
Modeling and Validation of a Software
Architecture for the Ariane-5 Launcher�

Iulian Ober1, Susanne Graf2, and David Lesens3

1 Toulouse University, GRIMM/ISYCOM laboratory��

IUT-B 1 pl. Brassens BP 73, 31703 Blagnac, France
iulian.ober@imag.fr

2 VERIMAG
2, av. de Vignate, 38610 Gières, France

susanne.graf@imag.fr
3 EADS SPACE Transportation

66, route de Verneuil - BP 3002, 78133 Les Mureaux Cedex - France
david.lesens@space.eads.net

Abstract. We present the modeling and validation experiments
performed with the IFx validation toolset and with the UML profile
developed within the IST Omega project, on a representative space ve-
hicle control system: a model of the Ariane-5 flight software obtained
by manual reverse engineering. The goal of the study is to verify func-
tional and scheduling-related requirements under different task architec-
ture assumptions. The study is also a proof of concept for the UML-based
validation technique proposed in IFx.

1 Introduction

Model-driven engineering is making its way through the habits of software de-
signers and developers, pushed forward by the increasing maturity of modeling
languages and tools. This paradigm promotes a complete re-foundation of soft-
ware engineering activities on the basis of models, as well as the use of automatic
tools for most post-design activities. In this context, the software model is the
central artifact which gathers different aspects ranging from the requirements to
software architecture, to component behavior, etc.

More recently, the trend is extending beyond software development activities,
to system design. For this activity, which traditionally employed rather ad-hoc
models, the community is currently seeking new formalisms, like SysML [19] or
architecture description languages (ADLs). In the end, this adds new aspects
(environment, hardware architecture, process and thread mappings, etc.) to the
central artifact which becomes the system model.

The use of such heterogeneous models is justified by the complexity of current
systems which have to satisfy tightly interwoven functional and non-functional
requirements.
� This work has been partially financed by the OMEGA IST project.

�� Work performed while at VERIMAG.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 48–62, 2006.
c© IFIP International Federation for Information Processing 2006

Modeling and Validation of a Software Architecture 49

In this paper we discuss the case of such a complex system, the control soft-
ware of the Ariane-5 launcher, which is typical for the space vehicle control
domain. Applications in this field typically involve a time driven part which im-
plements the attitude and orbit control loop, and an asynchronous, event driven
part, which performs mission management tasks. The different sub-systems share
resources like busses and other spacecraft equipment.

The current practice, which consists in using cyclic sampling of asynchronous
events and a Rate Monotonic Scheduling (RMS) policy [17], offers static crite-
ria for deciding schedulability, and can offer correctness by construction (under
some additional hypotheses) for other properties like exclusive access to shared
resources. However, this policy proves to be very inflexible under demanding
reactivity constraints or under processor overloads.

Consequently, more dynamic solutions are sought by system designers, like us-
ing fixed priority preemptive scheduling outside the sufficient (but not necessary)
schedulability conditions of RMS. Such solutions rely on automatic verification
methods, which have to take into account some functional aspects of the system.

In this paper, we describe a study in which the Omega UML profile [5, 10]
(defined within the IST Omega project1) is used for modeling both functional
and architectural aspects of a representative subset of the Ariane-5 system. We
discuss the verification of both functional and scheduling-related requirements
with the IFx toolset [18] which implements the profile.

1.1 A Short Introduction to Omega UML and the IFx Tool

Omega UML is a profile targeting the design of real-time systems. The profile
supports a large subset of the operational concepts of UML: classes, with most
of their relationships (associations, composition, generalization), features (at-
tributes, operations) and behavior descriptions (state machines). Actions, which
are used to describe the effect of operations and of state machine transitions,
are written in a syntax compliant with the UML action semantics. The language
contains imperative constructs like assignments, operation calls, object creation,
signal exchange, etc.

The description of concurrent systems is supported by means of active classes.
Instances of active classes define a partition of the object space into activity
groups, each group having its own thread of control, and functioning in run-
to-completion steps. Communication is possible inside or between groups, by
exchanging asynchronous signals and by calling operations. The execution model
is an extension of the semantics implemented by the Rhapsody UML tool.

Detailed descriptions of Omega UML execution model can be found in [5].
On top of the concepts mentioned above, the Omega profile also defines a set of
time-related constructs [10].

IFx2 [18] is a toolset providing simulation and model-checking functionalities
for Omega UML models. It is built on top of the IF environment [4], and provides

1 http://www-omega.imag.fr
2 http://www-if.imag.fr/IFx

50 I. Ober, S. Graf, and D. Lesens

a compiler of UML models to IF specifications. Models may be edited with any
XMI-compatible editor3.

