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Abstract. Membership queries are basic predicate operations that apply to data-
sets. Quantifications of such queries express global properties between datasets,
including subset inclusion and disjointness. These operations are basic tools in
set-theoretic data-mining procedures such as frequent-itemset-mining. In this
work we formalize a family of such queries syntactically and we consider how
they can be evaluated in a privacy-preserving fashion. We present a syntax-driven
compiler that produces a protocol for each query and we show that semantically
such queries correspond to basic set operation predicates between datasets. Us-
ing our compiler and based on the fact that it is syntax-driven, two parties can
generate various privacy-preserving protocols with different complexity behavior
that allow them to efficiently and securely evaluate the predicate of interest with-
out sharing information about the datasets they possess. Our compiler sheds new
light on the complexity of privacy-preserving evaluation of predicates such as
disjointness and subset-inclusion and achieves substantial complexity improve-
ments compared to previous works in terms of round as well as communication
complexity. In particular, among others, we present protocols for both predicates
that require one-round of interaction and have communication less than the size
of the universe, while previously the only one round protocols known had com-
munication proportional to the size of the universe.

1 Introduction

While data sharing and processing across organizations becomes more and more com-
mon, the transfer of data of an organization to an extrinsic data-processing entity raises
serious issues from the data privacy point of view. For this reason privacy preserving
data processing has recently become an area of crucial importance. The goal of any
privacy-preserving data processing operation is to allow the processing of data without
revealing it to the processing entity. Moreover, privacy concerns frequently cut both
ways as the processing entity may also wish to protect the privacy of its local data that
relates to the computation.

A common general setting is the following: two entities, dubbed Alice and Bob,
possess two datasets A and B respectively that are subsets of a publicly known universe
of elements. Either Alice or Bob wishes to calculate a set theoretic function on the
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two datasets without sharing any information with the other player. Depending on the
application domain and the function of interest, a number of recent previous works has
appeared exploring this problem; for example, the work of [16] for equality tests, the
work of [17] for intersection and the cardinality of the intersection, the work of [20] for
the disjointness predicate, the work of [14] for multiset operations, the work of [15] for
subset inclusion, and others.

Our Results. In this paper, we investigate a new efficient way to evaluate quantified
membership queries in a privacy preserving fashion. An example of a quantified mem-
bership query (or QMQ for short) is ∀x ∈ A : x ∈ B; this query has a set theoretic
semantic interpretation which corresponds to the predicate A ⊆ B. All QMQ’s we con-
sider have a semantic set-theoretic predicate interpretation. Moreover, various queries
correspond to the same semantic interpretation. We take a unique advantage of this fact
as will be seen below. Our syntactic definition for QMQ’s corresponds to all possi-
ble set theoretic predicates that one can express for two sets A, B and their comple-
ments using the intersection and subset operations. Two particular application domains
for privacy preserving QMQ evaluation operations are testing disjointness and subset
inclusion.

Our main result is a compiler that processes a QMQ and generates a specific protocol
according to the syntax of the query. The main idea behind our compiler design is the
algebraic interpretation of a QMQ that maps a universal quantification to a summation
between polynomial evaluations and an existential quantification to a product between
polynomial evaluations.

Our compiler is in fact syntax-driven in the sense that the resulting protocol is de-
pendent on the syntax of the query (and not only on the query’s semantic set-theoretic
interpretation). It turns out that the construction of such a mechanism is extremely ben-
eficial as the communication, round and time complexity of semantically equivalent
protocols that result from our compiler vary, and the two players may choose the one
that suits them best, depending on the certain application domain (and we do provide
a full analysis on which variant to use). Depending on the relative sizes of A, B, [n],
where [n] is the universe from which A, B are drawn, the two parties should follow a
different protocol in order to optimize their privacy-preserving operation.

We apply our compiler to solve two known set-theoretic predicates whose privacy-
preserving evaluation has been considered before, namely disjointness and subset in-
clusion. In particular, using our compiler for different QMQ’s that correspond to dis-
jointness and subset inclusion, we obtain 8 distinct protocols for each predicate. The
resulting protocols advance the state of the art of these two problems w.r.t. communica-
tion and round complexity as shown in figure 1. In particular, among others, our com-
piler produces protocols for both predicates that require one-round of interaction and
have communication less than the size of the universe, while previously the only single
round protocols had communication proportional to the size of the universe. Moreover,
our compiler offers flexibility in choosing the best protocol for a given application do-
main depending on the relative sizes of the involved sets (cf. section 5).

