Mobility Mechanisms in
Service Oriented Computing*

Claudio Guidi and Roberto Lucchi

Department of Computer Science, University of Bologna, Italy
{cguidi, lucchi}@cs.unibo.it

Abstract. The usual context of service oriented computing is charac-
terized by several services offering the same functionalities, new services
that are continuosly deployed and other ones that are removed. In this
case it can be useful to discover and compose services dynamically at
run-time. Orchestration languages provide a mean to deal with service
composition, while the problem of fulfilling at run-time the informa-
tion about the involved services is usually referred to as open-endedness.
When designing service-based applications both composition and open
endedness play a central role. Such issues are strongly related to mobility
mechanisms which make it possible to design applications where services
acquire during the execution the necessary information to invoke ser-
vices. In this paper we discuss the mobility mechanisms for the service
oriented computing paradigm. To this end we model a service by means
of the notions of interface, location, process and internal state, then we
formalize a calculus supporting a specific form of mobility for each of
them. We conclude by comparing mobility mechanisms of our calculus
with the ones supported by the Web Services technology.

1 Introduction

Service Oriented Computing is an emerging paradigm where services are plat-
form independent autonomous computational entities that, by means of stan-
dard protocols, support interoperability thus allowing to design new and more
complex services out of simpler ones. Orchestration languages [12,14, 9] pro-
vide a mean to program new services whose functionalities are implemented
by exploiting existing services. In particular, the workflow is programmed from
the perspective of a single endpoint which orchestrates the invocations of all the
involved services and collects all the corresponding results, thus the state of the
execution is controlled in a centralized way within the orchestrator process.
The usual context for service oriented computing is characterized by the
fact that new services can appear as well as other ones can disappear during
the evolution of the system, and by the fact that a number of services offer
the same functionalities. In this scenario it can be useful to select at run-time
the specific service to be invoked among the available ones. Moreover, there are
other cases where it is not possible to statically know the exact location of a

* Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 233-250, 2006.
© IFIP International Federation for Information Processing 2006

234 C. Guidi and R. Lucchi

service which is to be invoked. For instance, consider the case of a system where
an administrative application updates the software product versions of clients;
it could be organized as it follows. Each client is equipped of a client service
which provides the software update functionality, the administrative application
is composed by a software manager service and an update service. The software
manager service invokes the update one by passing the list of clients which have
to be updated, then the update service invokes the software update functionality
of all the listed client services. Since it is realistic to suppose that the set of
all clients changes during the evolution of the whole system, the update service
does not know at design time the locations of the clients, thus it needs to acquire
them at run-time and in particular when it is invoked by the software manager
service. The problem of composing services that are not completely known at
design time is usually referred to as open endedness.

In order to deal with open endedness the paper discusses the mobility mech-
anisms in service oriented computing. We proceed as follows: i) we define a
service by logically classifying the aspects that compose it, ii) we reason on the
meaning of supporting the mobility of such aspects, and iii) we present a service-
based calculus supporting mobility mechanisms. In particular, we characterize
a service by means of four components: the location, the process, the interface
and the internal state. The location expresses where the service is deployed and
then available, the process represents the program which permits to supply the
service functionalities, the interface represents the acess points the service can
use to interact with other ones and, finally, the internal state represents the
information the service internally manages. The definition we propose is not
pertaining to a particular technology thus it permits to reason about mobility
without referring to a specific technology. We discuss four kinds of mobility:
the location mobility, the service functionality mobility, the interface mobility
and the internal state mobility. Once having discussed each of them we pro-
ceed by presenting a service-based calculus we use to formally describe these
mechanisms. Such a calculus, equipped of an operational semantics, is an ex-
tension of a previous work [7, 6] obtained by introducing the notion of service
location. At the end we trace a comparison between the mechanisms we pro-
pose and the ones supported by the Web Service technology which is the most
credited proposal for service oriented computing. It emerges that the technol-
ogy supports only internal state mobility and location mobility. In particular,
a section is dedicated to investigate the request-response interaction pattern
mechanism supported by the Web Service technology which seems to be weaker
than the common interpretation of the request-response interaction pattern
behavior.

The paper is structured as it follows. Section 2 defines a service and reasons
about the meaning of the various forms of mobility that could be supported
between services. Section 3 presents the service-based calculus supporting mo-
bility mechanisms and its operational semantics. Section 4 compares the mobility
mechanisms we propose with the Web Services technology. Section 5 concludes
the paper with some final remarks.

Mobility Mechanisms in Service Oriented Computing 235

2 Services Formalization and Mobility Mechanisms

This section is devoted for deducing the basic concepts of services and introduc-
ing the mobility mechanisms they deal with.

2.1 A Model for Representing Services

A service is a computational entity located at a specific unique location (e.g.
a URI) which has an internal state and is able to perform one or more func-
tionalities. A functionality can be a computational process which executes an
algorithm, a coordinating process which needs to interact with other services or
both. The service communication mechanism is based on peer-to-peer message
passing. Every information that needs to be exchanged between two services is to
be communicated by means of interaction points. Each service exhibits a set of
interaction points, called operations, that are exploited for sending and receiving
requests to or from other services. Each operation is described by a name and
an interaction modality. According to [4, 3], there are four kinds of peer-to-peer
interaction modality divided into two groups:

— Operations which supply a service functionality, Input operations:
e One-Way: it is devoted to receive a request message.
e Request-Response: it is devoted to receive a request message which im-
plies a response message to the invoker.
— Operations which request a service functionality, Output operations:
e Notification: it is devoted to send a request message.
e Solicit-Response: it is devoted to send a request message which requires
a response message.