Model checking is based on efficient forward state-space exploration methods
for timed automata. Timed safety properties may be expressed as observers,
which are described in the sequel. Generated diagnostic traces can be analyzed
by simulation. In order to scale to complex models, IF supports optimization and
abstraction in several ways: by “exact” static optimizations (like dead variable
factorization and dead code elimination), by partial-order reduction, by data
abstraction (static slicing). More details can be found in [18].

2 The Ariane-5 Software

The Ariane-5 flight software controls the launcher’s mission from lift-off to pay-
load release. It operates in a completely autonomous mode and has to handle
both external disturbances (e.g. wind) and different hardware failures that may
occur during the flight.

This case study takes into account the most relevant points required for
such an embedded application and focuses on the real time critical behavior by
abstracting from complex functionality (like control algorithms) and implemen-
tation details, such as specific hardware and operating system dependencies.
Nevertheless, it is fully representative of an operational space system. The typi-
cal characteristic of such systems is that they implement two kinds of behavior:

– Cyclic synchronous algorithms. These are principally the control/command
algorithms (in the sequel they are called GNC for Guidance, Navigation and
Control). The algorithms and their reactivity constraints are defined by the
control engineers based on discretization of continuous physical laws.

– Aperiodic, event driven algorithms. These algorithms manage the mission
phases and perform particular tasks when the spacecraft changes from one
permanent mode to another (engine ignition and stop, stage release, etc.),
or when hardware failures occur (alternative or abortion manoeuvres).

The software components implementing this functionality are physically de-
ployed on a single processor4 and share a common bus for acquiring sensor data
and sending commands to the equipment.

The proof of correctness of the mission management components can be made
by (almost completely) abstracting from the control algorithms. In an earlier
experiment, we have used an SDL model of the mission management in order to
verify this kind of properties [3].

The correctness of control algorithms concerns two issues: their numerical
computation, and their concurrency behavior. The numerical correctness is not
considered here. For the concurrency, the proof of correctness is usually done
using the synchrony hypothesis. The synchronous approach makes verification
3 Rational Rose and I-Logix Rhapsody have been tested used in the OMEGA project.
4 In fact, a set of replicated processors, but this is out of the scope of our case study.

Modeling and Validation of a Software Architecture 51

using a non-timed semantics much simpler. The non-timed semantics just as-
sumes that all entries are available when the computation cycle starts and the
results of the computation are made available at the end of each cycle. There
exist results stating sufficient conditions under which such a synchronous design
can be implemented in a distributed and/or multi-threaded environment [20].
However, in this case study the sufficient conditions do not hold in all cases, and
the satisfaction of the synchrony hypothesis must be verified.

Therefore, in this case study we have considered more particularly the problem
of verifying that a low-level software architecture (a task model), together with
a set of other non-functional assumptions (worst case execution times, arrival
model), satisfy the reactivity constraints imposed on the software and ensure
the synchrony hypothesis for the cyclic algorithms.

The current practice for ensuring such non-functional constraints consists
in using an RMS-based scheduler. Asynchronous events are sampled with the
frequency of the smallest cycle. The schedulability of this architecture can be
decided statically, under the assumption that relevant values for WCET of tasks
can be provided. Moreover, in the current solution, the exchange of data between
the different tasks or between a functional task and the bus are allowed only in
predefined time slots at the beginning and at the end of each task’s cycle (even
if the computation finishes earlier in the cycle). Consequently, mutual exclusion
between writes in the exchange memory is satisfied by construction, and with
no possibility for priority inversion.

On the other hand, this architecture is very inflexible in the following
circumstances:

– when some acyclic events need shorter reaction time than the basic cycle
(which is in fact the case for the Ariane-5 system),

– when some cyclic algorithm needs more recent measurement data, that has
to be acquired during the cycle (also the case in the Ariane-5 system),

– when an algorithm needs a longer time than the pre-assigned slot, for in-
stance in case of high CPU load (this feature, not required today, will become
mandatory for future highly autonomous space systems).

In the case of Ariane-5, the software designers have used a more flexible archi-
tecture, which is still based on fixed priority preemptive scheduling, but which
violates some of the RMS assumptions mentioned above in order to ensure bet-
ter reactivity (reads and writes during the cycle, triggering of asynchronous code
during a cycle). Nevertheless, such an architecture has to be formally validated
with respect to the non-functional requirements concerning timing, scheduling
and mutual exclusion. This is the main objective of our case study.