Our constructions employ variants of the ElGamal encryption function [12] and are
proven secure under the Decisional Diffie Hellman assumption. Our compiler descrip-
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Subset-Inclusion C ⊆ S Intersection C ∩ S �= ∅
[20] 1st Scheme O(n), 1 round
[20] 2nd Scheme O(c · s), c rounds
[15] O(n), 1 round
Present paper O(c · s), 1 round O(c · s), s rounds
based on the compiler O(s), 1.5 rounds O(c), 1 round
for various QMQ’s O(c), 1 round O(s), 1.5 rounds

etc. (cf. section 5) etc. (cf. section 5)

Fig. 1. An example of the results from our compiler for privacy-preserving evaluation of two
predicates by a client and a server. Note C, S ⊆ [n], with |C| = c and |S| = s, c = n − c,
s = n − s. The table shows the communication and round complexity.

tion is suited to the so called semi-honest setting [19], but we also present all necessary
modifications that are required to transform each protocol generated by our compiler to
the general malicious adversary setting. For dealing with such adversaries we employ
zero-knowledge proofs [18] that are efficient [7] and universally composable commit-
ments, [3, 10]. It should be noted that all our applications can also be solved by generic
protocols of [24, 21] operating over circuits; nevertheless, the communication, time and
round complexity of such protocols is typically much inferior to application specific
protocols such as the ones presented in this work.

Applications to Privacy-Preserving FIM. Privacy-preserving evaluation of set theo-
retic predicates has many applications in frequent-itemset-mining (or FIM) operations,
see e.g., [13]. In the FIM setting, a server has a database of transactions t1, . . . , tm;
each transaction tj is a subset of a given set of n items (which is the universe in our
terminology, i.e., tj ⊆ [n] = {1, . . . , n}). For example a transaction may correspond
to the items that were bought from a provider’s inventory. Consider now the following
challenge: a client (that performs a data-processing operation on the database owned by
the server) possesses a challenge set of items c and wants to process the transactions
in the database that contain c (e.g., for the purpose of counting them or performing
other statistics). It follows that the client wishes to evaluate the predicate c ⊆ tj for
j = 1, . . . , m, i.e., perform a privacy preserving subset-inclusion operation. Consider
also the following scenario: the client has a transaction t and wants to count how many
transactions from the database share some common item with t. In this case the client
wishes to evaluate the predicate c ∩ tj for j = 1, . . . , m.

While the above problems have received a lot of attention in the data-mining com-
munity (see e.g., [13]), it was only recently that such problems were considered from
a privacy-preserving point of view (in particular the subset-inclusion variant as above).
In [15] the privacy-preserving scenario for FIM was discussed and a protocol was pre-
sented that required communication complexity proportional to n for each predicate
evaluation. Note that n is the size of the universe of all possible items and in most
settings it is substantially larger than the size of each transaction tj . Our results, as evi-
denced in table 1 achieve substantial improvements for various special cases, e.g., when
c, tj <

√
n, when tj � n, when t is large etc.
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2 Cryptographic Tools

Homomorphic Encryption. An encryption scheme is a triple 〈K, E, D〉 of algorithms
defined as follows: the key generation algorithm K on input 1� (where � is the key
length) outputs a public key pk and a secret key sk. The encryption function Epk uses
the public key pk for its operation Epk : R × P → C. In this case, P is the plaintext
space, C is the ciphertext space and R is the randomness space (all parameterized by
�). At the same time, the decryption function Dsk : C → P uses the secret key sk
so that for any plaintext p ∈ P , if Epk(r, p) = c, then Dsk(c) = p for any r ∈ R.
Homomorphic encryption adds to the above the following requirements: there exist
binary operations +, ⊕, � defined over the spaces P , R, C so that 〈P, +〉, 〈R, ⊕〉 are the
groups written additively and 〈C, �〉 multiplicatively. We say that an encryption scheme
is homomorphic if for all r1, r2 ∈ R and all x1, x2 ∈ P it holds that Epk(r1, x1) �
Epk(r2, x2) = Epk(r1 ⊕ r2, x1 + x2).

Informally, this means that if we want to “add” plaintexts that are encrypted, we may
“multiply” their corresponding ciphertexts. Moreover, we can multiply an encrypted
plaintext by an integer constant, by raising its corresponding ciphertext to the power
that is equal to the integer constant — which is essentially multiplying a ciphertext by
itself a number of times; note that this can be done efficiently by using standard repeated
squaring (squaring under the operation �).

ElGamal Homomorphic Encryption. We will employ a standard variant of ElGamal
encryption [12]. This variant of ElGamal has been employed numerous times in the
past (e.g., in the context of e-voting [8]). This public-key encryption scheme is a triple
〈K, E, D〉 defined as follows:

– Key-generation K . Given a security parameter �, the probabilistic algorithm K(1�)
outputs a public-key pk := 〈p, q, g, h〉 and the corresponding secret-key x so that
the following are satisfied: (i) p is a �-bit prime number so that q | (p − 1) and
q is also a prime number of length s(�) where s(·) is a publicly known parameter
function (e.g., s : N → N with s(�) = 
�/2�). (ii) g is an element of order q in Z

∗
p.

(iii) h ∈ 〈g〉 are randomly selected. (iv) x = logg h.
– Encryption E. Given public-key pk = 〈p, q, g, h〉 and a plaintext m ∈ Zq , E

samples r ←R Zq and returns 〈gr, hrgm〉.
– Decryption D. Given secret-key x and a ciphertext 〈G, H〉 the decryption algorithm

returns the value G−xH mod p. Note that this will only return gm, nevertheless this
would be sufficient for our setting as, given a ciphertext 〈gr, hrgm〉 we will only be
interested in testing the predicate Zero(m) which is true if and only if m = 0. Note
that this predicate is easily computable given gm mod p by simply testing whether
G−xH ≡p 1).

