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Abstract. Most network intruders tend to use stepping-stones to attack or 
invade other hosts to reduce the risks of being discovered. One typical approach 
for detecting stepping-stone intrusion is to estimate the number of connections 
of an interactive session by using the round-trip times (RTTs) of all Send 
packets. The key of this approach is to match TCP packets, or compute the RTT 
of each Send packet. Previous methods, which focus on matching each Send 
packet with its corresponding Echo packet to compute RTTs, have tradeoff 
between packet matching-rate and matching-accuracy. In this paper, we first 
propose and prove a clustering algorithm to compute the RTTs of the Send 
packets of a TCP interactive session, and show that this approach can compute 
RTTs with both high matching-rate and high matching-accuracy.  
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1   Introduction 

Computer and network security has been becoming more and more important as 
people depend on the Internet to conduct business, and the number of the Internet 
attacks has increased greatly [1], [2], [3]. To detect and traceback intruders on the 
Internet have become more and more difficult than before because most intruders are 
using some sophisticated technologies and usually launching their attacks indirectly to 
reduce the risks of being discovered. One prevalent way used by intruders is to take 
advantage of stepping-stones [4], which are computer hosts compromised by intruders 
to hide themselves deeply, to launch their attacks. Bunch of techniques have been 
proposed and developed to detect such kind of attacks, called stepping-stone 
intrusion. 

One representative of the techniques is to estimate the downstream length (in 
number of connections) of a connection chain from the monitor host where a monitor 
program resides to the destination host to detect the existence of a stepping-stone 
intrusion. Yung [5] firstly published the idea to do it in 2002. In that paper, Yung 
proposed to use the RTT between one Send packet and its corresponding Echo packet 
to measure the length of a connection chain. The problem is that Yung did not 
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propose a way to match each Send and Echo packet exactly. Instead he used statistical 
method to estimate the RTT of a Send packet, which is not accurate, especially when 
send-echo pairs are overlapped deeply, which happens often on the Internet. Yang and 
Huang [6] published an idea to estimate the RTT of a Send packet by matching a TCP 
Send packet with its corresponding Echo packet; it results in the Conservative and the 
Greedy algorithms. Yang [6] makes use of TCP Send and Echo packet sequence 
number and takes advantage of the gap between two consecutive Send packets to 
match TCP packets. However, even though Yang claimed that the Conservative 
algorithm can estimate the RTT accurately, but only few packets are matched 
especially under the scenario that send-echo pairs are overlapped deeply. The Greedy 
algorithm can cover most of the Send packets, but with some incorrectly matches. 
Neither of them can obtain both high packet matching-rate and high packet matching-
accuracy. The problem is that they always search for a ‘candidate’ Echo packet 
locally, rather than globally, when they try to match a Send packet. 

In this paper, we propose a clustering algorithm that matches most of Send 
packets, and computes the RTTs of Send packets more accurate. This algorithm is 
based on a result that is a cluster with smallest standard deviation has the highest 
probability to represent the true RTTs, which can be proved by using Chebyshev 
inequality. The clustering algorithm can get both high packet matching-rate and high 
packet matching-accuracy in computing packet RTTs because it looks for a 
‘candidate’ Echo packet globally when it tries to match a Send packet. The way used 
in the Conservative and the Greedy algorithms is that once an Echo packet is 
captured, we must determine its matched Send packet immediately even though 
sometimes we could not.  Unlike this way, the clustering algorithm takes the approach 
that once we catch an Echo packet, we do not determine its matched Send packet 
immediately even though occasionally we are pretty sure the matched Send packet.  

The contributions of this paper are the two points. 1) We prove a result that is the 
cluster, which is generated from the Send and Echo packets of a TCP interactive 
session, with smallest standard deviation has the highest probability to represent the 
true RTTs of the Send packets. 2) We propose a clustering algorithm based on the 
proved result to compute the RTTs by matching each TCP Send and Echo packets 
globally. 

The rest of this paper is arranged as following. In Section 2, we talk about the 
motivations of proposing the clustering algorithm to compute RTTs. Section 3 
presents the clustering algorithm and its probabilistic proof. In section 4, some 
experimental results and comparisons are presented. Section 5 presents some related 
work. Finally, in Section 6, the whole work is summarized, and the future work is 
presented.  