3 The Verification Model

The UML model used for verification has been built manually from the exist-
ing software code, by a team from EADS Space Transportation. Its functional

52 I. Ober, S. Graf, and D. Lesens

decomposition is independent of the task architecture; it is structured around
6 objects implementing the main categories of functionality, each defined by a
singleton active class. They are:

– Acyclic: the main mission management object, which handles the start of the
flight sequence and the switching from one phase to another. Its behavior
is described by a state machine reacting to event receptions from the GNC
algorithms (e.g., end of thrust detection) or from the environment, and to
time conditions (e.g., time window protections ensuring that the treatment
associated to an external event is performed within a predefined time window
even in case of failure of the event detection mechanism).

– A set of specific objects which handle the acyclic management activities
related to a particular launcher stage. They react to events received from
Acyclic or to internal time constraints. In the study, we considered only
two stages: EAP (lateral booster) and EPC (main stage of the Ariane 5
launcher).

– Cyclics: This object manages the activation of the cyclic control/command
algorithms (GNC). The algorithms are executed in a predefined order, de-
pending on the current state of the launcher, which is tracked by the Acyclic
class. Its state machine appears in an example later on in Fig. 3. We consider
in more detail two of the algorithms activated by Cyclics, each implemented
by a separate object: Thrust Monitor, responsible for the monitoring of the
EAP thrust, and Guidance Task, which has the particularity that its acti-
vation frequency is lower than that of the other GNC algorithms.

In order to validate the software, a part of the environment needs to be
modeled. In our case, it includes two kinds of spacecraft equipment – Valves
and Pyrotechnic commands (the model includes possible hardware failures), the
external environment – namely the ground control centre, as well as abstractions
of parts of the software which are not described in the model (such as: a numerical
algorithm or the 1553MIL bus allowing the communication between the main
software and the equipment).

3.1 Capturing Functional and Timing Requirements

Using Omega UML, requirements can be formalized by means of observers, and
verified against the design model. In this section, we discuss briefly the concepts
and we give an example of how they are put to work in the Ariane-5 model.
More detail on observers can be found in [18].

Observers are special objects which monitor the execution of the model and
give verdicts when a requirement is satisfied or violated. Observers may have
their own local memory (attributes), and their behavior is described by a state
machine, in which some states are labeled with the stereotypes <<success>>
or <<error>> providing verdicts. The monitoring of model execution is done
by observing events like signal outputs, operation calls or returns, state changes,

Modeling and Validation of a Software Architecture 53

etc., or by observing the state of the system, like attribute values, contents of
queues, states of the state machines, etc. 5

We take for example the following property:

Property P1. The launcher shall not lift-off if an anomaly is detected during
the Vulcain engine ignition. In case of lift-off abort, the valves shall all be closed
within 2 seconds and the pyrotechnic commands shall not be ignited.

An anomaly on the Vulcain ignition corresponds, in our modeling of the en-
vironment, to a Valve object entering the Failed Open state. This failure shall
be detected by the software, which shall then abort the lift-off and secure the
launcher. Thus, this property is expressed more precisely as follows:
If any instance of the Valve class enters one of the states Failed Open or
Failed Close, then:

– All the instances of the Pyro class shall never enter the state Ignition done.
– 2 seconds after the valve failure, all instances of the Valve class shall be in

state Close or Failed Close, and then remain in this state forever.

This property is based on a pure black-box view of the software. Neverthe-
less, since several components are involved in aborting the lift-off, the designers
have completed the property with the requirement that the internal events Re-
quest EAP Preparation and Request EAP Release are never emitted.

Fig. 1 shows how this property can be expressed using a timed observer: each
time an Open command is received by some valve v, the observer tests whether
v reaches the state Failed Open.

If this premise holds, the observer enters state aborted, in which Pyro ob-
jects entering state Ignition done, as well as emissions of the signals Re-
quest EAP Preparation and Request EAP Release are prohibited. After 2 seconds
from entering state aborting, the observer goes to the inner state aborted in which,
additionally, Valves entering the state Open or Failed Open are also prohibited.

Note that the testing of the premise done by the observer corresponds to
the universal quantification appearing textually in the premise of the property
P1 (“any instance of the Valve class”). Such a universal quantification would
also have to be used in a state logic formula, had we used a temporal logic for
formalizing the properties. However, to the best of our knowledge, no major
model checking tool based on LTL or CTL supports directly this kind of first
order logic in the specification of state formulas. For example, in UPPAAL [14],
the same property could be expressed either by using a helper (observer) au-
tomaton which synchronizes with any Valve entering Ignition done, or by using
quantifier elimination (that only works under the restriction that the set of ob-
jects is known in advance – which is generally not true in Omega UML or IF

5 A formal discussion of the expressivity of observers is out of scope. We note that: (1)
observers are used to express linear timed safety properties, which may combine state
or event-based atomic propositions, and (2) observers embed general algorithms,
therefore their termination (hence also their satisfaction) is undecidable in general.
For practical applications, we do not view this as a limitation.