Observe that the above encryption scheme is homomorphic: indeed, the randomness
space R, the plaintext space P and the ciphertext space C satisfy the following: (i)
R = P = Zq and (R, ⊕), (P, +) are additive groups by setting the operations ⊕, +
to be addition modulo q. (ii) C ⊆ Z

∗
p × Z

∗
p and it holds that (C, �) is a multiplicative

group when � is defined as pointwise multiplication modulo p. (iii) it holds that for any
r1, r2 ∈ R, x1, x2, and pk = 〈p, g, h, f〉, Epk(r1, x1)�Epk(r2, x2) = 〈gr1 , hr1fx1〉�
〈gr2 , hr2fx2〉 = 〈gr1+r2 , hr1+r2fx1+x2〉.
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Superposed Encryption. A superposed encryption scheme is an encryption scheme
between two-players that is homomorphic and allows a player to transform a ciphertext
that is generated by the other player into a “superposed” ciphertext that contains the
encryption of a product of the two plaintexts, the original plaintext and one selected by
the party doing the superposing operation. Superposed ciphertexts are doubly encrypted
ciphertexts that neither player can decrypt. Nevertheless, given a superposed ciphertext
any player can remove his/her encryption from the superposed ciphertext and reduce it
to a regular ciphertext that the other player can subsequently decrypt.

More precisely, given a ciphertext c that is encrypting m according to the key of
player A, a player that possesses m′ can transform c to a superposed ciphertext that
no player alone can decrypt and contains the encryption of m · m′. The superposed
ciphertext can be subsequently reduced to a player-A-ciphertext that encrypts m · m′

by player B, or to a player-B-ciphertext that encrypts m · m′ by player A. Superposed
encryption was introduced in [20] and as a notion subsumes (2, 2)-threshold encryption
which was also demonstrated to have a number of applications in two party secure com-
putations (see e.g., [23]). Formally, superposed encryption is a sequence of procedures
〈K, K ′, E, Eext, D, Dsup〉 defined as follows:

– The key generation algorithm K is comprised by an initial key generation step that
produces the public parameter param, as well as K ′ that produces the public-key
and secret-key for each user (given the parameter param).

Below we fix param ← K(�) and

(pkA, skA), (pkB, skB) ← K ′(param)

– The two encryption functions are defined as follows: EpkX : P → C and
Esup,X

pkA,pkB
: P × C → Csup for each player X ∈ {A, B}.

– The encryption function EpkX is homomorphic for the plaintext (P, +), random-
ness (R, ⊕) and ciphertext group (C, �). Moreover, (P, +, ·) is a ring.

– The superposed encryption: Esup,X
pkA,pkB ,skX

(m, EpkX
(m′)) as well as the one with

the plaintexts in reverse order: Esup,X
pkA,pkB ,skX

(m′, EpkX
(m)) are indistinguishable

for any fixed m, m′, where X is a player, X ∈ {A, B}, and X is the other player,
X ∈ {A, B} − {X}.

– The decryption functions satisfy the following conditions:
• DskX (EpkX (m)) = m if X ∈ {A, B}, for all m ∈ P .
• For any fixed c ∈ EpkX (m′), it holds that if c′ is distributed according to

Dsup
skX

(Esup,X
pkA ,pkB ,skX

(m, c))

then c′ is uniformly distributed over EpkX
(m · m′).

where X ∈ {A, B} and X is the single element of {A, B} − {X}.

Implementation. It is possible to build a superposed encryption scheme based on ElGa-
mal encryption as follows:

Parameter Generation. Two primes p, q such that q dividing p − 1 are selected as well
as an element g of order q inside Z

∗
p. The public-parameters param are set to 〈p, q, g〉.
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Key Generation. Each player X samples skX at random from Zq and sets pkX = hX =
gskX .

Encryption. The encryption function using param and pkX , given m ∈ Zq it samples
r from Zq and returns 〈gr, hr

Xgm〉.

Decryption. The decryption function using param and skX , given 〈G, H〉 it returns
HG−skX [note again that this does not reveal the value of m but this does not affect
our constructions that require the extraction of only a single bit from m; in particular
we will only be interested in the predicate Zero(DskX (〈G, H〉)) = 1.

Superposed Encryption. Given a ciphertext 〈G, H〉 that was sampled from EpkX
(m′)

the superposed encryption operates as follows:

Esup,X
pkA,pkB ,skX

(m, 〈G, H〉) = 〈Gm′
gr′

, Hm′
Gm′·skX (hA · hB)r′〉

Observe that

Esup,X
pkA,pkB ,skX

(m, 〈gr, (hX)rgm〉) = 〈grm′+r′
, (hX)m′rgmm′

(hX)m′r(hA · hB)r′
〉

= 〈gr∗
, (hA · hB)r∗

gm·m′
〉

where r∗ = rm′ + r′ and r′ is sampled at random from Zq , i.e., r∗ is also uniformly
distributed over Zq for any fixed value of r, m′.