The set of all the operations exhibited by a service represents the interface of
the service. In order to send a request message, a service has to explicit the
output operation and the location of the receiver. In other words, the operation
expresses how to invoke a service whereas the location specifies where the service
can be accessed.

Let Loc be the set of service locations, O and Opr be two disjoint sets of
operation names, Sup = {(0,ow) | 0 € O} U {(0oy,77) | 0, € Or} be the set con-
taining all the input operations where ow and rr indicate One-Way and Request-
Response operations, respectively. Let Inv={(o,n) | o € O}U{(or, s7) | or € OR}
be the set containing all the output operations where n and sr denote Notifi-
cation and Solicit-Response operations. Let Interfaces = Sup U Inv be the set
of all the possible operations. By definition an operation name unambiguously
identifies a couple of operations: a One-Way with a Notification and a Request-
Response with a Solicit-Response. This is related to the fact that an operation
in Sup can be invoked only by the corresponding operation in Inv that has the
same name.

Formally a service is defined by the following tuple:

Service := (I, M, Py, 1)

236 C. Guidi and R. Lucchi

where I C Interfaces is the interface containing all the operations it can use,
M is the internal state of the service we use to represent all the information
it manages (e.g. variables, databases), Py is the process which expresses the
service functionality encoded by exploiting the formalism f and [€ Loc is the
location where the service is deployed. We remark that, in order to be as general
as possible, in this section we abstract away from the specific formalism f and
the representation of the internal state; in the following section such notions will
be represented by a specific model.

2.2 Mobility Mechanisms

In this section we describe the mobility mechanisms which deal with open end-
edness. To this end we exploit the service notion of Section 2.1 and we reason
about the meaning of supporting the mobility of each element of the service tu-
ple, that is: internal state mobility, location mobility, interface mobility and ser-
vice functionality mobility. Since the interaction mechanism is based on message
passing, mobility is achieved by communicating service components by means
of exchanged messages. This fact has a significant impact on designing issues
because mobility must be explicitly programmed by system designers.

— Internal state mobility: The mobility of the internal state is strongly re-
lated to the message passing communication mechanism. Indeed the content
of a sent message is part of the information contained in the internal state
of the sender that the receiver acquires and stores in its internal state. In
other words a message exchange between two services can be seen as an
information mobility from the sender internal state to the receiver one.

— Location mobility: Location mobility deals with the possibility to receive
a location by means of a message exchange and to exploit it to access the
service deployed at that location. This means that a service can acquire at
run-time the exact location of a service whose functionalities are known, as
in the case of the update service discussed in the Introduction section which
knows the client functionality but not their locations.

— Interface mobility: Interface mobility means that a service can acquire
at run-time an operation and exhibits it in its interface. In particular, such
a kind of mobility deals only with the mobility of the operation name (by
definition the interaction modality can be derived by its name). Thus, the
service which receives an operation can exhibit it either as an output opera-
tion and an input one. Since operations provides access points to the service
functionalities, which are supplied by the service by means of its internal
process, we consider that the only reasonable usage of an operation acquired
at run-time is for exhibiting the related output operation and not the in-
put one. The calculus we propose in the following section allows to exhibit
acquired operations only as output operations.

— Functionality mobility: Service functionalities are expressed by the in-
ternal processes of a service. The mobility of this component implies that
a process can be communicated within a message exchange and executed

Mobility Mechanisms in Service Oriented Computing 237

by the service receiving it. In this case the receiver can enrich its internal
functionalities by executing the received process. It is important to high-
light the fact that the receiver must be able to execute the received process
by exploiting the specific formalism used for encoding it. In this paper we
do not discuss such a problem that we consider orthogonal to the mobility
mechanisms.

3 A Service-Based Language with Mobility Mechanisms

This section is devoted to model the mobility mechanisms discussed above. In
particular, we proceed as it follows: i) we introduce a calculus for representing
services accordingly with the model discussed in the previous section, ii) we
formalize all the mobility mechanisms by extending step by step the service-
based calculus and we describe how services are affected by them.