54 I. Ober, S. Graf, and D. Lesens

ok

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[t >= 2000]

ko
<<error>>

match accept ::EADS::Environment::Valves::Open() by v

[v @ Open]
[v @ Failed_Open]

[v.EPC.EAP.Pyro1 @ Ignition_done or
v.EPC.EAP.Pyro2 @ Ignition_done or
v.EPC.EAP.Pyro3 @ Ignition_done]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

[(v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or
(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or
(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or
(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open)]

liftoff_aborted_right

v : Valve
t : Timer

<<Observer>>

Fig. 1. Property p1

specifications). This supports our claim that observers are a flexible formalism
for expressing common event or state-related timed safety properties.

Consider another property, required by electrical constraints on the hardware:

Property P2. The software shall not send two Open commands to the same
valve at less than 50ms of interval.

P2 constrains the distance between pairs of events concerning a same instance of
class Valve. The particularity of this property is that it concerns any consecutive
pair in the series of commands sent by the software to a (any) Valve. This kind
of property is typically easier to specify with a temporal logic.

Nevertheless, we show in Fig. 2 an observer which uses non-determinism to
pick each particular occurrence of an event pair at a time and either verify the
time distance, or skip to the next one (as the model checker explores all alterna-
tives, all pairs are eventually verified)6. In state initial, the observer waits for a
command to be sent to any Valve, stores the reference of the concerned Valve in
v1 and proceeds to state nondet. (This behavior ensures universal quantification
over the set of valves, in the same way as in P1). In state nondet, it chooses
non-deterministically whether to proceed by verifying the timing of the next
command sent to the same valve, or to return to initial and wait for another
command to (any) Valve.

The rest of the observer tests a simple timed safety condition: the next com-
mand sent to the Valve v1 does not come before 50ms. The clock t is used to

6 The observer presented here is not optimal in the required verification time/memory.

Modeling and Validation of a Software Architecture 55

valve_not_abused

t : Timer

v1 : Valve

v2 : Valve

<<Observer>> initial

wait

KO
<<error>>

nondet

OK
<<success>>

match invoke ::EADS::Environment::Valve::Open() on v1
[true]

[true] / t.set(0)

[t >= 50] / t.reset()

match invoke ::EADS::Environment::Valve::Open() on v2
[v1 <> v2][v1 = v2]

Fig. 2. Property p2

measure 50ms. In state wait, other commands may come, but they cause an
error only if they concern the valve v1. If more than 50ms elapse without error,
the observer reaches a success state and considers the property verified for this
particular events occurrence pair.

Stereotyping the OK state with <<success>> allows also to make model
checking more efficient: after the observer has reached OK, the execution of
the (system, observer) pair cannot lead to KO anymore, and may safely be
ignored.

3.2 Scheduling Constraints and Objectives

As mentioned before, the main focus in this study is on validating a particu-
lar task architecture based on fixed priority preemptive scheduling, in order to
check that is satisfies several conditions concerning schedulability and mutually
exclusive access to the bus.

In the architecture that we consider, the hypotheses of RMS [17] are not
satisfied, as asynchronous events need to be handled as soon as they arrive.
Another difficulty in using RMS-like schedulability decision criteria is that the
execution time of the cyclic tasks varies a lot depending on the current flight
phase. Fig. 3 shows the state machine of the control cycle, on which we can
see that the worst case execution time of this cycle is around 64ms, while the
best case is 37ms and the average measured by simulation is around 42ms. One
cannot simply consider at each cycle the worst case execution time (of sporadic
and cyclic tasks), as this would lead to a huge over-approximation of resource
occupation and to the conclusion that the system is non schedulable. We also
relax in some cases the requirement that reads and writes are done only in the
beginning and in the end of each task’s cycle. Therefore, the access to the bus
is not mutually exclusive by construction.

The technique we adopt for proving these constraints is to take into account
the functional behavior of the system and its impact on resource consumption.