A player X ∈ {A, B} removes his decryption from the superposed ciphertext 〈Gsup,
Hsup〉 using his secret-key skX as follows 〈Gsup, HsupG

−skX
sup 〉. Observe that this is

equal to 〈gr∗
, (hA · hB)r∗

g−r∗·skX gm·m′〉 = 〈gr∗
, (hX)r∗

gm·m′〉 i.e., it results in a
ciphertext under the public-key of player X .

Additional cryptographic tools, including interactive protocols, semi-honest security,
zero-knowledge proofs of knowledge and universally composable commitments can be
found in the appendix.

3 Quantified Membership Queries

Suppose that there are two parties, Client and Server, each one possessing a non-empty
set of objects, C and S respectively. Without loss of generality we assume that C, S ⊆
[n] def= {1, . . . , n}. Note that for any M ⊆ [n], we will denote by M the complement of
M inside [n].

The client wants to evaluate the truth-value of a predicate over the two sets C and S
which is expressed as a “quantified membership query” that has the following syntactic
definition:

Definition 1. A quantified membership query (QMQ) is a predicate which has the fol-
lowing syntactic form:

ν(Qx ∈ A : x ∈ B)

where Q is a quantifier s.t. Q ∈ {∀, ∃}, ν is either ¬ or the empty string, A ∈
{C, S, C, S} and B ∈ {C, S, C, S} − {A, A}.
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When talking about a general QMQ as above, instead of client and server we will
use Alice and Bob to signify the owners of the sets A and B respectively (and Alice
and Bob may be either the client or the server depending on the particular choice of the
sets A, B).

Given a QMQ φ and the actual values of the subsets C, S, we can define the truth val-
uation of φ as follows: the QMQ “∀x ∈ C : x ∈ S” is to be interpreted as
∀x (x ∈ C) → (x ∈ S) and the QMQ “∃x ∈ C : x ∈ S” is to be interpreted as
∃x (x ∈ C) ∧ (x ∈ S). Similarly for other choices of A, B ∈ {C, S, C, S}. The valu-
ation of φ would be equal to the truth value of the corresponding predicate as defined
above. We will denote this truth value as tC,S(φ) ∈ {T, F}.

Definition 2. A protocol for evaluating a QMQ φ is a two-party interactive protocol
Pφ between two-players, the client and the server, each one possessing a set, C, S
respectively, which are both subsets of [n]. Either party may perform the first move of the
protocol Pφ, but only the client receives output. The protocol computes the functionality
tC,S(φ), i.e., upon termination of the protocol the client’s output matches the valuation
of φ on the two sets C, S.

Given the definition above, the problem that the present work is focused on is as follows:
given a QMQ φ, design a protocol that evaluates φ so that the inputs of the client and the
server are private, in the semi-honest privacy model as well as in the malicious model.
With respect to security, we assume that the values |C| and |S| are publicly known.

C ∩ S �= 0 ∃x ∈ C : x ∈ S ¬∀x ∈ C : x ∈ S

∃x ∈ S : x ∈ C ¬∀x ∈ S : x ∈ C

C ∩ S �= 0 ∃x ∈ C : x ∈ S ¬∀x ∈ C : x ∈ S

∃x ∈ S : x ∈ C ¬∀x ∈ S : x ∈ C

C ∩ S �= 0 ∃x ∈ C : x ∈ S ¬∀x ∈ C : x ∈ S

∃x ∈ S : x ∈ C ¬∀x ∈ S : x ∈ C

C ∩ S �= 0 ∃x ∈ C : x ∈ S ¬∀x ∈ C : x ∈ S

∃x ∈ S : x ∈ C ¬∀x ∈ S : x ∈ C

C ⊆ S �= 0 ∀x ∈ C : x ∈ S ¬∃x ∈ S : x ∈ C

∀x ∈ S : x ∈ C ¬∃x ∈ C : x ∈ S

C ⊆ S �= 0 ∀x ∈ C : x ∈ S ¬∃x ∈ S : x ∈ C

∀x ∈ S : x ∈ C ¬∃x ∈ C : x ∈ S

C ⊆ S �= 0 ∀x ∈ S : x ∈ C ¬∃x ∈ S : x ∈ C

∀x ∈ C : x ∈ S ¬∃x ∈ C : x ∈ S

S ⊆ C �= 0 ∀x ∈ S : x ∈ C ¬∃x ∈ C : x ∈ S

∀x ∈ C : x ∈ S ¬∃x ∈ S : x ∈ C

Fig. 2. QMQ’s and their set theoretic semantics

Semantic Interpretation of QMQ’s. Each QMQ φ in the semantic sense corresponds
to one of eight possible relations (cf. figures 2,3) that two sets may have with respect to
each other, considering intersection and inclusion operations. A list of QMQ’s together
with their semantic interpretation as set relations using intersection and inclusions is
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C S

C S

C S

C S

C S

C S

C S

C S

C S

C

S

C S

C

S

C S

S

C

S C

C
S

Fig. 3. The eight possible dataset predicate relations based on intersection and inclusion operators

presented in figure 2. As shown in figure 2, each of the relations of figure 3 can be
expressed by four different QMQ’s. Moreover for each QMQ two different protocols are
possible, depending on which party will send the first message in the protocol (this will
produce quite different protocols as we will see in our compiler construction below).