2   The Motivation 

Detecting a long interactive connection chain is a very important method to detect 
stepping-stone intrusion because it has no false alarms. The key issue of estimating 
the length of a connection chain is to match the TCP packets flowing through a 
connection chain, or to compute the RTTs of TCP Send packets. If each Send packet 
is followed immediately by one or more Echo packets, such as the sequence {s1, e1, s2, 
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e2, e3, s3, e4} in which each element represents the timestamp of the corresponding 
Send or Echo packet, the gaps e1-s1, e2-s2, and e4-s3 would be the true RTT of each 
Send packet s1, s2, and s3 respectively. The complexity of matching TCP packets is in 
the situation that more Send packets are followed by more Echo packets, which is 
overlap of send-echo pair. For example, if the above case became the sequence {s1, s2, 
e1, e2, e3, s3, e4}, there would be several possible packet-matching schemes. 1) Send 
packet s1 together with s2 are matched by e1, e2, and e3; 2) s1 is matched with e1, as 
well as s2 is matched with e2, and e3; 3) s1 is matched with e1 and e2, thus s2 matches 
e3; 4) s1 matches e1, e2, and e3, therefore, s2 and s3 match e4. If you look at the four 
schemes, s1 must match e1 whatever the matching scheme is. This is just the idea of 
the Conservative algorithm [4], which has low matching-rate because it ignores to 
match s2 in the above case. The Greedy algorithm [4] takes a very rapacious way to 
match the rest Send packets, which is FIFO. As a result, for the above case, the 
Greedy algorithm would match s1 with e1, in addition, match s2 with e2. This is why it 
is possible that the Greedy algorithm has low matching-accuracy because the matches 
determined by FIFO policy might not be correct.  

However, we are aware of one fact that each Echo packet must correspond to one 
or more Send packets which timestamps are smaller than that of the Echo packet. 
When we capture an Echo packet, even though we are not sure its matched Send 
packet, but we do know there is at least one Send packet matched with it. We simply 
assume that every Send packet is supposed to match the Echo packet, and compute 
each gap between each Send packet and the Echo packet. For each Echo packet, we 
have one gap set in which one of the gaps must be the true RTT of the Echo packet. 
The problem is that we are not sure which gap is the right one.  The interesting thing 
is if we observe more such gap sets, we found that for most of the gap sets, each gap 
set has one element that is very close to the ones in other gap sets. The only sound 
explanation is those tight elements are the true RTTs of the Send packets unless this is 
a coincidence. The more gap sets we observe, the lower probability that it is a 
coincidence. After we explore the distribution of true RTTs, we believe the 
probability of coincidence is extremely small. The feature of the distribution of the 
true RTTs motivates us a way to extract the RTTs from the gap sets observed. This 
way is the algorithm to be discussed in Section 3. 

The RTT of a Send packet is the sum of processing delay, queuing delay, 
transmission delay and propagation delay [10] for the packet in a connection chain on 
the Internet. Further research pointed out that a RTT is mainly determined by the 
propagation delay and the queuing delay [10]. The propagation delay determines 
mainly its constant part, and the queue delay determines mainly its varying part, 
which can be simulated by an exponential distribution. In other words, the variation of 
the RTTs can be modeled as an exponential distribution, which indicates that most of 
the true RTTs are scattered in a very small range. The true RTTs can be different 
because the Internet traffic always fluctuates but they vary slightly. If we use standard 
deviation to measure the variation degree of RTTs, it should be small. If we combine 
the elements in the gap sets to form clusters, the cluster with smallest standard 
deviation should have the highest probability to represent the true RTTs. If we could 
prove this point, the way to pull out the true RTTs from the gap sets would become to 
find the cluster with smallest standard deviation.  
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Table 1 shows the comparison of standard deviation over different clusters in a real 
world example that can give us some practical sense on the above analysis. In this 
example, a connection chain, which contains six connections, is established by using 
OpenSSH. We monitor the connection chain at the start of the session for a period of 
time, and capture all the Send and Echo packets. First, for each Echo packet, we form 
one gap set; second, we form all the clusters by combining the elements in all the gap 
sets (for details to form the clusters, see Section 3). We compute the standard 
deviation (with unit microsecond) of each cluster and show only part of the results in 
Table 1. It is apparently that the standard deviation of the RTTs (one of the clusters) is 
much smaller than that of any other cluster. 