3.1 The Service-Based Language

Here, we present a service-based calculus which extends OL, defined in our previ-
ous works, by means of locations. Such a language allows us to describe systems
where each participant is a service! and supplies a means for describing service
functionalities. For the sake of clarity, we do not take into account asynchronous
communication which has been modeled in our previous work. On the other
hand, this is an orthogonal aspect which can be separately analyzed w.r.t. mo-
bility mechanisms. Formally, let InternalLink be a set of names ranged over by
s, let Vaar be the set of variables ranged over by x,y, z, k. We denote with =
tuples of variables, for instance, we may have T = (x1,x2, ...,z,). Let W be a
finite ordered non-empty set of indexes, OL is defined by the following grammar:

P:=0|xz:=¢| €| 5| oQl(z) | 0.@l(Z,7)
| PP |~P\P \N Z?_eweﬁpi | Yiew xi?P;
=s | o(@) | or(7,7,P)

€
E:=[PS); | E| F

where a service-based system FE consists of the parallel composition of services.
A service [P, S]; is a process P identified by its location | € Loc whose variables
state is S. The variables state of a service is described by a function S : Var —
Val U {L} from variables to the set Val U {L} ranged over by w. Val, ranged
over by v, is a generic set of values on which is defined a total order relation?.
S(x) represents the value of variable x in the state S (S(z) = L means that z is

! In our previous work we referred to this language as an orchestration language.
Usually the term orchestrator means a special service which, in order to supply its
functionalities, coordinates other services. Here, we use the term service for indicat-
ing both orchestrators and simple services.

2 We extend such an order relation on the set ValU{L} considering L < v, Vv € Val.

238 C. Guidi and R. Lucchi

not yet initialized), while S[v/z] denotes the state S where x holds value v (we
use S[v/Z] when dealing with tuples of variables), formally:

’ 1ot v if o' =x

Sl/al=8" S() = {S(m’) otherwise

All the services are executed at different locations, thus they can be composed
by using only the parallel operator (||). Processes can be composed in parallel
(1), sequence (;) and with two different alternative composition operators. The
operator Z:rew €;; P; expresses a non-deterministic choice among input guarded
processes, that represent exhibited operations, whereas the operator Z?GW Xi ! P;
expresses a deterministic choice among processes guarded by conditions on vari-
ables state (such processes are of the form x?P where x is a logic condition
on the state S associated to P whose syntax is reported in Appendix A). 0
represents the null process whereas the processes x := e deals with variable as-
signment. Processes s and § deal with internal service synchronizations which
are exploited to coordinate the activities of processes running in parallel. In this
case no message is exchanged; this is because the service variables are shared
by all the processes running on that service. As far as the operations are con-
cerned, the process o(Z) represents a One-Way operation where o ranges over
O, whereas the process o,(Z, Z, P) represents the Request-Response one where
o, ranges over Og. Namely, o(Z) represents a One-Way operation whose name
is 0 and the received information are stored in the tuple of variable Z, while
or(Z, 7, P) represents a Request-Response operation named o, which receives a
message, stores the received information in , executes the process P and, at
the end, sends the information contained in y as a response message to the
invoker. On the contrary, the processes 6@I(Z) and 0,@I(Z,y) represent the
Notification and the Solicit-Response operations respectively, where o ranges
over O and o, ranges over Og. In particular, 0@QI(Z) invokes the operation
o of the service located at [sending the information contained in = whereas
0,Ql(Z,y) invokes the operation o, of the service located at | sending the in-
formation contained in = and waits for the response whose information will be
stored in .

The semantics of OL is defined in terms of a labelled transition system which
describes the evolution of a service-based system. We define — as the least re-
lation which satisfies the axioms and rules of Tables 1, 2 and 3. Let Actor, =
{0,0,0Q1(?), 0(v), 01 (0), 0l (0), 6,Ql(D, 7)(n), 0,Ql(v,7)(n), o, T} be the set of ac-
tions ranged over by 7. ¢ is a parameterized action of the form (I,1’, op, v, dir)
where [, 1’ are service locations, op is an operation name, v are tuples of values
and dir € {1,]}. We exploit dir for discriminating between a request message
and a response one. Table 1 deals with the axioms over P where we have intro-
duced the processes o' (%) and 0" (Z) in order to deal with Request-Response and
Solicit-Response mechanisms. The most interesting axiom is the REQUEST one,
which describes that when it is invoked, the operation behaves as the process
that performs P and, once having completed such a process, performs an output
that is consumed by the invoking service. On the contrary, rules SOLICIT and

Mobility Mechanisms in Service Oriented Computing 239

Table 1. Axioms over P

(In) (Our))
(5,8) = (0,8) (5,5~ (0,5)

(NOTIFICATION) (ONE-WAY)
5Q@l(%) o(%)

(o@l(z),S) — (0,8),0v =S(%) (o(z),S) — (0,S[v/%])

(Sovrcrr) (REQUEST)
0r@I(3,5)(n)

(6,@i(#,§),8) "L (or(5),8),5 = S@) (0,5, P),S) 'S (Pyar(h), S[o/4))

(RESPONSE-OUT) (RESPONSE-IN)
o7 (%) 0 ()

(07(%),8) — (0,8),5=5() (0/(#),5) = (0,5[v/%])

RESPONSE-IN deal with Solicit-Response behaviour where, initially, a message is
sent and then the service, by means of the process o'(Z), waits for the response.