4 Syntax-Driven Compiler for QMQ’s

In this section we describe a syntax-driven compiler for QMQ’s. For uniformity we
think of the protocols as interactions between two players, Alice and Bob, that may be
interchangeably either the server or the client depending on the given QMQ.

The main idea. The main idea of the compiler is the following: Bob selects a polyno-
mial f so that the roots of f are the elements of the private set of Bob. Then, depending
on the quantifier of the QMQ, Alice and Bob will engage in an interaction that will
compute either

∑
a∈A ra · f(a) (case ∀) or

∏
a∈A f(a) (case ∃). Observe that the sum

is zero if and only if all values f(a) equal 0 (with high probability) and that the product
is zero if and only if there exists a value f(a) that equals 0. Based on this algebraic
interpretation of a QMQ (and additional fine tuning steps, see below) the semantics are
achieved.

In more detail. The input to the compiler is φ, a QMQ in the form of definition 1,
i.e., a string ν(Qx ∈ A : x ∈ B). The compiler reads QMQ φ and assigns set A
to Alice who is either the client or the server depending on A, and assigns the set B
to Bob who is either the client or the server depending on B. In each protocol, Bob
defines a polynomial f ∈ Zq[x] where q is a large prime so that f(i) = 0 iff i ∈ B.
This polynomial is evaluated with all elements of Alice’s set A. The final result of
the protocol is obtained as follows: If Q = ∀, the protocol allows the two parties to
calculate

∑
ai∈A ri · f(ai) (in encrypted form) where each ri is randomly sampled

from Zq . Observe that
∑

ai∈A ri · f(ai) = 0 (with high probability) if and only if all
f(ai) = 0 for all ai ∈ A. On the other hand, if Q = ∃, the protocol allows the two
parties to calculate

∏
a∈A f(a) (in encrypted form). Observe that

∏
a∈A f(a) = 0 iff

at least one of f(a) = 0. It follows that the output of the protocol can be obtained by
checking whether a ciphertext decrypts to 0.



478 A. Kiayias and A. Mitrofanova

The compiler also requires as additional input a specification: whether the client
will send the first message of the polynomial evaluation protocol or the server will
send the first message; this choice will produce two different protocols. In other words,
the input to the compiler will be a pair 〈φ, first〉 where φ is a QMQ, and first
is either client or server and specifies what party goes first in the protocol. We
note that this specification does not violate the client-server model by having the server
going first as we assume that the polynomial evaluation protocol will be executed after
the client and the server have completed an initial handshake that was initiated by the
client.

For any set-theoretic predicate relation described in 3, it is possible to obtain four
corresponding QMQs and then generate two protocols per QMQ resulting in 8 different
protocols in total. While these protocols will correspond to the same functionality, they
will have different constructions as well as communication and round complexities. In
fact, the communication complexity of the generated protocols follows these general
rules: If Q = ∀ and Alice starts the protocol, complexity is O(|A| × |B|); if Bob starts,
the complexity will be O(|B|). If Q = ∃, regardless who sends the first message, the
communication complexity is O(|A| × |B|) and the protocol is performed in O(|A|)
rounds. As a result, players can choose what is best depending on their application
domain. The construction of the compiler is as follows:

Compiler. Given 〈ν(Qx ∈ A : x ∈ B), first〉, If A ∈ {C, C} then the compiler
specifies Alice to be the client and Bob to be the server; otherwise Alice is the server
and Bob is the client. If first = client and Alice is the client, Alice starts the
protocol; otherwise, Bob starts the protocol. If Alice is the client, we say that Alice
receives output; otherwise, Bob receives output.

The compiler produces the protocol for the given input by traversing a path of the
directed acyclic graph of figure 4 to obtain the steps that are required for the output
protocol. The directed acyclic graph is traversed based on: whether Alice or Bob starts
the protocol, the quantifier Q, whether Alice or Bob receives the output and whether
the QMQ starts with the negation sign ¬. After a path of the graph is determined, the
compiler produces the protocol by substituting each step with the specifications that are
given below. Note that all occurrences of Alice and Bob will be substituted with either
client or server depending on the input to the compiler as explained above.

Step 0. The public parameters param for a superposed encryptions scheme are sampled
using the procedure K . Alice and Bob execute the procedure K ′ to obtain their public-
keys pkA, pkB and secret-keys skA, skB .