Assigning priority levels to activities. The priorities were assigned just as in the
RMS solution from which we started, according to the relative responsiveness
required from an activity. Three levels of priority are used:

56 I. Ober, S. Graf, and D. Lesens

BGY

SRI_Upstre
am_1

 / SRI.SRI_upstream()

EAP_Calculat
e_aiming

QDP_Calculat
e_aiming

SRI_Upstre
am_2

Control_Predic
t_state_vector SRI_Down

stream

Decide_EAP
_Separation

Navigation_
performed

Interpolation_
performed

Calculate_
attitude

EAP phase QDP phase

EAP phase

QDP phase

Start_Minor_
Cycle

Guidance_ra
n

 / BGY.Perform_BGY()

[fasvol<>2] / Control.Calculate_EAP_aiming() [fasvol=2] / Control.Calculate_QDP_aiming()

 / Control.Predict_EAP_state_vector() / Control.Predict_QDP_state_vector() / SRI.SRI_downstream()

Synchro() / begin minor_cycle:=minor_cycle+1 end

 / Attitude.Calculate_Attitude()

[fasvol=2] /
Thrust_Monitor.Decide_EAP_Sepa

ration()

[fasvol<>2]

[minor_cycle<guidance_period]
[minor_cycle>=guidance_period] / begin

minor_cycle:=0;Guidance_Task!Start_Guidance_cycl
e() end

 / Data_tables.Interpolate()

[minor_cycle=6] / Navigation.Flight_Protection()

[minor_cycle=2] / Navigation.Perform_Navigation()
[minor_cycle<>2 and minor_cycle<>6]

5ms

2ms

2ms

10ms

5ms

5ms 0..5ms

20ms
10ms

5ms

10ms

Fig. 3. Statechart of the Control cycle with unitary execution times

– Functions of the Regulation components have highest priority. They are spo-
radic and take about 2 to 5 ms each time a command is executed (open a
valve, ignite a pyrotechnic command, etc.)

– Functions of the Navigation-Control components have medium priority. They
are periodic, with a period of 72ms and take 37 to 64ms to execute depending
on the current phase of the flight and other parameters.

– Functions of the Guidance components have lowest priority. They execute
every 576ms. One of the goals of scheduling analysis was to determine how
much processor time they can take in each cycle in order for the system to
remain schedulable.

Activities that are on the same priority level are handled by the same runtime
task, that is without overlapping.

Modeling the task architecture in Omega UML. Scheduling policies and resource
consumption can be modeled using the lower level constructs of the Omega
profile: objects which manipulate clocks and do the resource bookkeeping. In
parallel with the Ariane-5 study, we developed a reusable model library for the
IFx tool, which provides support for different types of schedulers.

The Scheduling library contains basically two kinds of classes organized in
two hierarchies:

– Task classes used to annotate the user model with requests for execution
time. Requests are parameterized with a duration, and depending on the
scheduling policy, with information like priority, deadline, etc. Instances of
Task classes can be shared by several objects.

– Scheduler classes are used to model the different scheduling policies. Each
created Task has to be associated with a Scheduler. Subsequently, every time
a Task requires processing time, it will communicate with its Scheduler in
order to determine the actual time of finish, based on the task duration and

Modeling and Validation of a Software Architecture 57

on the state of the Scheduler (i.e. the scheduling policy and the charge at
that moment).

For modeling the behavior of the fixed priority preemptive scheduler in timed
automata constructs, we use the scheme proposed in [9].

Scheduling objectives are modeled by observers. They are:

– The Navigation-Control (NC) functions must terminate within the 72ms
cycle and the Guidance functions within the 576ms cycle.
For the NC functions, this property is formalized in the observer in Fig. 4, by
the fact that the Cyclics component receives the signal Synchro, which signi-
fies the beginning of a cycle, only in the states Start Minor Cycle, Wait Start
or Abort. If a cycle does not finish in time, the Cyclics component is in an
intermediate computation state when the next Synchro is received and this
property is violated.
The observer expressing the analogous property for the Guidance function
is similar.

– The application uses a 1553 MIL bus. In this protocol, all data transfers
are performed under the supervision of a bus controller (the main on-board
computer in the case of the Ariane 5 case study). The software components
read and write data in an exchange memory which is transferred via the bus
to the equipment (also called remote terminal) at specific time frames (this
process is called low-level transfer). The consistency condition for bus reads
and writes is that the software components do not read or write the bus
during the low-level transfer time frames. (calls to read and write operations
do not occur while the Bus is in Transfer state).

wait

match send ::EADS::Signals::Synchro() to c

KO_NC_cycle_is
_schedulable

<<error>>

[c @ Start_Minor_Cycle or c
@ Wait_Start or c @ Abort]

[not(c @ Start_Minor_Cycle or c
@ Wait_Start or c @ Abort)]

Fig. 4. Scheduling objective: the control cycle finishes in time

4 Ariane-5 Verification Results

4.1 Validation Methodology

In the context of the IFx toolset, the validation of UML models means performing
several activities, which range from simple syntactic and static semantic checking
to dynamic property verification, with the goal of improving the model and
its conformance to its requirements. These activities are supported by different
tools. The standard workflow used also in this case study is summarized below7.
7 A more detailed description can be found in [4].