Table 2 deals with the rules over P where rule ASSIGN deals with variable
assignment within the services; e <—s v means that the evaluation process of
the expression e within state S reduces to v. Rule INT-SYNC deals with internal
synchronization and CONGRP with internal structural congruence denoted by
=p. PAR-INT and SEQ describe the behaviour of processes composed in paral-
lel and sequentially respectively, whereas CHOICE]1 and CHOICE2 describe the
behavior of the two alternative composition operators. The former one non-
deterministically selects an input guarded process among the ones listed in the
choice operator, while the latter one is the deterministic choice depending on
the internal state of the service where the satisfaction relation for F is reported
in Appendix A. In Table 3 the rules at the level of service-based systems are
considered. Rule ONE-WAYSYNC deals with the synchronization on a One-Way
operation between two services whereas rules REQ-SYNC and RESP-SYNC deal
with the request and the response message exchanges between a Solicit-Response
operation and a Request-Response one. Rule REQ-SYNC exploits a fresh label n
which is generated in order to univocally link the response synchronization de-
fined in rule RESP-SYNC. PAR-EXT deals with external parallel composition and
CONGRE is for external structural congruence denoted by =. INT-EXT expresses
the fact that a service behaves in accordance with its internal processes.

Now, we remind the service formalization presented in section 2 where a
service is represented by the tuple (I, M, P¢,1) and we show how an OL service
[P, S]; is related to it:

— M is modeled by S.

— [represents the location within both the service model and the OL language.
— Py is represented by a process P in OL where the formalism f corresponds
to OL.

I represents the interface of a service and it is not explicitly modeled in OL
but it can be extracted from the process P. Indeed, by considering a service
[P, S];, its interface I is defined by the function ©(P) where O is inductively
defined by the following rules:

240 C. Guidi and R. Lucchi

Table 2. Rules over P

(ASSIGN) (INT-SYNC)
eTsv (P,S) > (P,S), (Q8)>(Q,S)
(z = e.8) = (0,8[v/a]) (PIQ,S)—> (P'1Q.S)
(CoNGRP)
P=p P, (P85> (Q,8), Q=rQ
(P,8) = (Q.5")
(PAR-INT) (SEQ)
(P,S) = (P',8") (P,S) = (P, 8")
(P1QS) = (P'QS) (PQ,8) = (PQ,8)
(CHOICE 1) (CHOICE 2)
(e;;P;,S) L (P, S") ieW Skxi Stx;jeW,j<i
(ZzEW €5 P’H 8) (S/) (ZzEW Xl?Pi’ S) l) (P'“ S)

(STRUCTURAL CONGRUENGE OVER P)

Plo0=pP 0;P=pP (P|Q)=p(Q|P) (P|Q)|R=pP|(Q|R)

1.9(0) = ¢ 2.0(x:=¢)=0¢

3.0(s) =¢ 4.0(s) =¢

5. ©(0Ql(%)) = {(o,n)} 6. ©(0,Ql(z,7)) = {(oy,s7)}

7. O(o(Z)) = {(0,0w)} 8. O(o,(Z,9, P)) = {(oy,77)} UO(P)
9. 00l (7)) = 6 10. 6(07 (7)) = 6

11. O(P; P") = O(P)UB(P) 12. O(P \ Py =0(P)u6b(r)

13. O(:_ew €3 P;) = UieW O(ei; P;) 14. Q(Z'LEW Xi'P;) = Uiew O(F;)

It is worth noting that the interface ©(P), during the evolution of a service
[P, S];, is monotonically reduced dependently on the consumption of P. Indeed,
let us consider the simple example which follows where, for the sake of brevity,
we abstract away from the internal states:

[a(@), Sl || la(y), 'l = [0, 8], || [0, 8]

Before the synchronization the interfaces of the two services are I; = {(a,n)} and
Iy = {(a,ow)} respectively, whereas after the synchronization they are I; = ¢
and I —¢.

3.2 Internal State Mobility

As we have noticed in section 2 the internal state mobility is strongly related
to the message passing communication mechanism. Considering Table 1 and

Mobility Mechanisms in Service Oriented Computing 241

Table 3. Rules over F

(ONE-WAYSYNC)
[Pv S]l E@L(ﬁ) [PI7S/]Z) [Q:T]l’ Dg) [leTl]l’ , O = (l7ll70767T)

(P,SIQ, Tl = [P,S || @, T
(REQ-SYNC)
(P,S] SO s QT ST QL T n fresh,o = (1,1 0,5, 1)
(P,SL[Q, Tl = [P, S || @, T
(RESP-SYNC)
12,8 P8, QT QT o = (LT 00,5, 1)
(P,SL[Q, Tl = [P, S || @, T

(PAR-EXT) (CONGRE) (INT-EXT)
B2 E, EL=E,, B, 2 E}, FE,=E, (P,S) 5 (P',8)
Ei| B2 = Ef || Es E1 2 By [P,S], = [P',8"],

(STRUCTURAL CONGRUENCE OVER E)

PEPQ

Ei|E2=FE2 | B Ei|| (B2 | Es) = (B || E2) || Bs
[P, S]z = [st]z

Table 3, such a kind of mobility is expressed by the rules which deal with opera-
tion processes. In particular, let us consider rules NOTIFICATION and ONE-WAY
in order to clarify how it works. In the former the internal state information
v contained within the variables & are sent by exploiting a message whereas in
the latter the received information v are stored into the variables Z contained
within the internal state of the receiver. Rule ONE-WAYSYNC of Table 3 couples
the two axioms by correlating the receiver location to that explicited within the
notification process and o is a formal representation of the exchanged message.
Summarizing, internal state mobility is modeled as a an information exchange be-
tween the internal state of the sender and the internal state of the receiver. Such
a mobility mechanism is the cornerstone of service-based systems and supplies
the basic layer on which the other mobility mechanisms can be implemented.