Table 1. Comparison of standard deviations of time gap clusters 

RTTs cluster1 cluster2 cluster3 cluster4 cluster5 
2.8E3 4.4E7 3.3E6 2.7E5 1.7E7 8.5E6 

 
There are two problems needed to mention. One is to process resend packet. 

Another is to process the Send packets without reply. Resend packets are easy to 
handle because they have the same sequence (Seq) and acknowledgement (Ack) 
number. We do not record the Send packet if it has the same Seq and Ack number as 
its previous packet. We know that is not every Send packet is replied by the victim 
site (or the host at the end of a session). There are still few Send packets only 
acknowledged by the downstream neighbor host or not replied at all, such as ignore 
packet, keep-alive packet, and key re-exchange packet [7], [8], [9]. These packets are 
not intended for the target machine, so we cannot capture their Echo packets. The 
question is if they affect the result of packet-matching or computing RTTs. First, it 
does not affect our clustering algorithm much because the amount of these packets is 
very small comparing to the whole Send packets. Second, if a Send packet is not 
echoed by the final destination host, it does not matter due to the two reasons. 1) Its 
gap is not involved into the cluster that represents the RTTs because this gap is 
probably either smaller or larger than a regular RTT. 2) Even though we assume that 
the gap between this Send packet and the other Echo packet is close to the true RTTs 
and involved into the RTT cluster accidentally, but the only effect is we have one 
more packet-matching. It does not affect the estimation of RTTs. To simplify our 
analysis, we assume every Send packet is replied by the final destination host. 

3   Clustering Algorithm and Its Proof 

Given two sequences S={s1, s2, …, sn} and E={e1, e2, …, em}, where si is a Send 
packet, as well as its timestamp, and so is ej. We assume that the packets in these two 
sequences are captured from the monitor host in a connection chain at the same period 
of time. We can use S and E to generate different data sets, which are actually 
aggregations of gaps between each Send packet in S and each Echo packet in E. There 
are two ways to create the data sets: one is to compute the gaps based on each Echo 
packet in E, while another is based on each Send packet in S. Obviously the data sets 
created by the two ways are fundamentally equivalent. 



22 J. Yang and Y. Zhang 

If we create each data set based on each Send packet in S, we have the following n 
data sets in which the negative elements are not taken into consideration: 

S1={s1e1, s1e2,…, s1em},   
S2={s2e1, s2e2,…, s2em}, 
… 
Sn={sne1, sne2,…, snem }. 

Here, Si represents ith data set based on the Send packet si; siej=ej-si represents the 
time gap between the timestamp of ith Send packet and the jth Echo packet. There is 
one and only one gap which represents the true RTT in each data set because we have 
assumed that each Send must be replied by the victim site (final destination host).  

If we create the data sets based on each Echo packet in E, we have the following m 
data sets in which the negative elements are also not taken into consideration: 

 E1={s1e1, s2e1,…, sne1 },   
 E2={s1e2, s2e2,…, sne2 }, 
 ... 
 Em={s1em, s2em,…, snem}. 

Similarly, Ej represents the jth data set based on the Echo packet ej in E. We are not 
sure if we have and only have one gap to represent the RTT in each data set Ei. The 
reason is that one Send is possibly replied by one or more Echo packets. We need to 
define which one represents the true RTT of the Send exactly. Under this situation, we 
define the gap between the Send and the first Echo to represent the true RTT. A 
similar situation is that more Send packets are perhaps responded by only one Echo, 
under which we define the gap between the last Send and the Echo to represent the 
true RTT. Anyway, we prefer to define the smallest gap to represent the true RTT. 

For convenience, we first consider the data sets based on each Send in S. We 
already knew that each data set must contain one and only one true RTT, but we are 
not sure which one in a data set is the right one. We simply assume that each gap in 
each data set Si has the same probability to represent the RTT. We make a 
combination by picking up one element from each data set and call each combination 
a cluster, so we have mn clusters altogether. The true RTTs must be one of the mn 
clusters because all the possibilities of combination are enumerated. We can prove 
that the cluster with the smallest standard deviation has the highest probability to 
represent the true RTTs. The following clustering algorithm to compute the true RTTs 
of TCP Send packets is rooted in this statement. 