58 I. Ober, S. Graf, and D. Lesens

1. The translation phase consists in invoking the uml2if compiler. Standard
static checks are performed (name and type checks, checking of well formed-
ness constraints).

2. The simplification phase consists in the application of static analysis and
abstraction methods implemented in IF:
– in the early validation phases we use mainly methods fully preserving

verification results (such as dead variable / dead code analysis and clock
reduction)

– in the later phases (verification), we use in addition methods leading
to over approximations such as abstractions of variables or clocks, or
relaxation of urgency constraints.

3. The simulation phase consists in exploring the model by a mixture of interac-
tive, guided and random simulation which allows usual debugging tasks like
saving and reloading a played scenario, stepping back and forward through
it, inspecting the system state, inserting conditional breakpoints, etc.

4. The model-checking phase is the main validation phase, in which the product
space of the relevant part of the model and of a set of observers is searched
for absence of error states, while avoiding the parts of the graph reachable
only via success states.
In this phase, there are 2 possibilities for handling time: discrete or symbolic.
With discrete time, time progress is represented by a tick transition common
to all processes, and this representation allows the use of more expressive
time constraints. In case of the symbolic representation of time, a DBM is
associated with each system state, like in the timed-automata based tools
Kronos [22] and Uppaal [14]. The symbolic representation leads in most
examples to much smaller state spaces.

5. the IF toolset implements a number of other verification techniques. The
most interesting ones are comparison of models and minimization of models
with respect to simulations and bisimulations. Minimization has been used
in our case study to extract most general properties with respect to an
observation criterion, given by a set of observable events (see in [3, 4]).

4.2 State Explosion and Use of Abstractions in Ariane-5

The duration of a basic cycle of the cyclic behavior of the Ariane-5 flight soft-
ware is 72 ms. Each basic cycle contains several hundreds of steps. As the
acyclic behavior uses some timers also to measure long durations, when com-
posed with the cyclic behavior, every state reached through these steps is a new
global system state. This quickly leads to an explosion, especially in the case of
Ariane-5, where the footprint of a system state is quite large (see also §4.3).

In order to cope with the complexity of the model, we had to apply more
evolved abstraction and reduction techniques which need a good understand-
ing of both the functioning of the system and the verification and abstraction
technology.

Modeling and Validation of a Software Architecture 59

Compositional Abstraction. We have applied this well known technique which
consists in the verification of properties of a subsystem, by replacing the other
parts of the system — which play here the role of an environment — by a
simpler descriptions representing an abstraction. The variable abstractions im-
plemented in IF were not sufficient for the Ariane-5 model and we have built
manual abstractions, which were still relatively simple, by using the existing de-
composition of the system into a cyclic and an acyclic part and the clear interface
between them.

To illustrate this, we take the example of the safety properties related only to
the acyclic part (flight program and error handling). To prove their correctness,
the cyclic GNC part has been abstracted by eliminating all the internal behavior
and by sending messages (flight phase change commands) at arbitrary moments
rather than at the precise time points computed by the concrete GNC. This
represents clearly an abstraction and it was sufficient to show the satisfaction of
all the properties of the asynchronous part (see [18, 3] for an older experience
concerning this part). Note also that such an abstraction can in principle be
constructed automatically.

Reduction of the duration of the flight phases. In order to validate the properties
related to schedulability and concurrent bus access, we have used an alternative
reduction without behavioral abstraction. As mentioned before, a huge source
of state explosion is the difference of the time scale between the asynchronous
and the cyclic behavior.

Asynchronous events are rare, and the system is working without occurrence
of any asynchronous events during a large number of basic cycles (called stable
phases). Moreover, most of the output of the cyclic part is irrelevant for the
timing properties to be verified. Thus, it is sufficient to perform the proof on a
functional abstraction of the cyclic part with a mission duration much greater
than the basic cycle, but much shorter than the real mission duration.

In stable phases, all executions of the basic cycle in the cyclic part are identical
with respect to the properties to be verified, in particular to the schedulability
of all tasks in all relevant cycles, and to the observation of a certain time window
for the commands sent from the synchronous to the asynchronous part (stable
phases are outside this time window).