3.3 Location Mobility

In order to deal with location mobility here we modify the syntax of OL by
replacing the processes 0@[(Z) and 0,Ql(z,g) with the new processes which
follow:

P:=...]0Qz(%) | 0,Qz(Z,7) | ...

242 C. Guidi and R. Lucchi

where z is a variable. These novelties allow us to dynamically bind the receiver
location when performing the Notification and Solicit-Response operations by
evaluating the content of variable z. The semantics of axioms NOTIFICATION
and SOLICIT of Table 1 change as it follows:

(NOTIFICATION) (Sovicrr)

(502(7),8) "D (0,8), Z’;g((:)) , Z’;g(g)
Variable z is evaluated when the processes are executed. This mechanism allows
us to design a service which does not know a priori the locations of the services
to be invoked that can be acquired during the execution. In order to clarify such
a behaviour let us consider the business scenario example depicted in Fig. 1
where a customer purchases a good invoking a shopping service, the shopping
service invokes a bank service for performing the payment and the bank service
invokes the customer that receives the invoice. In Fig. 1 we have exploited an
informal graphical representation where services are represented by circles, the
symbol Quri expresses the fact that the service is available at the location wuri,
the input operations exhibited by a service are represented by a black line whose
name is shown within a rectangle and the arrows represent a message exchange.

6,Q@1(0,7)(n)

(0:Q2(2,9),5) * — " (07(9),5)

CUSTOMER
SERVICE
@uril

SHOPPING
SERVICE
@uri2

BANK
SERVICE

@urid

Fig. 1. Business scenario example

In the following we formalize such a scenario by supposing that the bank service
does not know the location of the customer:

System ::=[z1 1= uri2;add := uril;inv := 1; BUYQz (add); REC(inv), Sc|urin
| [z2 := uri3; fwadd :== L; BUY (fwadd); PAYQzs(fwadd), Ss]uriz
I [z5 := L;invoice = msg; PAY(23); RECQz3(invoice), Spluris

The shopping service located (at uri2) receives on the One-Way operation BUY
the location of the customer (uril) and stores it within the variable fwadd.
Moreover, it forwards it to the bank service by exploiting the Notification oper-
ation PAY. The bank service (at uri3) receives on PAY the customer location
and then exploits it for invoking the REC operation of the customer sending the

Mobility Mechanisms in Service Oriented Computing 243

invoice represented by the value msg. Finally, the customer stores the received
invoice within the variable inwv.

Location mobility is built on top of the internal state mobility because acquired
locations are stored within the internal state. Such a kind of mobility allows us to
design flexible services which bind their output operations at run-time.

3.4 Interface Mobility

In order to deal with interface mobility here we modify the syntax of OL by
replacing the output operation processes with the new processes that follow:

Pi=... | kQz(%) | kQz(2,7) | ...

where 2z and k are variables. As far as the output operations are concerned, the
operation names are evaluated at run-time by considering the value of an inter-
nal state variable (k). The new semantics of axioms NOTIFICATION and SOLICIT
is as follows:

(NOTIFICATION) (SoLicrt)
. o= S8(k) e or = S(k)
(k@2(2),5) " (0,8), 5=5(@) (kQx(,§),5) """ (08(7),8), 5 = S(5)
1=38(2) I=35(z)

Furthermore, we modify some rules for the inductive definition of @ which allows
us to extract the service interface. In particular, we modify the rules 5 and 6
which deal with the output operations:

{(S(k),n)}if S(k)# LAS(k) €O
¢ otherwise
S(k),sr)} if S(k) # LAS(k) € Og

¢ otherwise

5. 0(k@z(7),8) = {
6. O(kQz(%,7),S) = {{(

It is worth noting that now the interface depends also by the internal state?.
This is due to the fact that operation names are contained within variables.
The condition S(k) # L guarantees that the interface contains only the known
operations.

By exploiting the new output operation processes it is possible to design
separately the functionalities which deal with output operations from the actual
interface of the service. Let us consider the example of Fig. 1 where, now, we
suppose that the bank service does not know a priori both the location and the
one-way operation of the customer:

System = [z1 := uri2; add := uril;opr; ;== REC;inv := L
; BUY @z ((add, opr1)); REC(inv), Sclurii
| [z2 := uri3; fwadd := L;o0prq :== L
s BUY ((fwadd, opra)); PAYQzs((fwadd, opra)), Ss|uriz
I [25 := L; ks := L;invoice = msg; PAY (23, k3); ksQz3 (invoice), Spluris

3 Namely, the domain of © now considers also the internal state S. For the sake of
brevity, we do not show all the rules because they are not affected by the state.

244 C. Guidi and R. Lucchi

The bank service indeed, receives from the shopping service both the location and
the name of the operation of the customer and stores it in I3 and k3 respectively.
The customer sends, by means of the variable opry, the operation REC on
which it will wait for receiving the invoice. The example shows how is possible
to design a service (in the example the bank one) with a functionality which
deals with an output operation without statically knowing its interface. This
fact has some implications on the service interface. By considering the new rules
for @, the interface can also dynamically includes new operations. The interface
of the bank service indeed, is I = {(PAY,ow)} before receiving a message on
the PAY operation and I = {(REC,n)} after the reception of the customer
operation.

