents having personal ontologies that are not completely homoge-
neous. However, a key problem in semantic negotiation protocol is making the
right choice of the agents with which it is most suitable to negotiate. In this work,
we present a semantic negotiation protocol that makes effective the process of
selecting the negotiation partners, by defining two measures, called expertise and
understanding capability, that reflects two of the most important features that
should be considered in making this selection, that are (i) the capability of an

110 S. Garruzzo and D. Rosaci

agent to respond to semantic negotiation answers arriving from whatever agent,
representing the degree of expertise that the agent has in the community and (ii)
the capability of an agent to respond to semantic negotiation answers arriving
from a particular other agent, that defines the degree of comprehension that the
former agent has with respect to the latter one. We define an agent negotiation
protocol that allows to compute these measures by observing the results of the
agent negotiation. Furthermore, we have implemented this protocol in the JAVA
language as component of the middleware JADE, giving the possibility to use
it for realizing JADE agents able to negotiate the semantic of the terms. Our
ongoing research deals with the possibility of including in the protocol more so-
phisticated features as, for instance, the possibility that an agent gives a negative
feedback when he receives a unsatisfactory response by another agent.

References

1. R.-J. Beun and R.M. van Eijk. A Cooperative Dialogue Game for Resolving On-
tological Discrepancies. In Workshop on Agent Communication Languages, pages
349–363, 2003.

2. R.-J. Beun, R.M. van Eijk, and H. Prust. Ontological Feedback in Multiagent
Systems. In AAMAS ’04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 110–117, Washington, DC,
U, 2004. IEEE Computer Society.

3. H. Ding and I. Sølvberg. Towards the schema heterogeneity in distributed digital
libraries. In ICEIS (5), pages 307–312, 2004.

4. D.W. Embley. Toward Semantic Understanding: An Approach Based on Informa-
tion Extraction Ontologies. In CRPIT ’04: Proceedings of the fifteenth conference
on Australasian database, pages 3–12, Darlinghurst, Australia, Austra, 2004. Aus-
tralian Computer Society, Inc.

5. T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent communica-
tion language. In Proceedings of the 3rd International Conference on Information
and Knowledge Management (CIKM’94), pages 456–463, Gaithersburg, Maryland,
USA, 1994. ACM Press.

6. http://www.fipa.org, 2005.
7. R. Guha. Semantic Negotiation: Co-identifying objects across data sources. In

AAAI ’04 Spring Symposium Series: Proceedings of the Semantic Web Services,
March 2004.

8. http://www.jade.tilab.org, 2005.
9. E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema match-

ing. VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001.
10. C. Reed, T.J. Norman, and N.R. Jennings. Negotiating the Semantics of Agent

Communication Languages. Computational Intelligence, 18(2):229–25, 2002.
11. J. van Diggelen, R.-J. Beun, F. Dignum, R.M. van Eijk, and J.-J.Ch. Meyer. Opti-

mal communication vocabularies and heterogeneous ontologies. In R.M. van Eijk,
M.-P. Huget, and F. Dignum, editors, Developments in Agent Communication,
LNAI 3396. Springer Verlag, 2004.

12. A.B. Williams. Learning to Share Meaning in a Multi-Agent System. Autonomous
Agents and Multi-Agent Systems, 8(2):165–193, 2004.

Information Agents That Learn to Understand Each Other 111

Appendix: The Package jade.hisene

In this Appendix we present a java implementation of the semanticUnderstand-
ing behaviour (see Fig. 3) and the semanticNegotiation behaviour (see Fig. 4)
as described in Section 4. These behaviours are part of the jade.hisene package
that we are writing and which is in an advanced state of development. Due to
the length of the code we don’t present the private methods. However, they are
of a simple implementation.

package jade.hisene;
import jade.core.*;
import jade.core.behaviours.OneShotBehaviour;
import jade.lang.acl.ACLMessage;
. . .

public class semanticUnderstanding extends OneShotBehaviour {
private ACLMessage msg;
private List understood, ununderstood;

public semanticUnderstanding (Agent a, ACLMessage msg) {
super(a);
this.msg = msg;

}

public void action() {
if (msg.getPerformative() == Semantic.SN QUERY && alreadyAnswered(msg)){

ACLMessage reply = msg.createReply();
reply.setPerformative(Semantic.SN ALREADY ANSWERED);
reply.setContent(msg.getContent());
myAgent.send(reply);

} else {
understanding(msg);
if (!ununderstood.isEmpty()) {

ACLMessage sn query msg;
sn query msg = setUnderstood(msg, understood);
sn query msg = setUnunderstood(msg, ununderstood);
sn query msg.setPerformative(Semantic.SN QUERY);
((Semantic)parent).addSubBehaviour(new semanticNegotiation(myAgent, sn query msg));

} else {
ACLMessage reply = msg.createReply();
reply.setPerformative(Semantic.SN RESPONSE);
reply.setContent(msg.getContent());
reply = setUnderstood(reply, understood);
myAgent.send(reply);

}
}

}
// Private Methods Section
. . .

}

Fig. 3. The semanticUnderstanding behaviour

112 S. Garruzzo and D. Rosaci

package jade.hisene;
import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;
. . .

public class semanticNegotiation extends ParallelBehaviour{

private ACLMessage msg;
private Stack partitions;
private Behaviour srequest = new SRequest(myAgent, msg, partitions);
private Behaviour sreceive = new SReceive(myAgent, msg);

public semanticNegotiation (Agent a, ACLMessage msg) {
super(a, WHEN ANY);
this.msg = msg;

}

public void onStart() {
createPartitions();
addSubBehaviour(srequest);
addSubBehaviour(sreceive);

}

public int onEnd() {
removeSubBehaviour(sreceive);
ACLMessage reply = msg.createReply();
reply.setPerformative(Semantic.SN RESPONSE);
reply.setContent(msg.getContent());
myAgent.send(reply);
return 0;

}
// Private Methods Section
. . .

}

Fig. 4. The semanticNegotiation behaviour

	Information Agents That Learn to UnderstandEach Other Via Semantic Negotiation
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The HISENE Protocol
	5 An Application Example: Agents That Buy and Sell
	6 Conclusions
	References