3.1   A Clustering Algorithm 

We monitor an interactive TCP session established by using OpenSSH for a period of 
time, capture all the Send and Echo packets, and put them in two sequences S with n 
packets and E with m packets, respectively. The following clustering algorithm with 
inputs S and E can compute the true RTTs for all the Send packets in S. 

A  Clustering Algorithm (S, E): 
Begin 
1. Create data sets Si, 1≤i≤n, and Si={t(i,j) | t(i,j)=t(ej)-t(si), 1≤j≤m }; 
2. Generate clusters Ck (1≤k≤mn) from data sets Si (1≤i≤n), and Ck={t(i, ji) ∈Si 

| ∀1≤i≤n & ji∈[1, m] & j1≤j2≤…≤jn}; 



 Probabilistic Proof of an Algorithm to Compute TCP Packet RTT 23 

3. Filter out each cluster C. For any cluster Ck: (a) if t(i, u), t(i, v) ∈ Ck & u<v, then 
delete t(i, u), and (b) if t(u, j), t(v, j) ∈ Ck & u<v, then delete t(v, j) 

4. Compute the standard deviation σ of each cluster C;   
5. Output the cluster Cu to represent the true RTTs of the Send packets in S, and 

Cu=Cq | σq≤σv  for all 1≤v≤mn. 
End 

Here we use t(i,j) to represent the time gap between ith Send packet and jth Echo 
packet, t(ej), and t(si) to represent the timestamp of jth Echo and ith Send packet, 
respectively. 

In Step 1, we create n data sets, one of which has at most m elements because the 
negative elements are not considered. In Step 2, we take one element from each data 
set and combine them into one cluster, thus at most form mn clusters because each 
data set has at most m elements. For any two clusters Cu and Cv, they must have at 
least one element different. The condition j1≤j2≤…≤jn can compress largely the 
space of the clusters. This condition is reasonable because once a Send packet, such as 
si, is assumed to match an Echo packet, such as ej, it is impossible that any Send 
packet after si will match an Echo packet before ej. In Step 3, we focus on handling 
the case that is either more Send packets are responded by one Echo packet or one 
Send packet is responded by more Echo packets. In Step 5, we select the cluster with 
the smallest standard deviation to represent the true RTTs of the Send packets in S. 
Step 5 is guaranteed by the following Theorem 1.  

Theorem 1. If given two sequences S (n Sends) and E (m Echoes) from the same 
session at same period of time, and generate clusters C1, C2, …, Ck from S and E 
according to the clustering algorithm, then the cluster with the smallest standard 
deviation has the highest probability to represent the true RTTs of the packets in S. 

Proof 
Given any cluster C of clusters C1, C2,…, Ck with distribution Z which has standard 
deviation σ1 and mean μ1. We assume that the Echo packets inter-arrival distribution 
is Y with mean μ2, standard deviation σ2, and the smallest inter-arrival is L. We first 
compute the probability of selecting an incorrect gap to represent the true RTT. 

Suppose ci, which is any element in cluster C, is selected from Si={sie1, sie2,…, siek-1, 
siek, siek+1, …, siem}, we assume the correct selection should be siek, but other element in 
Si is selected. To satisfy the condition that C has the smallest standard deviation, the 
element in Si selected incorrectly must be closer to μ1 than siek. The reason is that for 
any distribution, if we add one more element, the closer to the mean the one is, the 
smaller the standard deviation. Only one of the two elements siek-1, siek+1 has the highest 
probability to be selected incorrectly because the elements in Si are in ascending order. 
Here, we assume siek+1 is closer to μ1 than siek-1, so we have the inequality (1) which 
indicates that siek+1 is selected incorrectly to represent the true RTT, 

111 μμ −<−+ kiki eses                                          (1) 

We have assumed that L is the smallest interval in distribution Y, so we have 

11 2)()( σqLetet kk =≥−+                                              (2) 

Here q is a real number. From inequality (2), for any Send packet si, we have 
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11 2))()(()()( σqstetstet ikik ≥−−−+  

11 2 σqeses kiki ≥−+  

1111 2 σμμ qeses kiki ≥−+−+  

1111 2 σμμ qeses kiki ≥−+−+                                                           (3) 