3.5 Service Functionality Mobility

In order to deal with service functionality mobility we extend the OL language
by introducing the following process:

P :=...|run(z)

run(x) allows us to execute the code contained within the variable x. The se-
mantics of such a primitive is expressed by a new rule that must be added to
those presented in Table 2:

(RuN)

(run(z), 8) = (8(2),S)

Since the received code can be formed by operation processes, we add a new
rule for inductively defining the function © which allows us to extract the inter-
face of the service:

O(S(x)) if S(k) # L

10} otherwise

13. O(run(), S) = {

Service functionality mobility directly deals with code mobility. In particular it
allows us to design services where a specific part of its functionalities are un-
known at design time and they are acquired during the execution of the service.
In order to clarify this aspect let us consider the example of the shopping service
again. Now, we suppose that the customer that wants to interact with the shop-
ping service does not know a priori the conversation rules to follow. In other
words, the customer does not know that it has to exhibit the REC operation in
order to receive the invoice from the bank service.

System ::= [z1 1= uri2; add := uril;code; = L
; BUY @z (add, codey); run(codey), Selurin
| [#2 := uri3; fwadd := L; codes :="“inv := L;REC(inv)”
; BUY (fwadd, codes, 0); PAYQzo(fwadd), Ssuriz
I [z5 := L;invoice = msg; PAY(z3); RECQzs(invoice), Spluris

Here, the customer invokes the operation BUY of the shopping service which is
modeled as a Request-Response operation. The customer receives as a response

Mobility Mechanisms in Service Oriented Computing 245

a piece of code and stores it within the variable code;, then it executes it by
exploiting the primitive run(code;). After the execution of the code stored within
code; the system behaves as the example presented in the location mobility
section. It is worth noting that the customer receives the input operation REC
which enriches at run-time its interface similarly to the case of the interface
mobility. Even if the two kind of mobility could appear similar w.r.t. the effects
on the interface, they are different from a system design point of view. In the
case of interface mobility the designer must specify that an input operation
has to be performed without knowing its name, on the contrary in the case of
service functionality mobility the designer does not know the process which will
be executed. Furthermore, by exploiting the primitive run(z) it is possible to
enrich the service interface also with both input and output operations. In the
example indeed, the customer service interface is enriched with the operation
(REC, ow) which is an input one.

Some considerations about code mobility issues are necessary. On the one
hand when a service executes a process which has been acquired at run-time,
it does not know how it behaves. On the other hand, when programming a
process which will be executed by another service the internal behavior of such
a service is not known. This fact implies a number of issues. First of all, internal
processes share the variables state thus the acquired process could interfere with
the behavior of the other ones. Moreover, an acquired process could exploit a
certain name s to perform internal synchronizations but the same name could
be already used by other internal processes, thus alterating also in this case
the behavior of the other processes. A formal analysis of these issues is out of
the scope of this paper but we consider that, to avoid at least the issues listed
above, a mechanisms which syntactically renames all the variables and names of
the acquired process which interferes with the ones of the internal processes is
necessary before executing it.

4 Web Services Technology

In this section we discuss the mobility mechanisms presented in the previous
sections w.r.t. Web Services technology. Furthermore, we discuss a particular
hidden mobility related to the Request-Response operation.

4.1 Web Service Mobility Mechanisms

— Internal state mobility: Since Web Services are a message passing tech-
nology, they fully support the internal state mobility as we have formalized
it in Section 3. In particular, an information exchange between two services
is an XML document whose schema is defined within the SOAP [16] speci-
fication.

— Location mobility: As we have shown in Section 3 location mobility is
strictly related to the communication mechanisms of the internal process
that we have formalized by exploiting OL. Although that Web Services are
platform independent and there is not a standard formalism for describing

246 C. Guidi and R. Lucchi

the internal process, here we consider orchestration languages as a class of
languages which can be used for expressing it. Indeed, they deal with service
coordination aspects which are fundamental to the end of location mobility.
In particular, we consider WS-BPEL because it is the most credited proposal
for orchestration. It supports compositional operators as parallel, sequence
and choice and it has specific primitives to interact with other services which
resemble the input and output operation processes of the OL calculus. WS-
BPEL supports location mobility by managing endpoints within its internal
variables. An endpoint, which is defined within WS-Addressing [15] speci-
fication, is a data structure which contains all the information required for
invoking a service, that is the operation and the location.

— Interface mobility: The interface mobility that we have formalized in Sec-
tion 3 is strictly related to the communication mechanisms of the internal
process. Following the same approach of location mobility we consider WS-
BPEL. As previously mentioned, WS-BPEL is able to manage endpoints
which contain the information related to the operations. However it does
not support interface mobility because the operations it exploits for invoking
and receiving messages are defined statically at design time and they cannot
be bound at run-time. To the best of our knowledge interface mobility is not
supported by the Web Services technology even if it is possible to consider
other solutions that indirectly allows us to achieve it. Let us consider WSDL
specification [18] that is an XML-based language which allows to specify the
operations (One-Way, Request-Response, Notification and Solicit-Response)
exhibited by a service*. Several programming languages at a low-level w.r.t.
the orchestration ones are equipped of libraries which permit to simplify the
service composition. In particular, there exist libraries in Java [2, 1, 13] that,
given a WSDL document, automatically produce the corresponding classes
which allow us to invoke all the operations supplied by the Web service de-
scribed in that document. In this case we can guess that by exploiting such
languages and libraries we can also support interface mobility.