Step 1. Bob defines a polynomial f ∈ Zq[x] such that f(b) = 0 if and only if b ∈ B.
The degree of the polynomial is m and f(x) = t0 + t1x + . . . t|B|x|B|.

Step 2A∀A. Alice prepares the encryptions of the elements a, a2, . . . , a|B| for each
a ∈ A = {a1, . . . , a|A|}. In particular Alice computes Ci,j = EpkA(aj

i ) for j =
1, . . . , |B| and i = 1, . . . , |A| and j = 1, . . . , |B|. Alice transmits the ciphertexts
〈Ci,j〉i=1,...,|A|,j=1,...,|B|.
Communication: |A| · |B|
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Step 0

Step 1

Step 2A A

Step 2A 1A

Alice starts, Q=

Alice starts, Q=

Step 2B B

Bob starts, Q=
Step 2B 1B

Bob starts, Q=

Step 2A 1B

Step 2A 2A

Step 2A 2B

Step 2A aA

Step 2A aB

Step 2A B Step 2B A

Step 2B 1A

Step 2B 2B

Step 2B 2A

Step 2B aB

Step 2B aA

Step 3B Step 3A

Step 3AB

Step 3BA

output: Alice

output: Alice

output: Bob

output: Bob

output: Alice

output: Alice

output: Bob

output: Bob
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Fig. 4. Compiler protocol overview. Note that a = |A|.
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Step 2A∀B. Bob computes the ciphertext c = EpkA(t0) ·
∏|A|

i=1(
∏|B|

j=1 c
tj

i,j)
ri . Observe

that c = EpkA(
∑

i=1...|A| ri × f(ai)) where ri is a random number drawn from Zq .

Step 2A∃1A. Alice computes C1,j = EpkA(aj
1) for j = 1, . . . , |B| and transmits the

ciphertexts 〈C1,j〉j=1,...,|B|.
Communication: |B|

Step 2A∃1B. Bob computes the superposed encryptions

C∗
1,j = Esup,B

pkA,pkB ,skB
(tj , C1,j)

for j = 1, . . . , |B| and then using the homomorphic property of the superposed encryp-
tion it computes

C∗
1 = Esup,B

pkA,pkB ,skB
(t0, EpkA(1)) ·

|B|∏

j=1

C∗
1,j

Observe that C∗
1 is a superposed encryption of f(a1). Bob transmits C∗

1 .
Communication: 1

Step 2A∃iA. Alice removes her encryption from the superposed ciphertext C∗
i−1 to ob-

tain the ciphertext Ci−1 and then computes the superposed encryptions

C′
i,j = Esup,A

pkA,pkB ,skA
(aj

i , Ci−1)

for j = 1, . . . , |B|. Alice transmits the superposed ciphertexts 〈C′
i,j〉j=1,...,|B|.

Communication: |B|

Step 2A∃iB. Bob removes his encryption from the superposed ciphertexts
〈C′

i,j〉j=1,...,|B| to obtain the ciphertexts Ci,j and computes the superposed encryptions

C∗
i,j = Esup,B

pkA,pkB ,skB
(tj , Ci,j)

and then using the homomorphic property of the superposed encryption it computes

C∗
i = Esup,B

pkA,pkB ,skB
(t0, EpkA(1)) ·

|B|∏

j=1

C∗
i,j

Observe that C∗
i is a superposed encryption of

∏i
�=1 f(a�). Bob transmits C∗

i except
when i = |A|.
Communication: 1 except when i = |A|.

Step 2B∀B. Bob prepares the encryptions cj = EpkB (tj) for j = 0, . . . , |B| and trans-
mits them to Alice.
Communication: |B + 1|

Step 2B∀A. Alice computes c = EpkA(0) ·
∏|A|

i=1(
∏|B|

j=0 c
aj

i
j )ri using the homomorphic

property. Observe that c = EpkA(
∑

i=1...|A| ri × f(ai)) where riis a random variable
drawn from Zq.



Syntax-Driven Private Evaluation of Quantified Membership Queries 481

Step 2B∃1B. Bob prepares the encryptions cj = EpkB (tj) for j = 0, . . . , |B| and
transmits them to Alice.
Communication: |B| + 1

Step 2B∃1A. Alice computes the superposed encryptions

C∗
1,j = Esup,A

pkA,pkB ,skA
(aj

1, cj)

for j = 0, . . . , |B|. Using the homomorphic property of superposed encryptions it com-
putes C∗

1 =
∏|B|

j=0 C∗
1,j . Observe that C∗

1 is a superposed ciphertext that encrypts f(a1).
Alice transmits C∗

1 .
Communication: 1

Step 2B∃iB. Bob removes his encryption from C∗
i−1 to obtain the ciphertext Ci−1 and

then computes the superposed ciphertexts

C′
i,j = Esup,B

pkA,pkB ,skB
(tj , Ci−1)

for j = 0, . . . , |B|. Bob transmits to Alice the ciphertexts C′
i,0, . . . , C

′
i,|B|.