From inequality (1) and (3), we derive 

11 σμ qes ki ≥−  

The probability that ci is selected incorrectly can be estimated by using Chebyshev 
inequality [11], [12], 

p(ci is selected incorrectly)=p(siek+1 is selected) 

                                 = )( 111 μμ −<−+ kiki esesp  

        =
211

1
)(

q
qesp ki <>− σμ  

In other words, the probability to make a correct selection of a Send packet’s RTT 
can be estimated by the following inequality, 

p(ci) = p(ci is selected correctly) 
        = 1-p(ci is selected incorrectly) 

        
2

1
1

q
−≥                                                        (4) 

Given any two clusters Ci and Cj with standard deviation σi and σj respectively, 
we know that:  

         σi <σj                                                         (5) 

and 

 Lqq jjii == σσ                                                      (6) 

Here, qi and qj are two real numbers. From Step 2 of the clustering algorithm, we 
know that Ci, and Cj have n elements respectively, 

      Ci ={ci1, ci2, …, cin}                                
      Cj ={cj1, cj2, …, cjn}                                                 

Each Send packet is independent from the others, and from inequality (4) we have 
p(Ci is the RTTs)=p(ci1 is the RTT of s1, ci2 is the RTT of s2, …cin is the RTT of sn) 

=p(ci1)*p(ci2)….*p(cin) 

                                 
n

iq ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≥

2

1
1  

p(Cj is the RTTs)=p(cj1 is the RTT of s1, cj2 is the RTT of s2, …cjn is the RTT of sn) 
=p(cj1)*p(cj2)….*p(cjn) 

                                             
n

jq ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≥

2

1
1  
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From (5), (6) we know that 

  
n

j

n

i qq ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
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1
1

1
1  

This indicates that each cluster C has a probability to represent the true RTTs, but 
the one with the smallest standard deviation has the highest probability to represent 
the true RTTs. Therefore, we select the cluster with smallest standard deviation 
among all the clusters created to represent the true RTTs of the Send packets in S.  
End Proof. 

 
We prove that the cluster with smallest standard deviation has the highest probability 
to represent the true RTTs. Even though the algorithm can give us the best answer 
when we find the RTTs of Send packets in S, but it is not efficient because of the time 
complexity which is O(mn) in worst case. This algorithm cannot be used in real time. 
In the following section, we propose an efficient clustering algorithm that can be used 
in real time. Unfortunately, we cannot prove if we can get the best answer with the 
efficient algorithm, but we can justify it by comparing its result with that of the 
clustering algorithm in the same context in Section 4. 

3.2   The Efficient Clustering Algorithm 

The inefficiency of the above clustering algorithm is that the cluster space complexity 
is O(mn). Our goal is to shrink the space without losing useful information to make the 
clustering algorithm efficient. Here we still suppose that we monitor an interactive 
TCP session for a period of time, and capture n Send packets and m Echo packets, as 
well as assuming that all the n Send packets are echoed and only echoed by the m 
Echo packets. We form data sets S1, S2, …, Sn upon the n Send packets and m Echo 
packets. The reason that we have huge combination space in the clustering algorithm 
is that we combine the elements in data sets S1, S2, …, Sn freely, without any 
restrictions, and enumerate all the possibilities. Some combinations that are 
apparently impossible to represent the true RTTs are still involved into the final 
cluster space.  

We take some measures in the efficient clustering algorithm to reduce the size of 
the final cluster space. We have n data sets, and know that each element of the true 
RTTs is hidden in different one of the data sets as well. For all the m elements in S1, 
we simply assume that each one is possible to represent the true RTT of the Send 
packet s1, even though we know that actually only one element in S1 is qualified to 
represent the true RTT of s1. We take any element in S1, such as the ith element s1ei, to 
be the first element of cluster Ci, and look at all the elements in S2 to find the one that 
makes Ci more possible to represent the true RTTs and add it to Ci. Similarly, we 
check all the elements in S3, S4, …, Sn respectively, and find one suitable element in 
each data set and add them to Ci respectively, which finally has n elements. We 
eventually have m clusters because S1 has m elements each of which can be used to 
form one cluster. From Theorem 1, it is obvious to take the cluster that has the 
smallest standard deviation among the m clusters to represent the true RTTs.  
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However, we still have two problems here. First, when we check a data set to find 
one element to make the current cluster to be more possible to represent the true 
RTTs, we have the question that is how to make the current cluster to be more 
possible to represent the true RTTs. Second, from the whole process to generate the m 
clusters, we cannot guarantee that the cluster that represents the true RTTs is involved 
in the final m clusters. For the first problem, the way we take is to select an element 
that makes the current cluster have the smallest standard deviation. Upon each 
element in data set S1, we could have mn-1 combinations in the worst case. The cluster 
generated by ensuring the smallest standard deviation every time to select one element 
from a data set could not guarantee the smallest standard deviation among its whole 
mn-1 combinations. This is why the second problem is. To be more understandable, we 
explain the second problem in details through an example.  