— Service functionality mobility:To the best of our knowledge Web Ser-
vices technology does not explicitly support such a kind of mobility. Never-
theless we trace a comparison between service functionality mobility and
some languages for describing conversational behaviours of service-based
systems as, for instance, WS-CDL [17]. Such languages are exploited for
describing the communication protocols services have to follow in order to
participate to a given service-based system. We can imagine that a ser-
vice which is willing to access that system could download the related WS-
CDL document and extracts a piece of code which allows it to follows the
protocol.

4 A WSDL interface could be modeled by exploiting the service interface I defined
in section 2 but there are some relevant issues to take into account: a WSDL doc-
ument is statically defined and can not change dynamically during the evolution of
the service by adding or removing some of the exhibited operations and, generally,
Notification and Solicit-Response operations are unused.

Mobility Mechanisms in Service Oriented Computing 247

4.2 The Hidden Mobility of the Request-Response

In this section we discuss the Request-Response interaction mechanism and in
particular we compare the one we propose with the one supported by the Web
Services technology. Usually the request-response interaction pattern has been
intended as a powerful mechanism which is able to relate the two message ex-
changes involved within a Request-Response as modeled in our calculus and in
[10, 11]. In particular, these proposals formalize the Request-Response behaviour
by joining the output operation process with the input one. As far as our pro-
posal is concerned, in Table 3 we have exploited a fresh label n in order to couple
the two processes.

In the Web Services technology the Request-Response interaction is not sup-
ported at the service application level but, as specified by the WSDL recommen-
dation, it has to be supplied by the communication infrastructure (e.g. HTTP)
which exploits the service locations to bind the two message exchanges instead of
the service processes involved in the interactions as in our calculus. This means
that if a service invokes two times a Request-Response operation at the same
service location the two responses could be swapped with each other. Example
1, which follows, reveals that the interaction mechanism supported by the Web
Services technology is weaker than the one previously proposed.

Table 4 reports the semantics rules governing the Request-Response interac-
tion pattern 4 la Web Services. As it emerges by the semantics rules, there exists
a hidden form of location mobility that is used by the infrastructure to support
the response phase. Indeed, the infrastrure keeps the location invoker and uses
it when the response is to be sent. Such a semantics, that we consider faithful
w.r.t. the Web Services technology, represents a meaningful contribute towards
the formal reasoning of the current technology features and lacks.

Example 1. Let us consider the following example where a service, say A, pro-
vides a functionality which computes, given two numbers a and b, |a| — |b|. Such

Table 4. Modified rules for Request-Response

(SoLicrr) (REQUEST)

(3,01(7,9),8) "2 (0,@1(5),8),5 = S(F) (04,7, P),S) TN

7 (P;5,01(7), S[0/3))

(RESPONSE-OUT) (RESPONSE-IN)

(6,a1#),8) "2 (0,8),5=8&) (0r@l(7),S) "2 (0,8[5/7])
(REQ-SYNC)

(P8 D pr sy 10, T T QL T o = (LT 0,5, 1)

P.S) 11 1Q, T 2 [P/, 1 1@ T
(REsP-SYNC)
P81 " S, 1@, Tl Q. T o= (Ll0,5, 1)
P,S) Q. T 2 [P, | Q' T

or @l(v)

248 C. Guidi and R. Lucchi

a service exploits another service, located at [, which supplies the absolute value
and the subtraction functionality supplied by means of the Request-Response
operations ABS and SU B, respectively. Let OP be the Request-Response op-
eration A uses to supply its functionality, the service could be programmed as
it follows (we do not describe the variables state since its initial configuration
does not alterate the behaviour):

A == OP({(a,b),res, P)
P ::= (ABS(a,absA)Ql | ABS(b,absB)@Ql); SUB({absA, absB), res)Ql

In the case the Request-Response mechanisms is the one modeled by rules of
Table 4, there exists an execution path where the responses of the two ABS
invocations can be swapped and then, in this case, the OP response is |b| — |a]
instead of the expected value |a| — |b]. On the contrary, in the case the Request-
Response mechanism is modeled as in section 3 such a behavior is not allowed.

5 Conclusion

In this work we have discussed the mobility aspects of service-oriented comput-
ing. We have caught the essence of a service by modeling it as a tuple of four
basic components (state, location, interface, process) and we have discussed a
specific form of mobility for each of them. Namely, we have modeled such a
tuple by extending a formal language defined in our previous works that has
been exploited as a formal workbench for highlighting the peculiarities of each
kind of mobility. Finally, we have analyzed the Web Services technology in order
to show which kinds of mobility are actually supported. The discussion about
Web Services shows that only the internal state mobility, by means of message
passing communication mechanism, and the location mobility are supported by
this technology. On the other hand, interface mobility and service functionality
mobility raise some interesting issues from the system design point of view. In
this sense our formal investigation could be a good starting point for enriching
the actual technologies with these new kinds of mobility. Moreover, we have
modeled the behavior of the Request-Response interactions supported by the
Web Services by discussing how it seems to be weaker than the one we propose
in our model.