This suggests that it is sufficient to verify a reduced model, obtained by a
drastic reduction of the overall flight duration, being careful to make sure that
only stable phases are shortened, whereas all the critical transition phases are
fully explored. The transition phases are defined by the flight phases defined in
the acyclic part and by the occurrence of exception events. Exception events can
occur at any time, but the correctness of the software must only be guaranteed for
2 exceptions for the entire flight, which means that it is enough to make the stable
phases long enough to allow the occurrence of 2 exceptions with subsequent
stabilization.

Using such a reduction of the real duration of the mission, the reachable state
space for the entire flight could be explored, and all the properties could be
finally validated.

60 I. Ober, S. Graf, and D. Lesens

4.3 Results and Figures

In this section, we show the efficiency of the applied reductions. The table in
Fig. 5 shows the verification time and the cardinality of the state space, using
dead variable and partial order reductions, while using different mission dura-
tions (but always respecting the required stabilization times).

Mission duration Nr of states Nr of transitions Verif. time (min)
7 s 51 324 54 697 03:30
15 s 161 956 171 734 12:06
22 s 303 496 321 206 11:33
30 s 463 932 490 901 22:58
37 s 658 981 696 031 34:53

Fig. 5. Complexity for different mission durations (all properties combined)

For the comparison, we have used a model with all the properties (observers)
enabled simultaneously. There is no state explosion caused by the parallel com-
position of all properties, since properties are not completely independent.

A discussion is necessary as the figures presented here may seem low compared
to other known examples in explicit state or symbolic model checking, which
range beyond 107 states. One must consider the following:

– The Ariane-5 model (after UML translation) consists of 77 types of IF pro-
cesses, each having (many) variables of complex types, and sometimes having
dynamically created instances. The footprint of the system state is slightly
variable, with an average of 10KB.
In our view, one cannot compare the 106 order of magnitude of Ariane-5
(for the largest exploration, shown in Fig. 5), with results obtained on other
systems, which may have higher combinatorics but smaller footprints. It is
unfortunately impossible to propose this model as a basis for benchmarking,
due to confidentiality reasons related to its industrial nature.

– Given that the (approximately) 6GB of Ariane’s 658981 states have been
explored on a machine with only 1GB of RAM, we see this as evidence of
the efficiency of the sharing algorithms [4] of the IF exploration platform.

– Another characteristics of the state spaces obtained here is that they are
very narrow and deep (almost a vertical string). This is not because the
example is sequential by nature: concurrency is present in this model and
the combinatorics is potentially very big. The linear form of the state spaces
indicates the efficiency of the partial order reduction of the IF platform.

5 Comparison to Other Approaches, Discussion and
Future Work

Discussion of related work. There exist already a number of tools proposed for
the validation of UML models by translating a subset of UML into the input

Modeling and Validation of a Software Architecture 61

language of some existing validation tool [16, 15, 13, 7, 21, 6, 2, 1] to mention only
a some of the relevant work in the context of real-time and embedded systems.

Like IFx, most of these tools are based on existing model-checkers such as
SPIN [12] (in [16, 15]) or COSPAN [11] (in [21] for non-timed systems, and
Kronos [22] (in [2]) or Uppaal [14] (in [13, 6]) for the verification of systems with
timing constraints. Also the translation into proof-based frameworks, such as
PVS (e.g. in [1]) or B, has been proposed.

With respect to the expressivity of the UML profile accepted, the IFx frame-
work goes beyond other existing ones, as it handles a rich subset of UML, includ-
ing inheritance and dynamic object creation and powerful timing features. Most
of the cited UML validation tools are restricted to static systems, fitting exactly
the model of the underlying model-checker. Also, they usually handle properties
written in the property language proposed by the underlying model-checker. The
Omega UML profile proposes observers for this purpose.

The IFx tool does not push forward the theoretical boundaries of existing veri-
fication technology. However, the tool presents a unique combination of features
which prove to be very efficient in fighting scalability problems encountered
in practice. It includes and combines the on-the-fly exploration of SPIN, the
symbolic representation of time constraints of Kronos and Uppaal, the bisimula-
tion based reduction techniques of Aldebaran [8], and adds verification-targeted
optimizations based on static analysis, as well as support for industry-backed
standards like SDL and UML.

Experience showed that the combination of these techniques allows to obtain
feedback very rapidly on most models without much remodeling and adaptation
effort by the user. Positive verification results required, for the bigger examples,
some effort to find an appropriate property preserving abstraction and to apply
it manually – which is a common limitation of major model-checking tools.