Suppose we have four data sets S1= {20, X}, S2= {15, 18}, S3= {18, 19}, S4= {7, 
8}, it does not matter whatever the second element in S1 is because we only check the 
clusters formed upon the first element of S1. If we traverse all the possibilities upon 
the first element in S1, we have eight clusters, which are C1={20,15,18,7}, 
C2={20,15,18,8}, C3={20,15,19,7}, C4={20,15,19,8}, C5={20,18,18,7}, C6= 
{20,18,18,8}, C7={20,18,19,7}, C8={20,18,19,8} with standard deviation 5.71, 5.25, 
5.91, 5.45, 5.91, 5.42, 6.06, 5.56, respectively. From the Theorem 1, the good answer 
should be C2={20,15,18,8}. However, from the efficient algorithm, cluster C only has 
one element at first, that is C= {20}. Then we check the elements in S2, we find that 
the second element is our best choice because it makes C have the smallest standard 
deviation, so C= {20, 18}. For similar reason, we check the elements in S3, and S4 
respectively, finally find the cluster C should be {20, 18, 19, 8} which is different 
from the one obtained from the first algorithm. This is the second problem that cannot 
be solved in theory so far.  

Fortunately, even though there is possibility theoretically that the efficient 
clustering algorithm could get an incorrect answer, but that possibility is very low 
when we apply this algorithm to a real world example. We have justified hundreds of 
real world examples, the above case happened in a very small chance. In Section 4, 
we give some real world experimental examples to justify the efficient clustering 
algorithm. Here we give the detailed efficient clustering algorithm. 

The Efficient Clustering Algorithm (S, E) 
Begin 
1. Do i=1, n 

Si=φ; 
Do j=1, m 
 t(i, j) = t(ej)-t(si); 
 Si=Si ∪ t(i, j); 
End Do 

End Do 
2. For each t(1, i)∈S1, form cluster Ci:  

Do k=2, n 
 σ = stdev(Ci ∪ t(k,1)); 
 ts = t(k,1); 
 Do u=1, m 
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  If stdev(Ci∪ t(k,u)) ≤σ 
   σ = stdev(Ci∪ t(k,1)); 
   ts = t(k,u); 
  EndIf 
 End Do 
 Ci= Ci∪ t(k,1) 
End Do 

3. Filter out each cluster C. For any cluster Ck (1≤k≤n) : (a) if t(i, u), t(i, v) ∈ Ck, 
u<v, then delete t(i, u), and (b) if t(u, j), t(v, j) ∈ Ck, u<v, then delete t(v, j) 

4. σ = stdev(C1); 
Cs = C1; 

Do k=1, n 
If stdev(Ck) ≤ σ 
 σ =stdev(Ck); 
 Cs=Ck; 
End If 

       End Do 
5. Output cluster Cs as the RTTs of the Send packets in S. 
End 

In Step 1, at first, we suppose that each data set is empty which is denoted φ. We 
use sign ‘∪’ to express adding one more element to a data set. In Step 2, we use σ to 
denote the standard deviation of the cluster, and ts to denote the element in each data 
set that makes the current cluster get the smallest standard deviation. We use ‘stdev’ 
as a function to compute the standard deviation of a given cluster. In Step 3, Cs stands 
for a cluster which has the smallest standard deviation among all the clusters 
considered.  

Let us analyze the complexity of this algorithm. Suppose we have n Send packets, 
and m Echo packets, from the efficient clustering algorithm, we need to select one 
cluster from the m clusters. The complexity of this algorithm is dominated by Step 2. 
Considering there are n elements in each cluster, and there are m elements in each 
data set, the complexity of this algorithm is O(m*n*(m-1))=O(n*m2) under the worst 
case. Comparing with the complexity of the previous algorithm, O(mn), obviously, 
this algorithm is largely improved in time and space complexity.  