Communication: |B| + 1

Step 2B∃iA. Alice removes her encryption from C′
i,j , j = 0, . . . , |B| to obtain the

ciphertexts Ci,j and computes the superposed encryptions

C∗
i,j = Esup,A

pkA,pkB ,skA
(aj

i , ci,j)

for j = 0, . . . , |B|. Using the homomorphic property of superposed encryptions it
computes C∗

i =
∏|B|

j=0 C∗
i,j . Observe that C∗

i is a superposed ciphertext that encrypts
∏i

�=1 f(a�). Alice transmits C∗
i except when i = |A|.

Communication: 1 except when i = |A|.
Step 3A. Alice sends the superposed ciphertext C∗ to Bob.
Communication: 1

Step 3B. Bob sends the superposed ciphertext C∗ to Alice.
Communication: 1

Step 3AB. Bob removes his encryption from C∗ to obtain the ciphertext C and transmits
to Alice.
Communication: 1

Step 3BA. Alice removes her encryption from C∗ to obtain the ciphertext C and trans-
mits C to Bob.
Communication: 1

Step 4A. Alice tests whether C encrypts 0 and returns 1 in this case, otherwise 0. If
ν = ¬ it flips her answer.

Step 4B. Bob tests whether C encrypts 0 and returns 1 in this case, otherwise 0. If ν = ¬
it flips his answer.

This completes the description of the compiler.
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Theorem 1. For each 〈φ, first〉, first ∈ {client, server}, the syntax-driven com-
piler described above produces a protocol P between two parties, the client and the
server, that evaluates the QMQ φ correctly with overwhelming probability so that the
party first sends the first message in the protocol.

Note that “overwhelming probability” is interpreted as 1 − 2−ν where ν is a security
parameter.

4.1 Security

In this section we will argue about the security of the protocols that are generated by the
compiler. The theorem below is based on the fact that the view of either player, Alice or
Bob, in all the protocols that are possible outputs of the compiler as described in figure 4
can be simulated without having access to the private input of either player. This is also
based on the fact that ciphertexts, regular and superposed, using the implementation of
encryption of section 2, are semantically secure under the Decisional Diffie Hellman
assumption.

Theorem 2. For all QMQ φ and first that belongs to {client, server} the protocol
generated by the compiler on input 〈φ, first〉 is secure with respect to semi-honest
behavior under the Decisional Diffie Hellman assumption.

Security against malicious behavior will require additional modifications to the com-
piler construction. Note that the general structure of the compiler will remain the same;
nevertheless, additional actions will be required to be taken by the players in each step.
In this extended abstract we will only provide a brief overview of the set of modifica-
tions that are required for the malicious adversarial setting.

Let us consider the step 2A∀A, where Alice sends the encryption of the elements
a, a2, . . . , a|B|. Since this is the first time that Alice communicates with Bob, in addi-
tion to whatever actions Alice does at this step she will provide a sequence of univer-
sally composable commitments to all her private values. For example for each value
a ∈ A, Alice will provide the commitment 〈ψ, Ca〉 where Ca is of the form γa

1γr
2

and ψ is a ciphertext that encrypts a. Note that the ciphertext ψ is encrypted with a
public-key that is part of a common reference string that the two players can employ in
their interaction and is assumed to be securely generated. Alice subsequently will prove
in zero-knowledge that all encryptions she publishes are consistent with the the UC-
commitments Ca, for a ∈ A. In particular, recall that C1,1 = EpkA(a1) = 〈G1, H1〉 =
〈gr1 , (hA)r1ga1〉. Alice will prove the following statement in zero-knowledge to Bob:
PK(x1, x2, x3 : (G1 = gx1) ∧ (H1 = (hA)x1gx2) ∧ (Ca = γx2

1 γx3
2 )). The above

zero-knowledge proof suggests that the ciphertext 〈G, H〉 is properly constructed and it
encrypts the same value that is committed into Ca1 . In similar fashion, Alice will prove
a statement about the ciphertext C1,2 which recall that is defined as follows: C1,2 =
EpkA(a2

1) = 〈G2, H2〉 = 〈gr2 , (hA)r2ga2
1〉. Alice will provide a zero-knowledge proof

for the following statement: PK(x1, x2, x3 : (G1 = gx1)∧(H1 = (hA)x1gx2) ∧(G2 =
gx3)∧ (H2 = (hA)x3gx2·x2)∧ (Ca = γx2

1 γx3
2 )). The above zero-knowledge proof sug-

gests that the value that is encrypted into 〈G2, H2〉 is the product of the value that is
encrypted into the ciphertext 〈G1, H1〉 and the value that is committed into Ca1 . This
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statement together with the previous one suggest that the ciphertext 〈G2, H2〉 contains
the square of the value a1. In a similar fashion Alice can prove the validity of the remain-
ing ciphertexts Ci,j for i = 1, . . . , |A| and j = 1, . . . , |B|. Note that during the course
of the executions of all these steps a number of zero-knowledge proofs are generated
by Alice and directed to Bob. We assume of course that Bob will terminate the protocol
if one of these proofs is found to be false. Finally observe that all of the above modifi-
cations in step 2A∀A do not change the communication complexity in the asymptotic
sense since the combined length of all the zero-knowledge proofs is O(|A| · |B|).