The model structuring concepts present in IF allow to limit the overhead
induced by the translation a rich user level formalism like UML, and also make
the translation more flexible. Consequently, we plan on moving towards UML
2.0 and to system-oriented formalisms like AADL, which are better suited for
modeling architectural and non-functional problems in the space vehicle control
domain.

References

[1] T. Arons, J. Hooman, H. Kugler, A. Pnueli, and M. van der Zwaag. Deductive
verification of UML models in TLPVS. In Proceedings UML 2004, pages 335–349.
LNCS 3273, 2004.

[2] Vieri Del Bianco, Luigi Lavazza, and Marco Mauri. Model checking UML speci-
fications of real time software. In Proceedings of 8th International Conference on
Engineering of Complex Computer Systems. IEEE, 2002.

[3] M. Bozga, D. Lesens, and L. Mounier. Model-Checking Ariane-5 Flight Program.
In Proceedings of FMICS’01 (Paris, France), pages 211–227. INRIA, 2001.

[4] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF toolset. In SFM-04:RT
4th Int. School on Formal Methods for the Design of Computer, Communication
and Software Systems: Real Time, LNCS, June 2004.

62 I. Ober, S. Graf, and D. Lesens

[5] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A formal
semantics of concurrency and communication in real-time UML. In Proc. of the
1st Symposium on Formal Methods for Components and Objects (FMCO 2002),
volume 2852 of LNCS Tutorials

[6] A. David, O. Möller, and W. Yi. Formal verification UML statecharts with real
time extensions. In Proceedings of FASE 2002 (ETAPS 2002), vol. 2306 of LNCS.
Springer-Verlag, April 2002.

[7] M. del Mar Gallardo, P. Merino, and E. Pimentel. Debugging UML designs with
model checking. Journal of Object Technology, 1(2):101–117, August 2002.

[8] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M.
Sighireanu. CADP - a protocol validation and verification toolbox. In Computer
Aided Verification, 8th Int. Conf. CAV ’96, vol. 1102 of LNCS, 1996.

[9] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability analysis
using two clocks. In 9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 2619 of LNCS, 2003.

[10] S. Graf, I. Ober, and I. Ober. Timed annotations in UML. Int. Journal on
Software Tools for Technology Transfer, Springer Verlag, 2006. (In print. Available
on Springer On-line at http://dx.doi.org/10.1007/s10009-005-0219-x).

[11] Z. Har’El and R. P. Kurshan. Software for Analysis of Coordination. In Conference
on System Science Engineering. Pergamon Press, 1988.

[12] G. J. Holzmann. The model-checker SPIN. IEEE Trans. on Software Engineering,
23(5), 1999.

[13] A. Knapp, S. Merz, and C. Rauh. Model checking timed UML state machines
and collaborations. In 7th Intl. Symp. Formal Techniques in Real-Time and Fault
Tolerant Systems (FTRTFT 2002), volume 2469 of LNCS, September 2002.

[14] K.G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & Developments. In
O. Grumberg, editor, Proceedings of CAV’97 (Haifa, Israel), volume 1254 of
LNCS, pages 456–459. Springer, June 1997.

[15] D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioral
subset of UML statechart diagrams using the SPiN model-checker. Formal Aspects
of Computing, (11), 1999.

[16] J. Lilius and I.P. Paltor. Formalizing UML state machines for model checking. In
Rumpe France, editor, Proceedings of UML’1999, volume 1723 of Lecture Notes
in Computer Science. Springer-Verlag, 1999.

[17] C. L. Liu and J. W. Leyland. Scheduling algorithms for multiprogramming in a
hard real-time environment,. JACM, 20(1):46–61, 1973.

[18] Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed UML models
by simulation and verification. Int. Journal on Software Tools for Technology
Transfer, Springer Verlag, 2006. (In print. Available on Springer On-line at
http://dx.doi.org/10.1007/s10009-005-0205-x).

[19] SysML Partners. SysML specification v. 0.9 draft (10 jan. 2005). Available at
http://www.sysml.org/artifacts.htm.

[20] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous
systems. In Formal Methods in System Design 2005, LNCS. Springer Verlag, 2005.

[21] Fei Xie, Vladimir Levin, and James C. Browne. Model checking for an executable
subset of UML. In Proceedings of 16th IEEE International Conference on Auto-
mated Software Engineering (ASE’01). IEEE, 2001.

[22] S. Yovine. Kronos: A verification tool for real-time systems. Springer Interna-
tional Journal of Software Tools for Technology Transfer, 1(1-2), December 1997.

	Modeling and Validation of a Software Architecture for the Ariane-5 Launcher