4    Empirical Study  

We have proposed and proved a clustering algorithm to compute the true RTTs of the 
Send packets of a TCP session, as well as an efficient one. Theorem 1 only means 
among all the clusters created, the cluster with smallest standard deviation has the 
highest probability to represent the true RTTs of the Send packets. Therefore, from 
Theorem 1, we get the possibility in what extent that the result of the clustering 
algorithm could stand for the true RTTs. We are not able to prove the result of the 
clustering algorithm can be the true RTTs definitely. Hence, we design three 
experiments to evaluate the performance of the above two algorithms and give readers 
more practical sense. The first experiment is used to justify the correctness of the 
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results of the clustering by comparing them with the known correct RTTs. The second 
experiment is designed to evaluate the performance of the clustering algorithm by 
comparing it with the best packet-matching algorithm. The third experiment is used to 
evaluate the performance of the efficient algorithm by comparing it with the 
clustering algorithm. 

We made a program by using Libpcap [13], [14] to capture the Send and Echo 
packets of an interactive TCP session on the Internet. We set up a connection chain 
that spanned U.S. and Mexico and was long enough so as to generate the overlap of 
send-echo pair which makes matching packets harder. The connection chain used in 
our experiment is: Host 1  Acl08  Mex  Themis  Mex  Bayou, in which 
Host 1, Acl08, Themis and Bayou are hosts located in Houston, and Mex is a host 
located in Mexico which we have a legal user to access. Acl08 is our monitor host on 
which one program was running to capture the Send and Echo packets of a TCP 
session. The sign ‘ ’ represents a connection established by using OpenSSH. We did 
each experiment hundreds of times but here with only one of the results presented.  

4.1   Justifying the Correctness of the Clustering Algorithm 

In this experiment, we examine the correctness of the clustering algorithm by 
comparing its results with the known correct RTTs. The problem is how to obtain the 
correct RTTs of the Send packets of a TCP session for a real world case. The reason 
to bother packet-matching  is  the  overlap  of  send-echo  pair as  we  have  discussed. 
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Fig. 1. Justify the correctness of the result of the clustering algorithm 

We would avoid such overlap by controlling the keystroke speed to make matching 
TCP packets easier, and thus obtain the correct RTTs. We did not type each character 
until we are sure that the previous one (a Send packet) had been replied. It is trivial to 
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compute the correct RTT for each Send packet by simply matching it with the closest 
Echo packet following it. Meanwhile, we collect all the Send and Echo packets, and 
apply the clustering algorithm to them to output the results for the Send packets. Then 
we can compare these results with the correct RTTs and be sure if they are consistent. 
The comparison result is showed in Fig. 1, in which X axis represents the Send packet 
index number, and Y axis represents the RTT value with unit microsecond. For 
clarity, Fig. 1 only shows us part of the results. It shows obviously that the result of 
the clustering algorithm is the same as the correct RTTs. 

4.2   Comparison Between the Clustering and the Best Packet-Matching 
Algorithm  

In the experiment of Section 4.1, we have justified the correctness of the clustering 
algorithm, but need to control the keystroke speed to get the correct RTTs. In the real 
world, it is impossible to do so because intruders control the keystroke speed of an 
interactive session. Here, we use different way to evaluate the performance of the 
clustering algorithm under the context very close to the real world. The way is to 
evaluate the performance of the clustering algorithm by comparing it with the best 
packet-matching algorithm, the Conservative algorithm [6], which claims to match 
TCP packet correctly, or computing RTTs correctly, but with few packets matched.  
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Fig. 2. Comparison between the Conservative and the clustering algorithm 

We monitor the TCP connection chain at Acl08 by running the Conservative 
algorithm to compute the RTTs, while we capture all the Send and Echo packets, and 
apply the clustering algorithm to them to compute the RTTs. In this experiment, we 
captured 232 Send packets, but the Conservative algorithm only gave 107 send-echo 
matches, while the clustering algorithm can obtain 232 RTTs that are equal to 232 
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send-echo matches. For clarity, we only show part of the RTTs (Send packet index 
number 100-170) in Fig. 2. From this comparison, we draw the following two points. 
1) All the RTTs obtained by the Conservative algorithm are the same as the part of the 
RTTs found by the clustering algorithm. 2) Even though we cannot judge the 
correctness of the rest of the RTTs, but from their distribution, we see they are very 
close to the results of the Conservative algorithm. 