The contribute of this paper is twofold, on the one hand we have formalized
the mobility aspects of service oriented computing and on the other hand we have
discussed them by analyzing the current technology state of the art. To the best
of our knowledge this is the first attempt to strictly formalize mobility aspects of
the service oriented computing paradigm. There are several works which exploit
other formalisms like pi-calculus [10, 5] and Petri-nets [8] for dealing with service-
based composition but a comprehensive investigation on mobility does not exist.

In our previous work we have defined a formal framework devoted to represent
the peculiarities of choreography and orchestration languages and their interde-
pendencies. It emerges that orchestration is a further developement step w.r.t.
the choreography which defines the conversation rules among participants. A

Mobility Mechanisms in Service Oriented Computing 249

conformance notion captures such a relationship and permits to verify whether
an orchestrated system behaves accordingly with a given choreography. In this
paper we have enriched the orchestration language (here called service-based
language) with mobility aspects and, as a future work, we plan on the one hand
to rephrase the choreography language and the conformance notion by consider-
ing the issues raised by mobility mechanisms and, on the other hand, we intend
to enrich our formal framework by introducing other fundamental aspects like
sessions.

References

10.

11.

12.

13.

14.

15.

. Apache. Azis (Java2WSDL). [http://ws.apache.org/axis/index.html].
. Apache. Azis (WSDL2Java). [http://ws.apache.org/axis/index.html].
. A. Barros and E. Borger. A compositional framework for service interaction pat-

terns and interaction flows. In Proc. of International conference on formal engi-
neering methods (ICEM 2005), LNCS, pages 5-35. Springer Verlag, 2005.

. A. Barros, M. Dumas, and A. H.M. ter Hofstede. Service interaction patterns:

Towards a reference framework for service-based business process interconnection.
Tech. Report FIT-TR-2005-02, Faculty of information Technology, Queensland Uni-
versity of technology, Brisbane, Australia, March 2005.

. L. Bocchi, C. Laneve, and G. Zavattaro. A Calculus for Long-Running Transac-

tions. In FMOODS, volume 2884 of LNCS, pages 124—138. Springer Verlag, 2003.

. Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavat-

taro. Choreography and orchestration conformance for system design. In Proc. of
8th International conference on Coordination Models and Languages (Coordination
2006), To appear.

. Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Za-

vattaro. Choreography and orchestration: A synergic approach for system design.
In ICSOC, pages 228-240, 2005.

Remco Dijkman and Marlon Dumas. Service-oriented Design: a Multi-viewpoint
Approach. Int. J. Cooperative Inf. Syst., 13(4):337-368, 2004.

F. Leymann. Web Services Flow Language (WSFL 1.0). [http://www-4.ibm.com/
software /solutions/webservices/pdf/WSFL.pdf], Member IBM Academy of Tech-
nology, IBM Software Group, 2001.

R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL. Journal
of Logic and Algebraic Programming. Elsevier Press. To appear.

J. Misra and W. Cook. Computation orchestration. Software and Systems model-
ing. To appear.

OASIS. Web Services Business Process Ezxecution Language Version 2.0, Work-
ing Draft. [http://www.oasis-open.org/committees/download.php/10347/wsbpel-
specification-draft-120204.htm)].

Sun microsystems. Java Web Services Developer Pack. [http://java.sun.com/ web-
services/downloads/webservicespack.html].

S. Thatte. XLANG: Web Services for Business Process Design. [http://
www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm], Microsoft Corpora-
tion, 2001.

W3C member submission 10 august, 2004. Web Services Addressing. [http://
www.w3.org/submission/ws-addressing/].

250 C. Guidi and R. Lucchi

16. World Wide Web Consortium. SOAP Version 1.2 Part 1: Messaging Framework.
[http://www.w3.org/TR/soapl2-partl/].

17. World Wide Web Consortium. Web Services Choreography Description Language
Version 1.0. Working draft 17 December 2004. [http://www.w3.org/TR/2004/
WD-ws-cdl-10-20041217/].

18. World Wide Web Consortium. Web Services Description Language (WSDL) 1.1.
[bttp://www.w3.org/TR/wsdl].

A Syntax of x and Satisfaction Relation for
The syntax of x is
xn=z<ele<z|-x|[XxAX

where e denotes an expression which can contain variables references and which
can be evaluated into a value v or, when some variables within the expression
are not instantiated, into the symbol 1.

The satisfaction relation for F is defined by the following rules:

S)=L=Skt@@<LlALl<zx)
e—sv,Sx)<v=8Skaz<e
e—sv,0<Sx)=Skte<zx
SEXYASEX"=SEX' A
-(Skx) =8k

U o=

We highlight the fact that rule 1 states that when a variable z is defined with
value | the only condition which can be satisfied on such a state is z = L.

	Mobility Mechanisms in Service Oriented Computing