This completes the description on how step 2A∀A is modified. The modifications
that are required in the other steps of the compiler construction are of similar nature and
we will not include them in this extended abstract. Nevertheless the principal ideas are
the same. Note that in all steps, Alice will prove the consistency of her ciphertexts with
respect to the UC-commitments {Ca}a∈A. Similarly Bob will prove the consistency of
his ciphertexts with respect to the UC-commitments {Cb}b∈B . The UC-commitments
need only be exchanged during the first round of communication and subsequent steps
by either player can refer to the originally exchanged commitments. Observe that Bob
is not using his values directly but instead he is using them through the coefficients
t0, . . . , t|B| of the polynomial f that has the values b ∈ B as roots. This will require for
Bob to prove that the polynomial f has as roots the values that he has UC-committed
to. This can be done in the similar fashion as above. Finally, in steps 2A∀B and 2B∀A,
where one of the players selects the random elements ri, the two players must generate
such random elements collaboratively to ensure the required distributional property.

Given the above set of modifications to the steps of our protocol, it can be proven se-
cure in the malicious setting. Indeed, we can provide now a simulator that can transform
any real-world implementation of Alice or Bob to an ideal-world implementation using
the extractability properties of the UC-commitment (while at the same time simulating
the other player).

5 Applications

Subset Inclusion Predicate. The client wishes to check whether it holds that C ⊆ S.
There are four possible QMQ’s each one yielding two different protocols, depending
on which player starts. Note that below a “round” is two communication flows (e.g.,
from Alice to Bob and back). Moreover, we will classify schemes on the relative sizes
of C, S compared to the universe.

– ∀x ∈ C : x ∈ S. The client plays the role of Alice and the server plays the role
of Bob. If Alice (client) starts, the communication complexity is |C| × |S| + 1 in
1 round. On the other hand, if Bob (server) starts, the communication complexity
is |S| + 3 in 1.5 rounds. This protocol has better communication complexity but is
worse in terms of round complexity. This QMQ is suited for small C, S.

– ∀x ∈ S : x ∈ C. The server plays the role of Alice and the client plays the role
of Bob. If Alice (server) starts, the communication complexity is |C| × |S| + 2 in
1.5 rounds. Nevertheless, if Bob (client) starts, the communication complexity is
|C| + 2 in 1 round, i.e., this the preferred of the two. This QMQ is suited for large
C, S.
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– ¬∃x ∈ C : x ∈ S. The client plays the role of Alice and the server plays the role of
Bob. If Alice (client) starts, the communication complexity is |C|× (|S|+1) in |C|
rounds. If Bob (server) starts, the communication complexity is |C| × (|S| + 2) in
|C| + 0.5 rounds. This QMQ is suitable for small C and large S and in particular
when C is smaller than S.

– ¬∃x ∈ S : x ∈ C. The server plays the role of Alice and the client plays the role
of Bob. If Alice (server) starts, the communication complexity is |S| × (|C| + 1)
in |S| + 0.5 rounds. If Bob (client) starts, the communication complexity is |S| ×
(|C| + 2) in |S| rounds. This QMQ is suitable for small C and large S and in
particular when S is smaller than C.

Disjointness Predicate. The client wishes to check if C
⋂

S
?= ∅. There are four possi-

ble QMQ’s each one yielding two different protocols depending on which player starts:

– ∃x ∈ C : x ∈ S. The client plays the role of Alice and the server plays the role
of Bob. If Alice (client) starts, the communication complexity is |C| × (|S| + 1) in
|C| rounds. If Bob (server) starts, the communication complexity is |C|× (|S|+2)
in |C| + 0.5 rounds. This QMQ is suited for small C, S and in particular when C
is smaller than S.

– ∃x ∈ S : x ∈ C. The server plays the role of Alice and the client plays the role
of Bob. If Alice (server) starts, the communication complexity is |S| × (|C| + 1)
in |S| + 0.5 rounds. If Bob (client) starts, the communication complexity is |S| ×
(|C| + 2) in |S| rounds. This QMQ is suited for small C, S and in particular when
S is smaller than C.

– ¬∀x ∈ C : x ∈ S. The client plays the role of Alice and the server plays the
role of Bob. If Alice (client) starts, the communication complexity is |C| × |S| + 1
in 1 round. Players can choose this protocol if client’s set and the complement
of server’s set are small. If Bob (server) starts, the communication complexity is
|S| + 3 in 1.5 rounds. These two protocols are suited for the case of a large S, the
first one being preferable when C is rather small.

– ¬∀x ∈ S : x ∈ C. The server plays the role of Alice and the client plays the role of
Bob. If Alice (server) starts, the communication complexity is |C| × |S| + 1 in 1.5
rounds. If Bob (client) starts, the communication complexity is |C| + 2 in 1 round
and thus this is the preferred of the two. This protocol is suited for the case of a
large C.
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