4.3   Justifying the Efficient Clustering Algorithm 

The efficient clustering algorithm cannot guarantee to compute the best RTTs 
theoretically just as we have analyzed in Section 3.2. However, this algorithm is still 
useful to compute the RTTs in practice because the empirical study showed that the 
efficient clustering algorithm could obtain the RTTs, which are the same as the results 
of the clustering algorithm for most real world examples. Even though in a very few 
cases, they are different, but the RTTs from the efficient clustering algorithm are still 
useful in detecting stepping–stone intrusion because it does not affect to identify one 
level of a connection chain.  
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Fig. 3. Verifying the efficient clustering algorithm 

In this experiment, we also monitored the connection chain at host Acl08, and 
collected all the Send and Echo packets in a period of time. We applied the two 
algorithms to these packets respectively, and compared their results.  We did this 
experiment hundreds of times, and found their results are the same in more than 99% 
cases. Fig. 3 shows one exception in which their results are different slightly. 

In Fig. 3, the circles represent the part of the RTTs found by the clustering 
algorithm, while the crosses stand for the part of the results obtained from the 
efficient clustering algorithm. It is obvious that the most of the RTTs computed by the 
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two algorithms respectively are identical. Only a few RTTs computed by the efficient 
clustering algorithm are different from the ones obtained from the clustering 
algorithm. Compare to number of the whole RTTs computed, the number of these 
RTTs is relatively small (in this experiment, it is 8 out of 232), so we can still figure 
out one level of a connection chain upon the RTTs found by the efficient algorithm, 
and thus make this algorithm useful in detecting stepping-stone intrusion. 

5   Related Work 

The related work can be classified into two categories: a) detecting stepping-stone;  
b) detecting stepping-stone intrusion. Category a) includes the approaches proposed in 
papers [4], [15], [16], [17], [18], [19]; Category b) includes the algorithms proposed 
in papers [5], [6]. The difference between the two categories is that the approaches in 
category a) can only predict if a host is used as a stepping-stone, the approaches in 
category b) can predict not only a host is used as a stepping-stone, but also if the host 
is used by an intruder. Being used as a stepping-stone does not mean being used by an 
intruder because some legal users also need a host to be used as a stepping-stone. In 
this paper, we propose an algorithm to compute the RTTs, which eventually can be 
used to detect stepping-stone intrusion. It is not necessary to compare this algorithm 
with the approaches in category a). 

To determine if a host is used as a stepping-stone is easier than to determine if a 
host is used by an intruder. Most approaches in category a) are to compare an 
incoming connection with an outgoing connection to determine if a host is used as a 
stepping-stone, such as content-based method [19], time-based method [4], [18], 
packet-number-based method [16]. They all suffer from not only a problem of being 
vulnerable to intruders’ evasion except the method in paper [6], but also high false 
alarm rate in detecting stepping-stone intrusion. The detecting method based on the 
RTTs from the clustering algorithm can detect intruders’ evasion. We discuss this 
point in another paper. It is obvious that the approaches in category b) have no false 
alarm problem in detecting stepping-stone intrusion.  

6   Conclusions and Future Work 

In this paper, we have proved a theory and proposed a clustering algorithm the theory 
to compute the RTTs of the Send packets of a TCP interactive session, which are 
useful in detecting stepping-stone intrusion. We also proposed an efficient clustering 
algorithm to compute the RTTs with less computation cost, which is possible to be 
used in real-time detection. The empirical study showed: 1) the RTTs found by the 
clustering algorithm are the same as the correct ones; 2) the clustering algorithm can 
match packets with both high matching-rate and high matching-accuracy; 3) the 
efficient clustering algorithm can compute the RTTs almost the same as the results 
from the clustering algorithm in most cases. 

The clustering algorithm can only figure out estimation of single level RTTs. Even 
though it is useful in detecting stepping-stone intrusion, but computing multi-level 
RTTs is more useful and challenging to detect intrusion. One future work is to 
improve the current clustering algorithm to compute multi-level RTTs.  
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